Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer

Author(s): Reyaz Hassan Mir, Mudasir Maqbool, Prince Ahad Mir, Md. Sadique Hussain, Shahid ud din Wani, Faheem Hyder Pottoo* and Roohi Mohi-ud-din*

Volume 30, Issue 31, 2024

Published on: 09 May, 2024

Page: [2445 - 2467] Pages: 23

DOI: 10.2174/0113816128291705240428060456

Price: $65

Abstract

In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.

[1]
Torre L, Siegel R, Jemal A. American Cancer Society. Global Cancer Facts & Figures. 2015; pp. 1-64.
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Vickers A. Alternative cancer cures: “Unproven” or “disproven”? CA Cancer J Clin 2004; 54(2): 110-8.
[http://dx.doi.org/10.3322/canjclin.54.2.110] [PMID: 15061600]
[4]
Hussain MS, Afzal O, Gupta G, et al. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol Res Pract 2023; 249: 154738.
[http://dx.doi.org/10.1016/j.prp.2023.154738] [PMID: 37595448]
[5]
Mir RH, Mohi-ud-din R, Wani TU, et al. Indole: A privileged heterocyclic moiety in the management of cancer. Curr Org Chem 2021; 25(6): 724-36.
[http://dx.doi.org/10.2174/1385272825666210208142108]
[6]
Wani TU, Mohi-ud-din R, Mir RH, et al. Exosomes harnessed as nanocarriers for cancer therapy-current status and potential for future clinical applications. Curr Mol Med 2021; 21(9): 707-23.
[http://dx.doi.org/10.2174/18755666MTA53OTMcx] [PMID: 32933459]
[7]
Gowda BHJ, Ahmed MG, Alshehri SA, et al. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ Res 2023; 237(Pt 1): 116894.
[http://dx.doi.org/10.1016/j.envres.2023.116894] [PMID: 37586450]
[8]
Hani U, Gowda JBH, Siddiqua A, et al. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390: 123037.
[http://dx.doi.org/10.1016/j.molliq.2023.123037]
[9]
Dar MO, Mir RH, Mohiuddin R, Masoodi MH, Sofi FA. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J Inorg Biochem 2023; 246: 112290.
[http://dx.doi.org/10.1016/j.jinorgbio.2023.112290] [PMID: 37327591]
[10]
Mir PA, Mohi-Ud-Din R, Banday N, et al. Anticancer potential of thymoquinone: A novel bioactive natural compound from Nigella sativa L. Anti-Cancer Agents Med Chem 2022; 22(20): 3401-15.
[11]
Mir PA, Uppal J, Noor A, et al. Recent advances of dihydropyrimidinone derivatives in cancer research. Dihydropyrimidinones Potent Anticancer Agents 2023; pp. 153-71.
[http://dx.doi.org/10.1016/B978-0-443-19094-0.00006-0]
[12]
Mohi-ud-din R, Mir RH, Sabreen S, Jan R, Pottoo FH, Singh IP. Recent insights into therapeutic potential of plant-derived flavonoids against cancer. Anticancer Agents Med Chem 2022; 22(20): 3343-69.
[http://dx.doi.org/10.2174/1871520622666220421094055] [PMID: 35593353]
[13]
Mohi-ud-din R, Mir RH, Banday N, et al. Resveratrol: A potential drug candidate with multispectrum therapeutic application. Stud Nat Prod Chem 2022; 73: 99-137.
[http://dx.doi.org/10.1016/B978-0-323-91097-2.00009-1]
[14]
Khan MS, Gowda BHJ, Nasir N, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643: 123276.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123276] [PMID: 37516217]
[15]
Wani SU, Ali M, Masoodi MH, et al. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vib Spectrosc 2022; 121: 103407.
[http://dx.doi.org/10.1016/j.vibspec.2022.103407]
[16]
Mohi-ud-din R, Mir RH, Wani TU, et al. The regulation of endoplasmic reticulum stress in cancer: Special focuses on luteolin patents. Molecules 2022; 27(8): 2471.
[http://dx.doi.org/10.3390/molecules27082471] [PMID: 35458669]
[17]
Yan A, Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int J Mol Sci 2019; 20(5): 1003.
[http://dx.doi.org/10.3390/ijms20051003] [PMID: 30813508]
[18]
Hussain MS, Sharma P, Dhanjal DS, et al. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem Biol Interact 2021; 348: 109637.
[http://dx.doi.org/10.1016/j.cbi.2021.109637] [PMID: 34506765]
[19]
Mohi-ud-din R, Mir RH, Wani TU, et al. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders. Comb Chem High Throughput Screen 2022; 25(4): 607-15.
[http://dx.doi.org/10.2174/1386207324666210705114058] [PMID: 34225614]
[20]
Hussain MS, Altamimi ASA, Afzal M, et al. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp Gerontol 2024; 188: 112389.
[http://dx.doi.org/10.1016/j.exger.2024.112389] [PMID: 38432575]
[21]
Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253(Pt 5): 127143.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127143] [PMID: 37793512]
[22]
Li X, Cui R, Liu W, et al. The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials. J Nanomater 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/728130]
[23]
Kataria T, Hussain S, Kaur G, Deb A. Emerging nanoparticles in the diagnosis of atherosclerosis. Int J Pharm Sci Rev Res 2021; 70(2): 46-57.
[http://dx.doi.org/10.47583/ijpsrr.2021.v70i02.008]
[24]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[25]
Zeng L, Gowda BHJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22(1): 10.
[http://dx.doi.org/10.1186/s12943-022-01708-4] [PMID: 36635761]
[26]
Ashique S, Kumar S, Hussain A, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J Health Popul Nutr 2023; 42(1): 74.
[http://dx.doi.org/10.1186/s41043-023-00423-0] [PMID: 37501216]
[27]
Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers 2020; 12(4): 855.
[http://dx.doi.org/10.3390/cancers12040855] [PMID: 32244822]
[28]
Lee S, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[29]
Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv Funct Mater 2024; 34(7): 2307074.
[http://dx.doi.org/10.1002/adfm.202307074]
[30]
Ahmadi S. The importance of silver nanoparticles in human life. Adv Appl NanoBio-Technol 2020; 1(1): 5-9.
[http://dx.doi.org/10.47277/AANBT/1(1)9]
[31]
Shenton W, Douglas T, Young M, Stubbs G, Mann S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 1999; 11(3): 253-6.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7]
[32]
Medvedeva NV, Ipatova OM, Ivanov YD, Drozhzhin AI, Archakov AI. Nanobiotechnology and nanomedicine. Biochemistry (Moscow). Supplement Series B: Biomed Chem 2007; 1: 114-24.
[33]
Zhang D, Ma X, Gu Y, Huang H, Zhang G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem 2020; 8: 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]
[34]
Mohi-ud-din R, Mir RH, Wani TU, Shah AJ, Banday N, Pottoo FH. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb Chem High Throughput Screen 2022; 25(4): 616-33.
[http://dx.doi.org/10.2174/1386207324666210804122539] [PMID: 34348611]
[35]
Tang S, Mao C, Liu Y, Kelly DQ, Banerjee SK. Protein-mediated nanocrystal assembly for flash memory fabrication. IEEE Trans Electron Dev 2007; 54(3): 433-8.
[http://dx.doi.org/10.1109/TED.2006.890234]
[36]
Stepanov AL, Golubev AN, Nikitin SI, Osin YN. A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 2014; 38(2): 160-75.
[37]
Wang L, Chen X, Zhan J, et al. Synthesis of gold nano- and microplates in hexagonal liquid crystals. J Phys Chem B 2005; 109(8): 3189-94.
[http://dx.doi.org/10.1021/jp0449152] [PMID: 16851339]
[38]
You H, Yang S, Ding B, Yang H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 2013; 42(7): 2880-904.
[http://dx.doi.org/10.1039/C2CS35319A] [PMID: 23152097]
[39]
Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 2016; 34(7): 588-99.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[40]
Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int J Nanomedicine 2015; 10: 4203-22.
[http://dx.doi.org/10.2147/IJN.S83953] [PMID: 26170659]
[41]
Gouyau J, Duval RE, Boudier A, Lamouroux E. Investigation of nanoparticle metallic core antibacterial activity: Gold and silver nanoparticles against Escherichia coli and Staphylococcus aureus. Int J Mol Sci 2021; 22(4): 1905.
[http://dx.doi.org/10.3390/ijms22041905] [PMID: 33672995]
[42]
Hassan R, Mohi-ud-din R, Dar MO, et al. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review. Anticancer Agents Med Chem 2022; 22(3): 551-65.
[http://dx.doi.org/10.2174/1871520621666210901112954] [PMID: 34488596]
[43]
Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew Chem Int Ed 2013; 52(6): 1636-53.
[http://dx.doi.org/10.1002/anie.201205923] [PMID: 23255416]
[44]
Li C, Zhang Y, Wang M, et al. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014; 35(1): 393-400.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.010] [PMID: 24135267]
[45]
Sondi I, Sondi SB. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[46]
Li L, Hu J, Yang W, Alivisatos AP. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Lett 2001; 1(7): 349-51.
[http://dx.doi.org/10.1021/nl015559r]
[47]
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145(1-2): 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[48]
Khan MS, Gowda JBH, Almalki WH, Singh T, Sahebkar A, Kesharwani P. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment. Drug Discov Today 2024; 29(1): 103819.
[http://dx.doi.org/10.1016/j.drudis.2023.103819] [PMID: 37940034]
[49]
Gurunathan S, Kalishwaralal K, Vaidyanathan R, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 2009; 74(1): 328-35.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.048] [PMID: 19716685]
[50]
Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32(4): 711-26.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[51]
Pleus R. Nanotechnologies-guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment. Geneva, Switzerland: ISO 2012.
[52]
Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015; 11(7): 1603-11.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[53]
Staquicini FI, Ozawa MG, Moya CA, et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 2011; 121(1): 161-73.
[http://dx.doi.org/10.1172/JCI44798] [PMID: 21183793]
[54]
Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013; 9(9-10): 1521-32.
[http://dx.doi.org/10.1002/smll.201201390] [PMID: 23019091]
[55]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[56]
Panáček A, Kolář M, Večeřová R, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009; 30(31): 6333-40.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.065] [PMID: 19698988]
[57]
Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 2009; 43(3): 715-23.
[http://dx.doi.org/10.1016/j.watres.2008.11.014] [PMID: 19046755]
[58]
Wong KK, Cheung SO, Huang L, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem: Chem Enabl Drug Discov 2009; 4(7): 1129-35.
[http://dx.doi.org/10.1002/cmdc.200900049]
[59]
Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009; 30(31): 6341-50.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008] [PMID: 19698986]
[60]
Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 2010; 5: 753-62.
[PMID: 21042421]
[61]
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010; 62(2): 90-9.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[62]
Mir RH, Sabreen S, Mohi-ud-din R, et al. Isoflavones of soy: Chemistry and health benefits. Edible Plants in Health and Diseases. Cultural, Practical and Economic Value 2022; 1: pp. 303-24.
[http://dx.doi.org/10.1007/978-981-16-4880-9_13]
[63]
Naganthran A, Verasoundarapandian G, Khalid FE, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials 2022; 15(2): 427.
[http://dx.doi.org/10.3390/ma15020427] [PMID: 35057145]
[64]
Yoon KY, Byeon HJ, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 2007; 373(2-3): 572-5.
[http://dx.doi.org/10.1016/j.scitotenv.2006.11.007] [PMID: 17173953]
[65]
Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R. Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 2019; 7: 65.
[http://dx.doi.org/10.3389/fchem.2019.00065] [PMID: 30800654]
[66]
Sukirtha R, Priyanka KM, Antony JJ, et al. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 2012; 47(2): 273-9.
[http://dx.doi.org/10.1016/j.procbio.2011.11.003]
[67]
Farcau BS, Potara M, Simon T, Juhem A, Baldeck P, Astilean S. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharm 2014; 11(2): 391-9.
[http://dx.doi.org/10.1021/mp400300m] [PMID: 24304361]
[68]
Mir RH, Mir PA, Mohi-ud-din R, et al. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets. Anticancer Agents Med Chem 2022; 22(19): 3291-303.
[http://dx.doi.org/10.2174/1871520622666220613140607] [PMID: 35702764]
[69]
Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40(4): 328-46.
[http://dx.doi.org/10.3109/10408440903453074] [PMID: 20128631]
[70]
Mohi-ud-Din R, Mir RH, Mir PA, et al. Dysfunction of ABC transporters at the surface of BBB: potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery. Curr Drug Metab 2022; 23(9): 735-56.
[http://dx.doi.org/10.2174/1389200223666220817115003] [PMID: 35980054]
[71]
Rycenga M, Cobley CM, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 2011; 111(6): 3669-712.
[http://dx.doi.org/10.1021/cr100275d] [PMID: 21395318]
[72]
Mohi-ud-din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible pathways of hepatotoxicity caused by chemical agents. Curr Drug Metab 2019; 20(11): 867-79.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[73]
Ren J, Tilley RD. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 2007; 129(11): 3287-91.
[http://dx.doi.org/10.1021/ja067636w] [PMID: 17311381]
[74]
Misra SK, Dybowska A, Berhanu D, Luoma SN, Jones VE. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 2012; 438: 225-32.
[http://dx.doi.org/10.1016/j.scitotenv.2012.08.066] [PMID: 23000548]
[75]
Huang T, Xu X-HN. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 2010; 20(44): 9867-76.
[http://dx.doi.org/10.1039/c0jm01990a] [PMID: 22707855]
[76]
Mahmoud MA, Sayed EMA. Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 2013; 4(9): 1541-5.
[http://dx.doi.org/10.1021/jz4005015] [PMID: 26282312]
[77]
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[78]
Sastry M, Patil V, Sainkar SR. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 1998; 102(8): 1404-0.
[79]
Huang X, Jain PK, Sayed EIH, Sayed EMA. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007; 2(5): 681-93.
[http://dx.doi.org/10.2217/17435889.2.5.681]
[80]
Leung AB, Suh KI, Ansari RR. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl Opt 2006; 45(10): 2186-90.
[http://dx.doi.org/10.1364/AO.45.002186] [PMID: 16607982]
[81]
Tomaszewska E, Soliwoda K, Kadziola K, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/313081]
[82]
Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee RJ. Preparation of silver nanoparticles and their characterization. J Nanotechnol 2009; 5: 1-6.
[83]
Kreibig U, Vollmer M. Optical properties of metal clusters. Springer Science & Business Media 2013.
[84]
Link S, Sayed EMA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 2003; 54(1): 331-66.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759] [PMID: 12626731]
[85]
Noginov MA, Zhu G, Bahoura M, et al. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl Phys B 2007; 86(3): 455-60.
[http://dx.doi.org/10.1007/s00340-006-2401-0]
[86]
Nath S, Chakdar D. Synthesis of CdS and ZnS quantum dots and their applications in electronics. Nanotrends. 2007.
[87]
Taleb A, Petit C, Pileni MP. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J Phys Chem B 1998; 102(12): 2214-20.
[http://dx.doi.org/10.1021/jp972807s]
[88]
He R, Qian X, Yin J, Zhu Z. Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 2002; 12(12): 3783-6.
[http://dx.doi.org/10.1039/b205214h]
[89]
Henglein A. Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 1993; 97(21): 5457-71.
[http://dx.doi.org/10.1021/j100123a004]
[90]
Sastry M, Mayya KS, Bandyopadhyay K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A Physicochem Eng Asp 1997; 127(1-3): 221-8.
[http://dx.doi.org/10.1016/S0927-7757(97)00087-3]
[91]
Waseda Y, Matsubara E, Shinoda K. X-ray diffraction crystallography: Introduction, examples and solved problems. Springer Science & Business Media 2011.
[92]
Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci 2010; 99(9): 4005-12.
[http://dx.doi.org/10.1002/jps.22247] [PMID: 20533553]
[93]
Cabral M, Pedrosa F, Margarido F, Nogueira CA. End-of-life Zn-MnO2 batteries: Electrode materials characterization. Environ Technol 2013; 34(10): 1283-95.
[http://dx.doi.org/10.1080/09593330.2012.745621] [PMID: 24191461]
[94]
Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D, Bandyopadhyay NR. Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram Int 2009; 35(6): 2295-304.
[http://dx.doi.org/10.1016/j.ceramint.2009.01.002]
[95]
Ananias D, Paz AFA, Carlos LD, Rocha J. Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties. Microporous Mesoporous Mater 2013; 166: 50-8.
[http://dx.doi.org/10.1016/j.micromeso.2012.04.032]
[96]
Singh DK, Pandey DK, Yadav RR, Singh D. A study of ZnO nanoparticles and ZnO-EG nanofluid. J Exp Nanosci 2013; 8(5): 731-41.
[http://dx.doi.org/10.1080/17458080.2011.602369]
[97]
Macaluso RT. Introduction to powder diffraction and its application to nanoscale and heterogeneous materials. ACS Symposium Series 2010; 1010: 75-86.
[http://dx.doi.org/10.1021/bk-2009-1010.ch006]
[98]
Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA. Preparation by mechanical alloying, characterization and sintering of Cu-20 wt.% Al2O3 nanocomposites. Mater Design (1980-2015) 2013; 46: 485-90.
[99]
Yazdian N, Karimzadeh F, Enayati MH. In situ fabrication of Al3V/Al2O3 nanocomposite through mechanochemical synthesis and evaluation of its mechanism. Adv Powder Technol 2013; 24(1): 106-12.
[http://dx.doi.org/10.1016/j.apt.2012.03.004]
[100]
Wu H, He L, Gao M, Gao S, Liao X, Shi B. One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties. New J Chem 2011; 35(12): 2902-9.
[http://dx.doi.org/10.1039/c1nj20674e]
[101]
Vaia RA, Liu W. X-ray powder diffraction of polymer/layered silicate nanocomposites: Model and practice. J Polym Sci, B, Polym Phys 2002; 40(15): 1590-600.
[http://dx.doi.org/10.1002/polb.10214]
[102]
Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog Polym Sci 2003; 28(11): 1539-641.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002]
[103]
Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci 2008; 33(12): 1119-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008]
[104]
Kou T, Jin C, Zhang C, Sun J, Zhang Z. Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange. RSC Advances 2012; 2(33): 12636-43.
[http://dx.doi.org/10.1039/c2ra21821f]
[105]
Khan A, Asiri AM, Rub MA, et al. Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane. Compos, Part B Eng 2013; 45(1): 1486-92.
[http://dx.doi.org/10.1016/j.compositesb.2012.09.023]
[106]
Dolatmoradi A, Raygan S, Abdizadeh H. Mechanochemical synthesis of W-Cu nanocomposites via in situ co-reduction of the oxides. Powder Technol 2013; 233: 208-14.
[http://dx.doi.org/10.1016/j.powtec.2012.08.013]
[107]
Aghili SE, Enayati MH, Karimzadeh F. In situ synthesis of alumina reinforced (Fe, Cr) 3Al intermetallic matrix nanocomposite. Mater Manuf Process 2012; 27(12): 1348-53.
[http://dx.doi.org/10.1080/10426914.2012.663141]
[108]
Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal Chem 2011; 83(12): 4453-88.
[http://dx.doi.org/10.1021/ac200853a] [PMID: 21545140]
[109]
Fleming PJ, Correia JJ, Fleming KG. Revisiting macromolecular hydration with HullRadSAS. Eur Biophys J 2023; 52(4-5): 215-24.
[http://dx.doi.org/10.1007/s00249-022-01627-8] [PMID: 36602579]
[110]
Das R, Ali E, Abd Hamid SB. Current applications of x-ray powder diffraction-A review. Rev Adv Mater Sci 2014; 38(2)
[111]
Caminade A, Laurent R, Majoral J. Characterization of dendrimers. Adv Drug Deliv Rev 2005; 57(15): 2130-46.
[http://dx.doi.org/10.1016/j.addr.2005.09.011] [PMID: 16289434]
[112]
Prabhu N, Keerthi C, Shruthi S, Sangeetha SK, Jeevitha S. A Review on green synthesis of silver nanoparticles, characterization techniques and its medical applications. European J Biotechnol Biosci 2019; 7(6): 10-22.
[113]
Joshi M, Bhattacharyya A, Ali SW. Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Textile Res 2008; 33(3): 304-17.
[114]
Cuevas JC, Scheer E. Molecular electronics: An introduction to theory and experiment. World Sci Ser Nanosci Nanotechnol 2010; 15: 848.
[http://dx.doi.org/10.1142/7434]
[115]
Chapman HN, Fromme P, Barty A, et al. Femtosecond X-ray protein nanocrystallography. Nature 2011; 470(7332): 73-7.
[http://dx.doi.org/10.1038/nature09750] [PMID: 21293373]
[116]
Inagaki S, Ghirlando R, Grisshammer R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013; 59(3): 287-300.
[http://dx.doi.org/10.1016/j.ymeth.2012.11.006] [PMID: 23219517]
[117]
Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 2009; 81(22): 9425-32.
[http://dx.doi.org/10.1021/ac901822w] [PMID: 19803497]
[118]
Khlebtsov BN, Khlebtsov NG. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 2011; 73(1): 118-27.
[http://dx.doi.org/10.1134/S1061933X11010078]
[119]
Ramos ZBG, Garcia FMB, de Oliveira CS, et al. Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles. Mater Sci Eng C 2009; 29(2): 638-40.
[http://dx.doi.org/10.1016/j.msec.2008.10.040]
[120]
Fissan H, Ristig S, Kaminski H, Asbach C, Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods 2014; 6(18): 7324-34.
[http://dx.doi.org/10.1039/C4AY01203H]
[121]
Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation 2000.
[122]
Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J Chem Phys 1972; 57(11): 4814-20.
[http://dx.doi.org/10.1063/1.1678153]
[123]
Dieckmann Y, Cölfen H, Hofmann H, Fink PA. Particle size distribution measurements of manganese-doped ZnS nanoparticles. Anal Chem 2009; 81(10): 3889-95.
[http://dx.doi.org/10.1021/ac900043y] [PMID: 19374425]
[124]
Murdock RC, Stolle BL, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008; 101(2): 239-53.
[http://dx.doi.org/10.1093/toxsci/kfm240] [PMID: 17872897]
[125]
Lange H. Comparative test of methods to determine particle size and particle size distribution in the submicron range. Part Part Syst Charact 1995; 12(3): 148-57.
[http://dx.doi.org/10.1002/ppsc.19950120307]
[126]
Gerwert K. Molecular reaction mechanisms of proteins monitored by time-resolved FTIR-spectroscopy. Biol Chem 1999; 380(7-8): 931-5.
[127]
Jung C. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit 2000; 13(6): 325-51.
[http://dx.doi.org/10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-C] [PMID: 11114067]
[128]
Kim S, Barry BA. Reaction-induced FT-IR spectroscopic studies of biological energy conversion in oxygenic photosynthesis and transport. J Phys Chem B 2001; 105(19): 4072-83.
[http://dx.doi.org/10.1021/jp0042516]
[129]
Mäntele WG, Wollenweber AM, Nabedryk E, Breton J. Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: Implications for the binding of the pigments in the reaction center from photosynthetic bacteria. Proc Natl Acad Sci 1988; 85(22): 8468-72.
[http://dx.doi.org/10.1073/pnas.85.22.8468] [PMID: 16593991]
[130]
Vogel R, Siebert F. Vibrational spectroscopy as a tool for probing protein function. Curr Opin Chem Biol 2000; 4(5): 518-23.
[http://dx.doi.org/10.1016/S1367-5931(00)00125-3] [PMID: 11006538]
[131]
Wharton CW. Infrared spectroscopy of enzyme reaction intermediates. Nat Prod Rep 2000; 17(5): 447-53.
[http://dx.doi.org/10.1039/b002066o] [PMID: 11072892]
[132]
Zscherp C, Barth A. Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. Biochemistry 2001; 40(7): 1875-83.
[http://dx.doi.org/10.1021/bi002567y] [PMID: 11329252]
[133]
Shang L, Wang Y, Jiang J, Dong S. pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 2007; 23(5): 2714-21.
[http://dx.doi.org/10.1021/la062064e] [PMID: 17249699]
[134]
Perevedentseva EV, Su FY, Su TH, et al. Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins. Quantum Electron 2010; 40(12): 1089.
[http://dx.doi.org/10.1070/QE2010v040n12ABEH014507]
[135]
Mohi-ud-din R, Chawla A, Sharma P, et al. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28(1): 345.
[http://dx.doi.org/10.1186/s40001-023-01275-4] [PMID: 37710280]
[136]
Baudot C, Tan CM, Kong JC. FTIR spectroscopy as a tool for nano-material characterization. Infrared Phys Technol 2010; 53(6): 434-8.
[http://dx.doi.org/10.1016/j.infrared.2010.09.002]
[137]
Barth A, Zscherp C. What vibrations tell about proteins. Q Rev Biophys 2002; 35(4): 369-430.
[http://dx.doi.org/10.1017/S0033583502003815] [PMID: 12621861]
[138]
Kumar S, Barth A. Following enzyme activity with infrared spectroscopy. Sensors 2010; 10(4): 2626-37.
[http://dx.doi.org/10.3390/s100402626] [PMID: 22319264]
[139]
Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta Rev Biomembr 1999; 1422(2): 105-85.
[http://dx.doi.org/10.1016/S0304-4157(99)00004-0] [PMID: 10393271]
[140]
Hind AR, Bhargava SK, McKinnon A. At the solid/liquid interface: FTIR/ATR — the tool of choice. Adv Colloid Interface Sci 2001; 93(1-3): 91-114.
[http://dx.doi.org/10.1016/S0001-8686(00)00079-8] [PMID: 11591110]
[141]
Kazarian SG, Chan KLA. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 2006; 1758(7): 858-67.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.011] [PMID: 16566893]
[142]
Liu H, Webster TJ. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2007; 28(2): 354-69.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.049] [PMID: 21898921]
[143]
Acosta EJ, Gonzalez SO, Simanek EE. Synthesis, characterization, and application of melamine-based dendrimers supported on silica gel. J Polym Sci A Polym Chem 2005; 43(1): 168-77.
[http://dx.doi.org/10.1002/pola.20493]
[144]
Demathieu C, Chehimi MM, Lipskier JF, Caminade AM, Majoral JP. Characterization of dendrimers by X-ray photoelectron spectroscopy. Appl Spectrosc 1999; 53(10): 1277-81.
[http://dx.doi.org/10.1366/0003702991945524]
[145]
Manna A, Imae T, Aoi K, Okada M, Yogo T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles. Chem Mater 2001; 13(5): 1674-81.
[http://dx.doi.org/10.1021/cm000416b]
[146]
Desimoni E, Brunetti B. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review. Materials 2015; 3(2): 70-117.
[147]
Gautam SP, Gupta AK, Agrawal S, Sureka S. Spectroscopic characterization of dendrimers. Int J Pharm Pharm Sci 2012; 4(2): 77-80.
[148]
Pawley JB. The development of field-emission scanning electron microscopy for imaging biological surfaces. Scanning-New York and Baden Baden Then Mahwah 1997; 19: 324-6.
[149]
Wang ZL. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 2000; 104(6): 1153-75.
[http://dx.doi.org/10.1021/jp993593c]
[150]
Yao H, Kimura K. Field emission scanning electron microscopy for structural characterization of 3D gold nanoparticle superlattices. Modern Res Educational Topics Microscopy 2007; 2: 568-76.
[151]
Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine 2007; 2(6): 789-803.
[http://dx.doi.org/10.2217/17435889.2.6.789]
[152]
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: An introduction to materials in medicine. Elsevier 2004.
[153]
Carter CB, Williams DB, Eds. Transmission electron microscopy: Diffraction, imaging, and spectrometry. Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-26651-0]
[154]
Hinterdorfer P, Parajo GMF, Dufrêne YF. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res 2012; 45(3): 327-36.
[http://dx.doi.org/10.1021/ar2001167] [PMID: 21992025]
[155]
Koh AL, Hu W, Wilson RJ, Wang SX, Sinclair R. TEM analyses of synthetic anti-ferromagnetic (SAF) nanoparticles fabricated using different release layers. Ultramicroscopy 2008; 108(11): 1490-4.
[http://dx.doi.org/10.1016/j.ultramic.2008.03.012] [PMID: 18672328]
[156]
Mavrocordatos D, Pronk W, Boller M. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Sci Technol 2004; 50(12): 9-18.
[http://dx.doi.org/10.2166/wst.2004.0690] [PMID: 15685998]
[157]
Picas L, Milhiet PE, Borrell HJ. Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 2012; 165(8): 845-60.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.10.005] [PMID: 23194897]
[158]
Song J, Kim H, Jang Y, Jang J. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 2013; 5(22): 11563-8.
[http://dx.doi.org/10.1021/am402310u] [PMID: 24156562]
[159]
Parot P, Dufrêne YF, Hinterdorfer P, et al. Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit 2007; 20(6): 418-31.
[http://dx.doi.org/10.1002/jmr.857] [PMID: 18080995]
[160]
Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 2005; 158(2): 122-32.
[http://dx.doi.org/10.1016/j.toxlet.2005.03.003] [PMID: 16039401]
[161]
Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(7): 795-821.
[http://dx.doi.org/10.1080/02652030802007553] [PMID: 18569000]
[162]
Gmoshinski IV, Khotimchenko SA, Popov VO, et al. Nanomaterials and nanotechnologies: Methods of analysis and control. Russ Chem Rev 2013; 82(1): 48-76.
[http://dx.doi.org/10.1070/RC2013v082n01ABEH004329]
[163]
Sikora A, Rodak A, Unold O, Klapetek P. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data. Ultramicroscopy 2016; 171: 146-52.
[http://dx.doi.org/10.1016/j.ultramic.2016.09.012] [PMID: 27686275]
[164]
Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 2005; 23(6): 741-5.
[http://dx.doi.org/10.1038/nbt1100] [PMID: 15908940]
[165]
Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 2008; 8(10): 3450-5.
[http://dx.doi.org/10.1021/nl802317d]
[166]
Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y. LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir 2010; 26(11): 9130-5.
[http://dx.doi.org/10.1021/la101285r] [PMID: 20426452]
[167]
Shopova SI, Rajmangal R, Holler S, Arnold S. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett 2011; 98(24): 243104.
[http://dx.doi.org/10.1063/1.3599584]
[168]
Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 2012; 7(6): 379-82.
[http://dx.doi.org/10.1038/nnano.2012.51] [PMID: 22504707]
[169]
Lis D, Cecchet F. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: Towards an astonishing molecular sensitivity. Beilstein J Nanotechnol 2014; 5(1): 2275-92.
[http://dx.doi.org/10.3762/bjnano.5.237] [PMID: 25551056]
[170]
Torresdey GJL, Tiemann KJ, Dokken K, Pingitore NE. Recovery of gold (III) by alfalfa biomass and binding characterization using X-ray microfluoresence. Adv Environ Res 1999; 34(20): U7-U93.
[171]
Armendariz V, Herrera I, videa PJR, et al. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J Nanopart Res 2004; 6(4): 377-82.
[http://dx.doi.org/10.1007/s11051-004-0741-4]
[172]
Soni N, Prakash S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2011; 2(1): 112-21.
[173]
Torresdey GJL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Yacamán JM. Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1999; 1(3): 397-404.
[http://dx.doi.org/10.1023/A:1010008915465]
[174]
Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010; 45(7): 1065-71.
[http://dx.doi.org/10.1016/j.procbio.2010.03.024]
[175]
Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 2009; 73(2): 332-8.
[http://dx.doi.org/10.1016/j.colsurfb.2009.06.005] [PMID: 19576733]
[176]
Kumar V, Yadav SK. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L. IET Nanobiotechnol 2012; 6(1): 1-8.
[177]
Cui S, Zhang S, Ge S, Xiong L, Sun Q. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 2016; 83: 346-52.
[http://dx.doi.org/10.1016/j.indcrop.2016.01.019]
[178]
Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 2015; 134: 310-5.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
[179]
Moon J, Hedman HP, Kemell M, et al. A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization. Sens Actuators B Chem 2013; 189: 246-50.
[http://dx.doi.org/10.1016/j.snb.2013.05.070]
[180]
Huang X, Jain PK, Sayed EIH, Sayed EMA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 2006; 82(2): 412-7.
[http://dx.doi.org/10.1562/2005-12-14-RA-754] [PMID: 16613493]
[181]
Sultan M, Siddique M, Khan R, et al. Ligustrum lucidum leaf extract-assisted green synthesis of silver nanoparticles and nano-adsorbents having potential in ultrasound-assisted adsorptive removal of methylene blue dye from wastewater and antimicrobial activity. Materials 2022; 15(5): 1637.
[http://dx.doi.org/10.3390/ma15051637] [PMID: 35268867]
[182]
Narayanan KB, Sakthivel N. Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 2010; 61(11): 1232-8.
[http://dx.doi.org/10.1016/j.matchar.2010.08.003]
[183]
Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009; 63(15): 1231-4.
[http://dx.doi.org/10.1016/j.matlet.2009.02.042]
[184]
Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 2009; 74(1): 309-16.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.040] [PMID: 19700266]
[185]
Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 2010; 81(1): 358-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.036] [PMID: 20705438]
[186]
Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 2002; 78(5): 583-8.
[http://dx.doi.org/10.1002/bit.10233] [PMID: 12115128]
[187]
Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA. Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed 2011; 6: 677-81.
[http://dx.doi.org/10.2147/IJN.S17669] [PMID: 21556342]
[188]
Kuchibhatla SVNT, Karakoti AS, Baer DR, et al. Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria. J Phys Chem C 2012; 116(26): 14108-14.
[http://dx.doi.org/10.1021/jp300725s] [PMID: 23573300]
[189]
Mudunkotuwa IA, Pettibone JM, Grassian VH. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 2012; 46(13): 7001-10.
[http://dx.doi.org/10.1021/es203851d] [PMID: 22280489]
[190]
Baer DR. Surface characterization of nanoparticles: Critical needs and significant challenges. J Surf Anal 2011; 17(3): 163-9.
[http://dx.doi.org/10.1384/jsa.17.163] [PMID: 25342927]
[191]
Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain Chem 2012; 2(4): 141-7.
[192]
Prasad TNVKV, Kambala VSR, Naidu R. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 2013; 25(1): 177-82.
[http://dx.doi.org/10.1007/s10811-012-9851-z]
[193]
Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 2006; 22(2): 736-41.
[http://dx.doi.org/10.1021/la052055q] [PMID: 16401125]
[194]
Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 2009; 44(10): 1133-8.
[http://dx.doi.org/10.1016/j.procbio.2009.06.005]
[195]
Pan P, Hu C, Yang W, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 2010; 101(12): 4593-9.
[http://dx.doi.org/10.1016/j.biortech.2010.01.070] [PMID: 20153636]
[196]
Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79(3): 594-8.
[http://dx.doi.org/10.1016/j.saa.2011.03.040] [PMID: 21536485]
[197]
Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 2010; 33(1): 159-64.
[http://dx.doi.org/10.1007/s00449-009-0373-2] [PMID: 19701776]
[198]
Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull 2006; 39(1): 22-8.
[http://dx.doi.org/10.1007/BF03215529]
[199]
Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006; 83(1-4): 132-40.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[200]
Foss JF, Bohl DG, Hicks TJ. The pulse width modulated - constant temperature anemometer. Meas Sci Technol 1996; 7(10): 1388-95.
[http://dx.doi.org/10.1088/0957-0233/7/10/009]
[201]
Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy AN. Green synthesis of platinum nanoparticles using Azadirachta indica - An eco-friendly approach. Mater Lett 2016; 170: 175-8.
[http://dx.doi.org/10.1016/j.matlet.2016.02.026]
[202]
Jameel MS, Aziz AA, Dheyab MA. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Proc Synth 2020; 9(1): 386-98.
[203]
Wynsberghe VM, Flejeo J, Sakhi H, et al. Nephrotoxicity of anti-angiogenic therapies. Diagnostics 2021; 11(4): 640.
[http://dx.doi.org/10.3390/diagnostics11040640] [PMID: 33916159]
[204]
Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol 2018; 46(4): 838-52.
[http://dx.doi.org/10.1080/21691401.2017.1345928] [PMID: 28687045]
[205]
Shanmuganathan R, Karuppusamy I, Saravanan M, et al. Synthesis of silver nanoparticles and their biomedical applications-A comprehensive review. Curr Pharm Des 2019; 25(24): 2650-60.
[http://dx.doi.org/10.2174/1381612825666190708185506] [PMID: 31298154]
[206]
Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem Soc Rev 2012; 41(7): 2943-70.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[207]
Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016; 11(23): 3157-77.
[http://dx.doi.org/10.2217/nnm-2016-0279] [PMID: 27809668]
[208]
Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophic Trans Royal Soc A: Math, Phys Eng Sci 2010; 368(1915): 1333-83.
[209]
Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 2011; 44(10): 925-35.
[http://dx.doi.org/10.1021/ar2000327] [PMID: 21648430]
[210]
Algal nanoparticles: Synthesis and biotechnological potentials. Algae-organ Imminent Biotechnol 2016; 7: 157-82.
[211]
Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol Res 2016; 115(1): 23-34.
[http://dx.doi.org/10.1007/s00436-015-4800-9] [PMID: 26541154]
[212]
Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res Lett 2014; 9(1): 229.
[http://dx.doi.org/10.1186/1556-276X-9-229] [PMID: 24910577]
[213]
Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20(5): 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[214]
LewisOscar F, MubarakAli D, Nithya C, et al. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015; 31(4): 379-91.
[http://dx.doi.org/10.1080/08927014.2015.1048686] [PMID: 26057498]
[215]
Chari N, Felix L, Davoodbasha M, Ali SA, Nooruddin T. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatal Agric Biotechnol 2017; 10: 336-41.
[http://dx.doi.org/10.1016/j.bcab.2017.04.013]
[216]
MubarakAli D, Arunkumar J, Pooja P, Subramanian G, Thajuddin N, Alharbi NS. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm J 2015; 23(4): 421-8.
[http://dx.doi.org/10.1016/j.jsps.2014.11.007] [PMID: 27134545]
[217]
Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach. Environ Sci Pollut Res Int 2018; 25(11): 10362-70.
[http://dx.doi.org/10.1007/s11356-017-9367-9] [PMID: 28600792]
[218]
MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 2011; 85(2): 360-5.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.009] [PMID: 21466948]
[219]
Ojha AK, Rout J, Behera S, Nayak PL. Green synthesis and characterization of zero valent silver nanoparticles from the leaf extract of Datura metel. Int J Pharm Res Allied Sci 2013; 2: 31-5.
[220]
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7): 975-83.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034] [PMID: 16125895]
[221]
Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 2010; 4(3): 319-30.
[http://dx.doi.org/10.3109/17435390.2010.483745] [PMID: 20795913]
[222]
Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008; 179(3): 130-9.
[http://dx.doi.org/10.1016/j.toxlet.2008.04.015] [PMID: 18547751]
[223]
Braga VT, Graff MR, Wojdyla K, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 2014; 8(3): 2161-75.
[http://dx.doi.org/10.1021/nn4050744] [PMID: 24512182]
[224]
Hussain MS, Gupta G, Afzal M, et al. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252: 154908.
[http://dx.doi.org/10.1016/j.prp.2023.154908] [PMID: 37950931]
[225]
Carlson C, Hussain SM, Schrand AMK, et al. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B 2008; 112(43): 13608-19.
[http://dx.doi.org/10.1021/jp712087m] [PMID: 18831567]
[226]
Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 2009; 190(2): 156-62.
[http://dx.doi.org/10.1016/j.toxlet.2009.07.009] [PMID: 19607894]
[227]
Foldbjerg R, Irving ES, Hayashi Y, et al. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012; 130(1): 145-57.
[http://dx.doi.org/10.1093/toxsci/kfs225] [PMID: 22831968]
[228]
Kim S, Choi JE, Choi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 2009; 23(6): 1076-84.
[http://dx.doi.org/10.1016/j.tiv.2009.06.001] [PMID: 19508889]
[229]
Avalos A, Haza AI, Mateo D, Morales P. Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. Int Wound J 2016; 13(1): 101-9.
[http://dx.doi.org/10.1111/iwj.12244] [PMID: 24612846]
[230]
Piao MJ, Kang KA, Lee IK, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011; 201(1): 92-100.
[http://dx.doi.org/10.1016/j.toxlet.2010.12.010] [PMID: 21182908]
[231]
Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 2010; 44(21): 8337-42.
[http://dx.doi.org/10.1021/es1020668] [PMID: 20932003]
[232]
Nishanth RP, Jyotsna RG, Schlager JJ, Hussain SM, Reddanna P. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology 2011; 5(4): 502-16.
[http://dx.doi.org/10.3109/17435390.2010.541604] [PMID: 21417802]
[233]
Hussain MS, Gupta G, Samuel VP, et al. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34(1): e2491.
[http://dx.doi.org/10.1002/rmv.2491] [PMID: 37985599]
[234]
Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 2012; 3: 1-4.
[235]
Asare N, Instanes C, Sandberg WJ, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 2012; 291(1-3): 65-72.
[http://dx.doi.org/10.1016/j.tox.2011.10.022] [PMID: 22085606]
[236]
Kwok KWH, Auffan M, Badireddy AR, et al. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquat Toxicol 2012; 120-121: 59-66.
[http://dx.doi.org/10.1016/j.aquatox.2012.04.012] [PMID: 22634717]
[237]
Hussain MS, Gupta G, Goyal A, et al. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J Biochem Mol Toxicol 2023; 37(11): e23482.
[http://dx.doi.org/10.1002/jbt.23482] [PMID: 37530602]
[238]
Ahamed M, Karns M, Goodson M, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008; 233(3): 404-10.
[http://dx.doi.org/10.1016/j.taap.2008.09.015] [PMID: 18930072]
[239]
Chichova M, Shkodrova M, Vasileva P, Kirilova K, Stoimenova DD. Influence of silver nanoparticles on the activity of rat liver mitochondrial ATPase. J Nanopart Res 2014; 16(2): 2243.
[http://dx.doi.org/10.1007/s11051-014-2243-3]
[240]
De Matteis V, Malvindi MA, Galeone A, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol. Nanomedicine 2015; 11(3): 731-9.
[http://dx.doi.org/10.1016/j.nano.2014.11.002] [PMID: 25546848]
[241]
Nair LS, Laurencin CT. Silver nanoparticles: Synthesis and therapeutic applications. J Biomed Nanotechnol 2007; 3(4): 301-16.
[http://dx.doi.org/10.1166/jbn.2007.041]
[242]
Panáček A, Kvítek L, Prucek R, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006; 110(33): 16248-53.
[http://dx.doi.org/10.1021/jp063826h] [PMID: 16913750]
[243]
Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002; 298(5601): 2176-9.
[244]
Kruis FE, Fissan H, Rellinghaus B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 2000; 69-70: 329-34.
[http://dx.doi.org/10.1016/S0921-5107(99)00298-6]
[245]
Tien DC, Liao CY, Huang JC, et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev Adv Mater Sci 2008; 18(8): 752-8.
[246]
Shameli K, Zargar M, Darroudi M, et al. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomed 2010; 5: 875-87.
[http://dx.doi.org/10.2147/IJN.S13632] [PMID: 21116328]
[247]
Nour AEKMM, Eftaiha A, Warthan AA, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010; 3(3): 135-40.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[248]
Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed Engl 2006; 45(28): 4597-601.
[249]
Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry 2005; 11(2): 454-63.
[http://dx.doi.org/10.1002/chem.200400927] [PMID: 15565727]
[250]
Mir RH, Mir PA, Uppal J, et al. Evolution of natural product scaffolds as potential proteasome inhibitors in developing cancer therapeutics. Metabolites 2023; 13(4): 509.
[http://dx.doi.org/10.3390/metabo13040509] [PMID: 37110167]
[251]
Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010; 85(4): 1115-22.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[252]
Deepak V, Umamaheshwaran PS, Guhan K, et al. Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf B Biointerfaces 2011; 86(2): 353-8.
[http://dx.doi.org/10.1016/j.colsurfb.2011.04.019] [PMID: 21592748]
[253]
Mallick K, Witcomb MJ, Scurrell MS. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J Mater Sci 2004; 39(14): 4459-63.
[http://dx.doi.org/10.1023/B:JMSC.0000034138.80116.50]
[254]
Malik MA, O’Brien P, Revaprasadu N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater 2002; 14(5): 2004-10.
[http://dx.doi.org/10.1021/cm011154w]
[255]
Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 2000; 104(39): 9111-7.
[http://dx.doi.org/10.1021/jp001336y]
[256]
Zhu JJ, Liao XH, Zhao XN, Chen HY. Preparation of silver nanorods by electrochemical methods. Mater Lett 2001; 49(2): 91-5.
[http://dx.doi.org/10.1016/S0167-577X(00)00349-9]
[257]
Mashkani HSM, Ramezani M. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Mater Lett 2014; 130: 259-62.
[http://dx.doi.org/10.1016/j.matlet.2014.05.133]
[258]
Gurunathan S, Han JW, Kim E, Park JH, Kim JH. Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int J Nanomed 2015; 10: 2951-69.
[http://dx.doi.org/10.2147/IJN.S79879] [PMID: 25931821]
[259]
Anastas P, Eghbali N. Green chemistry: Principles and practice. Chem Soc Rev 2010; 39(1): 301-12.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[260]
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 2017; 45(7): 1272-91.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[261]
Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract-A comprehensive study. Mater Sci Eng C 2016; 58: 359-65.
[http://dx.doi.org/10.1016/j.msec.2015.08.045] [PMID: 26478321]
[262]
Mohi-ud-din R, Mir RH, Pottoo FH, Sawhney G, Masoodi MH, Bhat ZA. Nanophytomedicine ethical issues, regulatory aspects, and challenges. Nanophytomedicine: Concept to clinic. Springer 2020; pp. 173-92.
[http://dx.doi.org/10.1007/978-981-15-4909-0_10]
[263]
Kalimuthu K, Babu SR, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 2008; 65(1): 150-3.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.018] [PMID: 18406112]
[264]
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 2008; 62(29): 4411-3.
[http://dx.doi.org/10.1016/j.matlet.2008.06.051]
[265]
Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2002; 2(4): 293-8.
[http://dx.doi.org/10.1021/cg0255164]
[266]
Kalishwaralal K, Deepak V, Pandian RKS, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 2010; 77(2): 257-62.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[267]
Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 2003; 19(6): 1627-31.
[http://dx.doi.org/10.1021/bp034070w] [PMID: 14656132]
[268]
Gurunathan S, Han JW, Dayem AA, et al. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 2013; 19(5): 1600-5.
[http://dx.doi.org/10.1016/j.jiec.2013.01.029]
[269]
Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett 2015; 10(1): 35.
[http://dx.doi.org/10.1186/s11671-015-0747-0] [PMID: 25852332]
[270]
Gurunathan S. Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. J Ind Eng Chem 2015; 29: 217-26.
[http://dx.doi.org/10.1016/j.jiec.2015.04.005]
[271]
Shankar S, Rhim JW. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym 2015; 130: 353-63.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.018] [PMID: 26076636]
[272]
Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 2014; 9(1): 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[273]
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[274]
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73(6): 1712-20.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[275]
Pyatenko A, Yamaguchi M, Suzuki M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J Phys Chem C 2007; 111(22): 7910-7.
[http://dx.doi.org/10.1021/jp071080x]
[276]
Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem 2019; 12(8): 1823-38.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[277]
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019; 12(8): 3576-600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[278]
Nasrollahzadeh M, Atarod M, Sajjadi M, Sajadi SM, Issaabadi Z. Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. In Interface Science Technology. Elsevier 2019; 28: pp. 199-322.
[http://dx.doi.org/10.1016/B978-0-12-813586-0.00006-7]
[279]
Thakur PK, Verma V. A review on green synthesis, characterization and anticancer application of metallic nanoparticles. Appl Biochem Biotechnol 2021; 193(7): 2357-78.
[http://dx.doi.org/10.1007/s12010-021-03598-6] [PMID: 34114200]
[280]
Gowda BHJ, Ahmed MG, Chinnam S, et al. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022; 71: 103305.
[http://dx.doi.org/10.1016/j.jddst.2022.103305]
[281]
Auda MM, Shareef HA, Mohammed BL. Green synthesis of silver nanoparticles using the extract of Rheum ribes and evaluating their antifungal activity against some of Candida sp. Tikrit J Pure Science 2022; 26(2): 53-9.
[http://dx.doi.org/10.25130/tjps.v26i2.119]
[282]
Deepa , Ameen F, Islam AM, Dhanker R. Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties. Front Environ Sci 2022; 10: 941554.
[http://dx.doi.org/10.3389/fenvs.2022.941554]
[283]
Mondal A, Mondal A, Sen K, Debnath P, Mondal NK. Synthesis, characterization and optimization of chicken bile-mediated silver nanoparticles: A mechanistic insight into antibacterial and antibiofilm activity. Environ Sci Pollut Res Int 2022; 30(6): 16525-38.
[http://dx.doi.org/10.1007/s11356-022-23401-1] [PMID: 36190628]
[284]
Koładka WK, Malina D, Suder A, Pluta K, Wzorek Z. Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity. Processes 2022; 10(2): 389.
[http://dx.doi.org/10.3390/pr10020389]
[285]
Fadli RM, Nuruddin A, Yuliarto B. Green synthesis of silver/silver chloride nanoparticles using shallot peel extract as reducing agent. J Phys: Conf Ser Bali Indonesia 2024; 2705(1): 012011.
[286]
Mohamed SA. Eco-friendly green biosynthesis of silver nanoparticles (Or-AgNPs) using orange peel (Citrus sinensis) waste and evaluation of their antibacterial and cytotoxic activities. Nano Hybrids Compos 2022; 36: 57-68.
[http://dx.doi.org/10.4028/p-9pjwgi]
[287]
Patel S, Patel N. Tectona grandis seed mediated green synthesis of silver nanoparticles and their antibacterial activity. Trends Sci 2023; 20(5): 5104.
[http://dx.doi.org/10.48048/tis.2023.5104]
[288]
Ahamad I, Aziz N, Zaki A, Fatma T. Synthesis and characterization of silver nanoparticles using Anabaena variabilis as a potential antimicrobial agent. J Appl Phycol 2021; 33(2): 829-41.
[http://dx.doi.org/10.1007/s10811-020-02323-w]
[289]
Chakraborty N, Ghosh S, Samanta M, Das B, Chattopadhyay KK. Silver nanoparticle decorated perforated graphene: An efficient and low-cost catalyst for hydrogen evolution reaction. ECS J Solid State Sci Technol 2023; 12(10): 101001.
[http://dx.doi.org/10.1149/2162-8777/acfbb5]
[290]
Sepeur S. Nanotechnology: Technical basics and applications. Vincentz Network GmbH & Co KG 2008.
[291]
Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci 2006; 51(4): 427-556.
[http://dx.doi.org/10.1016/j.pmatsci.2005.08.003]
[292]
Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett 2001; 1(10): 515-9.
[http://dx.doi.org/10.1021/nl0155274]
[293]
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31(2): 346-56.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[294]
Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng 2012; 109(10): 2422-36.
[http://dx.doi.org/10.1002/bit.24570] [PMID: 22674445]
[295]
Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2(1): 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[296]
Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao BKV. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 2014; 37(2): 261-7.
[http://dx.doi.org/10.1007/s00449-013-0994-3] [PMID: 23771163]
[297]
Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B Biointerfaces 2010; 75(1): 335-41.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.006] [PMID: 19796922]
[298]
Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 2014; 98(19): 8083-97.
[http://dx.doi.org/10.1007/s00253-014-5953-7] [PMID: 25158833]
[299]
van Hullebusch ED, Zandvoort MH, Lens PNL. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev Environ Sci Biotechnol 2003; 2(1): 9-33.
[http://dx.doi.org/10.1023/B:RESB.0000022995.48330.55]
[300]
Lin Z, Zhou C, Wu J, Zhou J, Wang L. A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 2005; 61(6): 1195-200.
[http://dx.doi.org/10.1016/j.saa.2004.06.041] [PMID: 15741121]
[301]
Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 2009; 84(4): 741-9.
[http://dx.doi.org/10.1007/s00253-009-2032-6] [PMID: 19488750]
[302]
Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 2009; 5(4): 452-6.
[http://dx.doi.org/10.1016/j.nano.2009.01.012] [PMID: 19523420]
[303]
Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 2009; 5(3): 247-53.
[http://dx.doi.org/10.1166/jbn.2009.1029] [PMID: 20055006]
[304]
Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem 2007; 42(5): 919-23.
[http://dx.doi.org/10.1016/j.procbio.2007.02.005]
[305]
Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol 2013; 31(4): 240-8.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[306]
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart Res 2008; 10(3): 507-17.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[307]
Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit Rev Biotechnol 2012; 32(1): 49-73.
[http://dx.doi.org/10.3109/07388551.2010.550568] [PMID: 21696293]
[308]
Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003; 85(2): 162-70.
[309]
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69(5): 485-92.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[310]
Kuppusamy P, Ichwan SJA, Zikri APNH, et al. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 2016; 173(2): 297-305.
[http://dx.doi.org/10.1007/s12011-016-0666-7] [PMID: 26961292]
[311]
Ramasamy M, Lee JH, Lee J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B Biointerfaces 2017; 160: 639-48.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.018] [PMID: 29031224]
[312]
Hanmoungjai P, Pyle DL, Niranjan K. Biotechnology: International research in process, E. Technology, C. Enzyme-assisted water-extraction of oil and protein from rice bran. Environ Clean Technol 2002; 77: 771-6.
[313]
Mukunthan KS, Balaji S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. International J Green Nanotechnol 2012; 4(2): 71-9.
[http://dx.doi.org/10.1080/19430892.2012.676900]
[314]
Sathishkumar P, Vennila K, Jayakumar R, Yusoff ARM, Hadibarata T, Palvannan T. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: An effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. Bioprocess Biosyst Eng 2016; 39(4): 651-9.
[http://dx.doi.org/10.1007/s00449-016-1546-4] [PMID: 26801668]
[315]
Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 2012; 75: 33-5.
[http://dx.doi.org/10.1016/j.matlet.2012.01.083]
[316]
Jasuja ND, Gupta DK, Reza M, Joshi SC. Green synthesis of AgNPs stabilized with biowaste and their antimicrobial activities. Braz J Microbiol 2014; 45(4): 1325-32.
[http://dx.doi.org/10.1590/S1517-83822014000400024] [PMID: 25763037]
[317]
Muniyappan N, Nagarajan NS. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 2014; 49(6): 1054-61.
[http://dx.doi.org/10.1016/j.procbio.2014.03.015]
[318]
Mariselvam R, Ranjitsingh AJA, Nanthini URA, Kalirajan K, Padmalatha C, Selvakumar MP. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 129: 537-41.
[http://dx.doi.org/10.1016/j.saa.2014.03.066] [PMID: 24762541]
[319]
Ramteke C, Chakrabarti T, Sarangi BK, Pandey RA. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem 2013; 2013.
[320]
Arokiyaraj S, Arasu VM, Vincent S, et al. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: An in vitro study. Int J Nanomedicine 2014; 9: 379-88.
[http://dx.doi.org/10.2147/IJN.S53546] [PMID: 24426782]
[321]
Sundrarajan M, Gowri S. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 2011; 8(8): 447-51.
[322]
Husain S, Sardar M, Fatma T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 2015; 31(8): 1279-83.
[http://dx.doi.org/10.1007/s11274-015-1869-3] [PMID: 25971548]
[323]
Zinicovscaia I, Chiriac T, Cepoi L, et al. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles. Can J Microbiol 2017; 63(1): 27-34.
[http://dx.doi.org/10.1139/cjm-2016-0339] [PMID: 27841947]
[324]
Hamouda RA, Hussein MH, Elmagd ARA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 2019; 9(1): 13071.
[http://dx.doi.org/10.1038/s41598-019-49444-y] [PMID: 31506473]
[325]
Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 2015; 5: 112-9.
[http://dx.doi.org/10.1016/j.btre.2014.12.001] [PMID: 28626689]
[326]
Parial D, Pal R. Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 2011; 4(1): 69-72.
[http://dx.doi.org/10.15373/2249555X/JAN2014/22]
[327]
Buhari R, Rohani MM, Abdullah ME. Dynamic load coefficient of tyre forces from truck axles. Appl Mech Mater 2013; 405-408: 1900-11.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.405-408.1900]
[328]
Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 2007; 23(5): 2694-9.
[http://dx.doi.org/10.1021/la0613124] [PMID: 17309217]
[329]
Mira AK, Yousef AS, Abdullah A. Biosynthesis of silver nanoparticles by Cyanobacterium gloeocapsa sp. IJERSTE 2015; 4(9): 60-73.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy