Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Integrated Analysis of Clinical Outcome of Mesenchymal Stem Cell-related Genes in Pan-cancer

Author(s): Mingzhe Jiang, Dantong Zhu, Dong Zhao, Yongye Liu, Jia Li and Zhendong Zheng*

Volume 25, Issue 4, 2024

Published on: 26 April, 2024

Page: [298 - 315] Pages: 18

DOI: 10.2174/0113892029291247240422060811

Price: $65

Abstract

Background: Although the application of mesenchymal stem cells (MSCs) in engineered medicine, such as tissue regeneration, is well known, new evidence is emerging that shows that MSCs can also promote cancer progression, metastasis, and drug resistance. However, no large-scale cohort analysis of MSCs has been conducted to reveal their impact on the prognosis of cancer patients.

Objectives: We propose the MSC score as a novel surrogate for poor prognosis in pan-cancer.

Methods: We used single sample gene set enrichment analysis to quantify MSC-related genes into a signature score and identify the signature score as a potential independent prognostic marker for cancer using multivariate Cox regression analysis. TIDE algorithm and neural network were utilized to assess the predictive accuracy of MSC-related genes for immunotherapy.

Results: MSC-related gene expression significantly differed between normal and tumor samples across the 33 cancer types. Cox regression analysis suggested the MSC score as an independent prognostic marker for kidney renal papillary cell carcinoma, mesothelioma, glioma, and stomach adenocarcinoma. The abundance of fibroblasts was also more representative of the MSC score than the stromal score. Our findings supported the combined use of the TIDE algorithm and neural network to predict the accuracy of MSC-related genes for immunotherapy.

Conclusion: We comprehensively characterized the transcriptome, genome, and epigenetics of MSCs in pan-cancer and revealed the crosstalk of MSCs in the tumor microenvironment, especially with cancer-related fibroblasts. It is suggested that this may be one of the key sources of resistance to cancer immunotherapy.

Graphical Abstract

[1]
Keating, A. Mesenchymal stromal cells: New directions. Cell Stem Cell, 2012, 10(6), 709-716.
[http://dx.doi.org/10.1016/j.stem.2012.05.015] [PMID: 22704511]
[2]
Singer, N G; Caplan, A I Mesenchymal stem cells: Mechanisms of inflammation. Annu Rev Pathol, 2011, 6, 457-478.
[3]
Antonitsis, P.; Papagiannaki, I.E.; Kaidoglou, A.; Papakonstantinou, C. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact. Cardiovasc. Thorac. Surg., 2007, 6(5), 593-597.
[http://dx.doi.org/10.1510/icvts.2007.157875] [PMID: 17670726]
[4]
Kopen, G.C.; Prockop, D.J.; Phinney, D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci., 1999, 96(19), 10711-10716.
[http://dx.doi.org/10.1073/pnas.96.19.10711] [PMID: 10485891]
[5]
Tashiro, J.; Elliot, S.J.; Gerth, D.J.; Xia, X.; Simon, P.S.; Choi, R.; Catanuto, P.; Shahzeidi, S.; Toonkel, R.L.; Shah, R.H.; Salem, E.F.; Glassberg, M.K. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis. Transl. Res., 2015, 166(6), 554-567.
[http://dx.doi.org/10.1016/j.trsl.2015.09.004] [PMID: 26432923]
[6]
Yu, J.; Cao, H.; Yang, J.; Pan, Q.; Ma, J.; Li, J.; Li, Y.; Li, J.; Wang, Y.; Li, L. In vivo hepatic differentiation of mesenchymal stem cells from human umbilical cord blood after transplantation into mice with liver injury. Biochem. Biophys. Res. Commun., 2012, 422(4), 539-545.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.156] [PMID: 22580002]
[7]
Ji, J.F.; He, B.P.; Dheen, S.T.; Tay, S.S.W. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 2004, 22(3), 415-427.
[http://dx.doi.org/10.1634/stemcells.22-3-415] [PMID: 15153618]
[8]
Wu, G.D.; Bowdish, M.E.; Jin, Y.S.; Zhu, H.; Mitsuhashi, N.; Barsky, L.W.; Barr, M.L. Contribution of mesenchymal progenitor cells to tissue repair in rat cardiac allografts undergoing chronic rejection. J. Heart Lung Transplant., 2005, 24(12), 2160-2169.
[http://dx.doi.org/10.1016/j.healun.2005.05.017] [PMID: 16364866]
[9]
Mumme, H.L.; Raikar, S.S.; Bhasin, S.S.; Thomas, B.E.; Lawrence, T.; Weinzierl, E.P.; Pang, Y.; DeRyckere, D.; Gawad, C.; Wechsler, D.S.; Porter, C.C.; Castellino, S.M.; Graham, D.K.; Bhasin, M. Single-cell RNA sequencing distinctly characterizes the wide heterogeneity in pediatric mixed phenotype acute leukemia. Genome Med., 2023, 15(1), 83.
[http://dx.doi.org/10.1186/s13073-023-01241-z] [PMID: 37845689]
[10]
Kim, S.; Lee, S.; Kim, H.; Kim, T. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int. J. Mol. Sci., 2018, 19(10), 3119.
[http://dx.doi.org/10.3390/ijms19103119] [PMID: 30314356]
[11]
Egan, H.; Treacy, O.; Lynch, K.; Leonard, N.A.; O’Malley, G.; Reidy, E.; O’Neill, A.; Corry, S.M.; De Veirman, K.; Vanderkerken, K.; Egan, L.J.; Ritter, T.; Hogan, A.M.; Redmond, K.; Peng, L.; Che, J.; Gatlin, W.; Jayaraman, P.; Sheehan, M.; Canney, A.; Hynes, S.O.; Kerr, E.M.; Dunne, P.D.; O’Dwyer, M.E.; Ryan, A.E. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep., 2023, 42(5), 112475.
[http://dx.doi.org/10.1016/j.celrep.2023.112475] [PMID: 37167967]
[12]
You, D.H.; Nam, M.J. Effects of human epidermal growth factor gene-transfected mesenchymal stem cells on fibroblast migration and proliferation. Cell Prolif., 2013, 46(4), 408-415.
[http://dx.doi.org/10.1111/cpr.12042] [PMID: 23869762]
[13]
Billottet, C.; Jouanneau, J. Tumor-stroma interactions. Bull. Cancer, 2008, 95(1), 51-56.
[PMID: 18230570]
[14]
Aras, S.; Zaidi, M.R. TAMeless traitors: Macrophages in cancer progression and metastasis. Br. J. Cancer, 2017, 117(11), 1583-1591.
[http://dx.doi.org/10.1038/bjc.2017.356] [PMID: 29065107]
[15]
Condeelis, J.; Pollard, J.W. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006, 124(2), 263-266.
[http://dx.doi.org/10.1016/j.cell.2006.01.007] [PMID: 16439202]
[16]
Xu, S.; Menu, E.; Becker, A.D.; Van Camp, B.; Vanderkerken, K.; Van Riet, I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells, 2012, 30(2), 266-279.
[http://dx.doi.org/10.1002/stem.787] [PMID: 22102554]
[17]
Ren, G.; Liu, Y.; Zhao, X.; Zhang, J.; Zheng, B.; Yuan, Z-R.; Zhang, L.; Qu, X.; Tischfield, J.A.; Shao, C.; Shi, Y. Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene, 2014, 33(30), 4016-4020.
[http://dx.doi.org/10.1038/onc.2013.387] [PMID: 24077286]
[18]
Kidd, S.; Spaeth, E.; Watson, K.; Burks, J.; Lu, H.; Klopp, A.; Andreeff, M.; Marini, F.C. Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One, 2012, 7(2), e30563.
[http://dx.doi.org/10.1371/journal.pone.0030563] [PMID: 22363446]
[19]
Yoshihara, K; Shahmoradgoli, M; Martinez, E Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun, 2013, 4, 2612.
[20]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[21]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[22]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[23]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[24]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[25]
Pinto, J.P.; Kalathur, R.K.; Oliveira, D.V.; Barata, T.; Machado, R.S.R.; Machado, S.; Pacheco-Leyva, I.; Duarte, I.; Futschik, M.E. StemChecker: A web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res., 2015, 43(W1), W72-W77.
[http://dx.doi.org/10.1093/nar/gkv529] [PMID: 26007653]
[26]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[27]
Aran, D.; Hu, Z.; Butte, A.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol., 2017, 18(1), 220.
[http://dx.doi.org/10.1186/s13059-017-1349-1] [PMID: 29141660]
[28]
Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Puig, L.P.; Fridman, S.C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218.
[http://dx.doi.org/10.1186/s13059-016-1070-5] [PMID: 27765066]
[29]
Racle, J; Gfeller, D EPIC: A tool to estimate the proportions of different cell types from bulk gene expression data. Methods Mol Biol, 2020, 2120, 233-248.
[30]
Paszke, A G S Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA2017.
[31]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[32]
Louault, K.; Porras, T.; Lee, M.H.; Muthugounder, S.; Kennedy, R.J.; Blavier, L.; Sarte, E.; Fernandez, G.E.; Yang, F.; Pawel, B.R.; Shimada, H.; Asgharzadeh, S.; DeClerck, Y.A. Fibroblasts and macrophages cooperate to create a pro-tumorigenic and immune resistant environment via activation of TGF-β/IL-6 pathway in neuroblastoma. OncoImmunology, 2022, 11(1), 2146860.
[http://dx.doi.org/10.1080/2162402X.2022.2146860] [PMID: 36479153]
[33]
Sarhadi, V.K.; Daddali, R.; Kaijansinkko, S.R. Mesenchymal stem cells and extracellular vesicles in osteosarcoma pathogenesis and therapy. Int. J. Mol. Sci., 2021, 22(20), 11035.
[http://dx.doi.org/10.3390/ijms222011035] [PMID: 34681692]
[34]
Mei, S.; Alchahin, A.M.; Tsea, I.; Kfoury, Y.; Hirz, T.; Jeffries, N.E.; Zhao, T.; Xu, Y.; Zhang, H.; Sarkar, H.; Wu, S.; Subtelny, A.O.; Johnsen, J.I.; Zhang, Y.; Salari, K.; Wu, C.L.; Randolph, M.A.; Scadden, D.T.; Dahl, D.M.; Shin, J.; Kharchenko, P.V.; Saylor, P.J.; Sykes, D.B.; Baryawno, N. Single-cell analysis of immune and stroma cell remodeling in clear cell renal cell carcinoma primary tumors and bone metastatic lesions. Genome Med., 2024, 16(1), 1.
[http://dx.doi.org/10.1186/s13073-023-01272-6] [PMID: 38281962]
[35]
Parker, A.L.; Bowman, E.; Zingone, A.; Ryan, B.M.; Cooper, W.A.; Corish, K.M.; Harris, C.C.; Cox, T.R. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med., 2022, 14(1), 126.
[http://dx.doi.org/10.1186/s13073-022-01127-6] [PMID: 36404344]
[36]
Lu, W.; Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell, 2019, 49(3), 361-374.
[http://dx.doi.org/10.1016/j.devcel.2019.04.010] [PMID: 31063755]
[37]
Quante, M.; Tu, S.P.; Tomita, H.; Gonda, T.; Wang, S.S.W.; Takashi, S.; Baik, G.H.; Shibata, W.; DiPrete, B.; Betz, K.S.; Friedman, R.; Varro, A.; Tycko, B.; Wang, T.C. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 2011, 19(2), 257-272.
[http://dx.doi.org/10.1016/j.ccr.2011.01.020] [PMID: 21316604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy