Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing

Author(s): Tripti Halder, Harshit Barot, Bhavna Kumar, Vishakha Kaushik, Hiren Patel, Hastik Bhut, Bijit Saha, Sibani Poddar and Niyati Acharya*

Volume 30, Issue 31, 2024

Published on: 08 July, 2024

Page: [2425 - 2444] Pages: 20

DOI: 10.2174/0113816128295935240425101509

Price: $65

Abstract

Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in-vitro experiments conducted using different cell lines, as well as the in-vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.

[1]
Lazarus GS, Cooper DM, Knighton DR, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 1994; 2(3): 165-70.
[http://dx.doi.org/10.1046/j.1524-475X.1994.20305.x] [PMID: 17156107]
[2]
Huang C, Murphy GF, Akaishi S, Ogawa R. Keloids and hypertrophic scars: Update and future directions. Plast Reconstr Surg Glob Open 2013; 1(4): e25.
[http://dx.doi.org/10.1097/GOX.0b013e31829c4597] [PMID: 25289219]
[3]
Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: Facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J 2017; 8(1): 23-33.
[http://dx.doi.org/10.1007/s13167-017-0081-y] [PMID: 28620441]
[4]
Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 2019; 7(7): 2652-74.
[http://dx.doi.org/10.1039/C9BM00423H] [PMID: 31094374]
[5]
Sen CK. Human wounds and its burden: An updated compendium of estimates. Adv Wound Care 2019; 8(2): 39-48.
[http://dx.doi.org/10.1089/wound.2019.0946] [PMID: 30809421]
[6]
Nussbaum SR, Carter MJ, Fife CE, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 2018; 21(1): 27-32.
[http://dx.doi.org/10.1016/j.jval.2017.07.007]
[7]
Gupta N, Gupta SK, Shukla VK, Singh SP. An Indian community-based epidemiological study of wounds. J Wound Care 2004; 13(8): 323-5.
[http://dx.doi.org/10.12968/jowc.2004.13.8.26657] [PMID: 15469216]
[8]
Dorai AA. Wound care with traditional, complementary and alternative medicine. Indian J Plast Surg 2012; 45(2): 418-24.
[http://dx.doi.org/10.4103/0970-0358.101331] [PMID: 23162243]
[9]
Yaghoobi R, Kazerouni A, kazerouni O. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: A review. Jundishapur J Nat Pharm Prod 2013; 8(3): 100-4.
[http://dx.doi.org/10.17795/jjnpp-9487] [PMID: 24624197]
[10]
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharmac Sci 2020; 15(6): 661-84.
[11]
Jayanth D, Kumar PS, Nayak GC, Kumar JS, Pal SK, Rajasekar R. A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 2018; 26(2): 838-65.
[http://dx.doi.org/10.1007/s10924-017-0985-6]
[12]
Yin GZ, Yang XM. Biodegradable polymers: A cure for the planet, but a long way to go. J Polym Res 2020; 27(2): 38.
[http://dx.doi.org/10.1007/s10965-020-2004-1]
[13]
Hassan D, Fasiku VO, Madu SJ, Muazu J. Biodegradable antibiotics in wound healing. Antib Mat Healthc 2020; 93-110.
[http://dx.doi.org/10.1016/B978-0-12-820054-4.00006-9]
[14]
Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. Int Mater Rev 2019; 64(2): 91-126.
[http://dx.doi.org/10.1080/09506608.2018.1460943]
[15]
Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 2018; 46(4): 691-705.
[http://dx.doi.org/10.1080/21691401.2017.1349778] [PMID: 28697631]
[16]
Kirillova A, Yeazel TR, Asheghali D, et al. Fabrication of biomedical scaffolds using biodegradable polymers. Chem Rev 2021; 121(18): 11238-304.
[http://dx.doi.org/10.1021/acs.chemrev.0c01200] [PMID: 33856196]
[17]
Bachs-Herrera A, Yousefzade O, del Valle LJ, Puiggali J. Melt electrospinning of polymers: Blends, nanocomposites, additives and applications. Appl Sci 2021; 11(4): 1808.
[http://dx.doi.org/10.3390/app11041808]
[18]
Yousefzade O, Katsarava R, Puiggalí J. Biomimetic hybrid systems for tissue engineering. Biomimetics 2020; 5(4): 49.
[http://dx.doi.org/10.3390/biomimetics5040049] [PMID: 33050136]
[19]
Doppalapudi S, Jain A, Khan W, Domb AJ. Biodegradable polymers: An overview. Polym Adv Technol 2014; 25(5): 427-35.
[http://dx.doi.org/10.1002/pat.3305]
[20]
George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561: 244-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[21]
Asti A, Gioglio L. Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int J Artif Organs 2014; 37(3): 187-205.
[http://dx.doi.org/10.5301/ijao.5000307] [PMID: 24744164]
[22]
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12: 3117-45.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[23]
Khan R, Khan M. Use of collagen as a biomaterial: An update. J Indian Soc Periodontol 2013; 17(4): 539-42.
[http://dx.doi.org/10.4103/0972-124X.118333] [PMID: 24174741]
[24]
Li Y, Liu Y, Li R, et al. Collagen-based biomaterials for bone tissue engineering. Mater Des 2021; 210: 110049.
[http://dx.doi.org/10.1016/j.matdes.2021.110049]
[25]
Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 2018; 17(1): 20-6.
[http://dx.doi.org/10.1111/jocd.12450] [PMID: 29144022]
[26]
Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C 2019; 99(99): 1509-22.
[http://dx.doi.org/10.1016/j.msec.2019.02.070] [PMID: 30889687]
[27]
Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll 2011; 25(8): 1813-27.
[http://dx.doi.org/10.1016/j.foodhyd.2011.02.007]
[28]
Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S. Properties of collagen/chitosan scaffolds for skin tissue engineering. J Met Mater Miner 2017; 16(1): 37-44.
[29]
Nam K, Kimura T, Kishida A. Physical and biological properties of collagen-phospholipid polymer hybrid gels. Biomaterials 2007; 28(20): 3153-62.
[http://dx.doi.org/10.1016/j.biomaterials.2007.03.001] [PMID: 17391753]
[30]
Dong C, Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 2016; 8(2): 42.
[http://dx.doi.org/10.3390/polym8020042] [PMID: 30979136]
[31]
Harsha L, Brundha MP. Role of collagen in wound healing. Drug Invent Today 2020; 13(1): 55-7.
[32]
Li Z, Qian C, Zheng X, Qi X, Bi J, Wang H, Cao J. Collagen/chitosan/genipin hydrogel loaded with phycocyanin nanoparticles and ND-336 for diabetic wound healing. Int J Biol Macromol 2024; 266: 131220.
[http://dx.doi.org/10.1016/J.IJBIOMAC.2024.131220]
[33]
Tort S, Acartürk F, Beşikci A. Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. Int J Pharm 2017; 529(1-2): 642-53.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.027] [PMID: 28705624]
[34]
Mahmoud AA, Salama AH. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in vivo wound healing assessment. Eur J Pharm Sci 2016; 83: 155-65.
[http://dx.doi.org/10.1016/j.ejps.2015.12.026] [PMID: 26733072]
[35]
Chen DW, Hsu YH, Liao JY, Liu SJ, Chen JK, Ueng SWN. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm 2012; 430(1-2): 335-41.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.010] [PMID: 22521880]
[36]
Toosi S, Naderi-Meshkin H, Kalalinia F, Peivandi MT. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. J Biomed Mater Res Part A 2016; 104(8): 2020-8.
[37]
Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater Sci Eng C 2014; 34: 402-9.
[http://dx.doi.org/10.1016/j.msec.2013.09.043] [PMID: 24268275]
[38]
Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L. Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 2013; 92(2): 1752-60.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.029] [PMID: 23399216]
[39]
Zhou G, Liu S, Ma Y, et al. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Int J Nanomed 2017; 12: 7577-88.
[http://dx.doi.org/10.2147/IJN.S146679] [PMID: 29075116]
[40]
Zulkifli FH, Jahir Hussain FS, Abdull Rasad MSB, Mohd Yusoff M. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym Degrad Stab 2014; 110: 473-81.
[http://dx.doi.org/10.1016/j.polymdegradstab.2014.10.017]
[41]
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials 2012; 33(3): 846-55.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.030] [PMID: 22048006]
[42]
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target 2016; 24(6): 520-9.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[43]
Kandhasamy S, Perumal S, Madhan B, et al. Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing. ACS Appl Mater Interfaces 2017; 9(10): 8556-68.
[http://dx.doi.org/10.1021/acsami.6b16488] [PMID: 28221758]
[44]
Sadeghi-Avalshahr A, Nokhasteh S, Molavi AM, Khorsand-Ghayeni M, Mahdavi-Shahri M. Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater 2017; 4(5): 309-14.
[http://dx.doi.org/10.1093/rb/rbx026] [PMID: 29026645]
[45]
Sanapalli BKR, Yele V, Singh MK, Thumbooru SN, Parvathaneni M, Karri VVSR. Human beta defensin-2 loaded PLGA nanoparticles impregnated in collagen-chitosan composite scaffold for the management of diabetic wounds. Biomed Pharmacother 2023; 161(May): 114540.
[http://dx.doi.org/10.1016/j.biopha.2023.114540] [PMID: 36934557]
[46]
Chatterjee NS, Sukumaran HG, Dara PK, et al. Nano-encapsulation of curcumin in fish collagen grafted succinyl chitosan hydrogel accelerates wound healing process in experimental rats. Food Hydrocolloids for Health 2022; 2(December): 100061.
[http://dx.doi.org/10.1016/j.fhfh.2022.100061]
[47]
Deng A, Yang Y, Du S, et al. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater Sci Eng C 2021; 119: 111555.
[http://dx.doi.org/10.1016/j.msec.2020.111555] [PMID: 33321619]
[48]
Zhang Z, Li Z, Li Y, et al. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell Tissue Res 2021; 383(2): 809-21.
[http://dx.doi.org/10.1007/s00441-020-03321-7] [PMID: 33159581]
[49]
Ding C, Tian M, Feng R, Dang Y, Zhang M. Novel self-healing hydrogel with injectable, pH-responsive, strain-sensitive, promoting wound-healing, and hemostatic properties based on collagen and chitosan. ACS Biomater Sci Eng 2020; 6(7): 3855-67.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00588] [PMID: 33463340]
[50]
Yang M, He S, Su Z, Yang Z, Liang X, Wu Y. Thermosensitive injectable chitosan/collagen/β-glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids. ACS Omega 2020; 5(33): 21015-23.
[http://dx.doi.org/10.1021/acsomega.0c02580] [PMID: 32875238]
[51]
Chandika P, Oh GW, Heo SY, et al. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Mater Sci Eng C 2021; 121: 111871.
[http://dx.doi.org/10.1016/j.msec.2021.111871] [PMID: 33579504]
[52]
Ghorbani M, Nezhad-Mokhtari P, Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 2020; 153: 921-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.036] [PMID: 32151718]
[53]
Hou J, Chen L, Zhou M, et al. Polyamide/collagen scaffolds with topical sustained release of n-acetylcysteine for promoting wound healing. Int J Nanomed 2020; 15: 1349.
[54]
Ramanathan G, Seleenmary Sobhanadhas LS, Sekar Jeyakumar GF, Devi V, Sivagnanam UT, Fardim P. Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application. Biomacromolecules 2020; 21(6): 2512-24.
[http://dx.doi.org/10.1021/acs.biomac.0c00516] [PMID: 32343892]
[55]
Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 2006; 29(1): 17-25.
[http://dx.doi.org/10.1007/s10529-006-9219-z] [PMID: 17091377]
[56]
Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery. J Control Release 2000; 69(1): 169-84.
[http://dx.doi.org/10.1016/S0168-3659(00)00300-X] [PMID: 11018555]
[57]
Price RD, Myers S, Leigh IM, Navsaria HA. The role of hyaluronic acid in wound healing: Assessment of clinical evidence. Am J Clin Dermatol 2005; 6(6): 393-402.
[http://dx.doi.org/10.2165/00128071-200506060-00006] [PMID: 16343027]
[58]
Kawano Y, Patrulea V, Sublet E, et al. Wound healing promotion by hyaluronic acid: Effect of molecular weight on gene expression and in vivo wound closure. Pharmaceuticals 2021; 14(4): 301.
[http://dx.doi.org/10.3390/ph14040301] [PMID: 33800588]
[59]
Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T. Hyaluronic acid in inflammation and tissue regeneration. Wounds 2016; 28(3): 78-88.
[PMID: 26978861]
[60]
Lin Z, Wu T, Wang W, et al. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol 2019; 140: 330-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.087] [PMID: 31421174]
[61]
Chanda A, Adhikari J, Ghosh A, et al. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 2018; 116: 774-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.099] [PMID: 29777811]
[62]
Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces 2018; 10(16): 13304-16.
[http://dx.doi.org/10.1021/acsami.7b18927] [PMID: 29607644]
[63]
Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr Polym 2019; 223: 115023.
[http://dx.doi.org/10.1016/j.carbpol.2019.115023] [PMID: 31427021]
[64]
Ying H, Zhou J, Wang M, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C 2019; 101: 487-98.
[http://dx.doi.org/10.1016/j.msec.2019.03.093] [PMID: 31029343]
[65]
Sanad RAB, Abdel-Bar HM. Chitosan–hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing. Carbohydr Polym 2017; 173: 441-50.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.098] [PMID: 28732886]
[66]
Zhang S, Hou J, Yuan Q, et al. Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chem Eng J 2020; 392: 123775.
[http://dx.doi.org/10.1016/j.cej.2019.123775]
[67]
Karimi Dehkordi N, Minaiyan M, Talebi A, Akbari V, Taheri A. Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing. Biomed Mater 2019; 14(3): 035003.
[http://dx.doi.org/10.1088/1748-605X/ab026c] [PMID: 30690433]
[68]
Wu S, Deng L, Hsia H, et al. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. J Biomater Appl 2017; 31(10): 1380-90.
[http://dx.doi.org/10.1177/0885328217702526] [PMID: 28376672]
[69]
Gokce EH, Tuncay Tanrıverdi S, Eroglu I, et al. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur J Pharm Biopharm 2017; 119: 17-27.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.027] [PMID: 28461085]
[70]
Sharma M, Sahu K, Singh SP, Jain B. Wound healing activity of curcumin conjugated to hyaluronic acid: In vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 2018; 46(5): 1009-17.
[http://dx.doi.org/10.1080/21691401.2017.1358731] [PMID: 28754055]
[71]
Raza H, Ashraf A, Shamim R, et al. Synthesis and characterization of Hyaluronic Acid (HA) modified polymeric composite for effective treatment of wound healing by transdermal drug delivery system (TDDS). Sci Rep 2023; 13(1): 13425.
[http://dx.doi.org/10.1038/s41598-023-40593-9] [PMID: 37591923]
[72]
Chang R, Zhao D, Zhang C, et al. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int J Biol Macromol 2023; 226(January): 870-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.116] [PMID: 36526064]
[73]
Minhas MU, Khan S, Hussain Z, et al. Curcumin-laden hyaluronic acid co Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. Biomed Pharmacoth 2021; 170: 1-3.
[74]
Menu A. Hyaluronic acid: Redefining its role. Cells 2020; 9(7): 1743.
[75]
Choi JS, Heang Oh S, Kim YM, Lim JY. Hyaluronic acid/alginate hydrogel containing hepatocyte growth factor and promotion of vocal fold wound healing. Tissue Eng Regen Med 2020; 17(5): 651-8.
[http://dx.doi.org/10.1007/s13770-020-00280-6] [PMID: 32676953]
[76]
Hussein Y, El-Fakharany EM, Kamoun EA, et al. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation. Int J Biol Macromol 2020; 164: 667-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.126] [PMID: 32682043]
[77]
Hussain Z, Pandey M, Choudhury H, et al. Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: Fabrication, characterization, stability and in vitro release kinetics. J Drug Deliv Sci Technol 2020; 57(57): 101747.
[http://dx.doi.org/10.1016/j.jddst.2020.101747]
[78]
Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, et al. Hyaluronic acid (ha)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromol Biosci 2020; 20(4): 1900328.
[http://dx.doi.org/10.1002/mabi.201900328] [PMID: 32077252]
[79]
Zhu J, Jiang G, Hong W, et al. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. Mater Sci Eng C 2020; 117: 111273.
[http://dx.doi.org/10.1016/j.msec.2020.111273] [PMID: 32919637]
[80]
Ahmed S. Chitosan & its derivatives: A review in recent innovations. Int J Pharm Sci Res 2015; 2: 14-30.
[81]
Acosta N, Jiménez C, Borau V, Heras A. Extraction and characterization of chitin from crustaceans. Biomass Bioenergy 1993; 5(2): 145-53.
[http://dx.doi.org/10.1016/0961-9534(93)90096-M]
[82]
Singh R, Shitiz K, Singh A. Chitin and chitosan: Biopolymers for wound management. Int Wound J 2017; 14(6): 1276-89.
[http://dx.doi.org/10.1111/iwj.12797] [PMID: 28799228]
[83]
Bano I, Arshad M, Yasin T, Ghauri MA, Younus M. Chitosan: A potential biopolymer for wound management. Int J Biol Macromol 2017; 102: 380-3.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.047] [PMID: 28412341]
[84]
Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: The role of chitosan. liebert 2011; 17(5): 331-47. Available from: https://home.liebertpub.com/teb
[85]
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 2016; 10(1): 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[86]
Ahmed S, Ahmad M. Chitosan based dressings for wound care. Immunochem Immunopathol 2015; 1(2): 1-4.
[http://dx.doi.org/10.4172/2469-9756.1000106]
[87]
He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm 1998; 166(1): 75-88.
[http://dx.doi.org/10.1016/S0378-5173(98)00027-1]
[88]
Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res 2004; 21(1): 43-9.
[http://dx.doi.org/10.1023/B:PHAM.0000012150.60180.e3] [PMID: 14984256]
[89]
DY Z, ST L, PW L. Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs 2018; 16(8)
[90]
Aktug SL, Durdu S, Kalkan S, Cavusoglu K. In vitro biological and antimicrobial properties of chitosan-based bioceramic coatings on zirconium. Sci Rep 2021; 11: 15104.
[http://dx.doi.org/10.1038/s41598-021-94502-z]
[91]
Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol 2009; 6(3): 257-72.
[92]
Okamoto Y, Kawakami K, Miyatake K, Morimoto M, Shigemasa Y, Minami S. Analgesic effects of chitin and chitosan. Carbohydr Polym 2002; 49(3): 249-52.
[http://dx.doi.org/10.1016/S0144-8617(01)00316-2]
[93]
Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int J Adv Res 2016; 4(3): 411-27.
[PMID: 27819009]
[94]
Ninan N, Muthiah M, Park I-K, Wong TW, Thomas S, Grohens Y. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polym Rev 2015; 55(3): 453-90.
[95]
Spindola H, Fernandes J, De Sousa V, et al. Anti-inflammatory effect of chitosan oligomers. N Biotechnol 2009; 25: S9.
[http://dx.doi.org/10.1016/j.nbt.2009.06.025]
[96]
Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[97]
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[98]
Ud-Din S, Bayat A. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring. Exp Dermatol 2016; 25(8): 579-85.
[http://dx.doi.org/10.1111/exd.13027] [PMID: 27060469]
[99]
Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S. Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 2003; 53(3): 337-42.
[http://dx.doi.org/10.1016/S0144-8617(03)00076-6]
[100]
Li CW, Wang Q, Li J, et al. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway. Int J Nanomed 2016; 11: 373-86.
[101]
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 2019; 559: 23-36.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.019] [PMID: 30668991]
[102]
Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 2017; 28(18): 2220-41.
[http://dx.doi.org/10.1080/09205063.2017.1390383] [PMID: 28988526]
[103]
Lu Z, Gao J, He Q, et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 2017; 156: 460-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.051] [PMID: 27842847]
[104]
Bajpai SK, Chand N, Ahuja S, Roy MK. Curcumin/cellulose micro crystals/chitosan films: Water absorption behavior and in vitro cytotoxicity. Int J Biol Macromol 2015; 75: 239-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.038] [PMID: 25643996]
[105]
Bajpai SK, Ahuja S, Chand N, Bajpai M. Nano cellulose dispersed chitosan film with Ag NPs/curcumin: An in vivo study on Albino Rats for wound dressing. Int J Biol Macromol 2017; 104(Pt A): 1012-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.096] [PMID: 28666832]
[106]
Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 2016; 93(Pt B): 1519-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.038] [PMID: 27180291]
[107]
Shukla R, Kashaw SK, Jain AP, Lodhi S. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol 2016; 91: 1110-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.075] [PMID: 27344952]
[108]
Poornima B, Korrapati PS. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr Polym 2017; 157: 1741-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.056] [PMID: 27987890]
[109]
Berce C, Muresan MS, Soritau O, et al. Cutaneous wound healing using polymeric surgical dressings based on chitosan, sodium hyaluronate and resveratrol. A preclinical experimental study. Colloids Surf B Biointerfaces 2018; 163: 155-66.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.041] [PMID: 29291501]
[110]
Patel S, Srivastava S, Singh MR, Singh D. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol 2018; 107(Pt B): 1888-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.056] [PMID: 29037874]
[111]
Sugumar S, Mukherjee A, Chandrasekaran N. Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int J Nanomed 2015; 10(Suppl 1) (Suppl. 1): 67-75.
[PMID: 26491308]
[112]
Díez-Pascual AM, Díez-Vicente AL. Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules 2015; 16(9): 2631-44.
[http://dx.doi.org/10.1021/acs.biomac.5b00447] [PMID: 26302315]
[113]
Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 2013; 452(1-2): 333-43.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.012] [PMID: 23680732]
[114]
Bonferoni MC, Sandri G, Dellera E, et al. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. Eur J Pharm Biopharm 2014; 87(1): 101-6.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.018] [PMID: 24384070]
[115]
Alavarse AC, de Oliveira Silva FW, Colque JT, et al. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C 2017; 77: 271-81.
[http://dx.doi.org/10.1016/j.msec.2017.03.199] [PMID: 28532030]
[116]
Chen H, Xing X, Tan H, et al. Covalently antibacterial alginatechitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 2017; 70(Pt 1): 287-95.
[http://dx.doi.org/10.1016/j.msec.2016.08.086] [PMID: 27770893]
[117]
Sinha M, Banik RM, Haldar C, Maiti P. Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing. J Porous Mater 2013; 20(4): 799-807.
[http://dx.doi.org/10.1007/s10934-012-9655-1]
[118]
Kakkar P, Verma S, Manjubala I, Madhan B. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C 2014; 45: 343-7.
[http://dx.doi.org/10.1016/j.msec.2014.09.021] [PMID: 25491838]
[119]
Xu W, Wang Z, Liu Y, et al. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym 2018; 192: 240-50.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.033] [PMID: 29691018]
[120]
Han F, Dong Y, Su Z, Yin R, Song A, Li S. Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material. Int J Pharm 2014; 476(1-2): 124-33.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.036] [PMID: 25275938]
[121]
Anisha BS, Sankar D, Mohandas A, Chennazhi KP, Nair SV, Jayakumar R. Chitosan–hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydr Polym 2013; 92(2): 1470-6.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.058] [PMID: 23399178]
[122]
Cheng F, Gao J, Wang L, Hu X. Composite chitosan/poly(ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs. J Appl Polym Sci 2015; 132(24): app.42060.
[http://dx.doi.org/10.1002/app.42060]
[123]
Kumar PTS, Raj NM, Praveen G, Chennazhi KP, Nair SV, Jayakumar R. In vitro and in vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration. Tissue Eng Part A 2013; 19(3-4): 380-92.
[http://dx.doi.org/10.1089/ten.tea.2012.0376] [PMID: 22934717]
[124]
Rasool A, Ata S, Islam A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr Polym 2019; 203: 423-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.083] [PMID: 30318231]
[125]
Moura LIF, Dias AMA, Leal EC, Carvalho L, de Sousa HC, Carvalho E. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater 2014; 10(2): 843-57.
[http://dx.doi.org/10.1016/j.actbio.2013.09.040] [PMID: 24121197]
[126]
Lv X, Liu Y, Song S, et al. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr Polym 2019; 205: 312-21.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.067] [PMID: 30446110]
[127]
Yan T, Cheng F, Wei X, Huang Y, He J. Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr Polym 2017; 170: 271-80.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.080] [PMID: 28521997]
[128]
Shakiba-Marani R, Ehtesabi H. A flexible and hemostatic chitosan, polyvinyl alcohol, carbon dot nanocomposite sponge for wound dressing application. Int J Biol Macromol 2023; 224: 831-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.169] [PMID: 36283554]
[129]
Ehtesabi H, Nasri R. Carbon dot-based materials for wound healing applications. Adv Nat Sci Nanosci Nanotechnol 2021; 12(2): 025006.
[http://dx.doi.org/10.1088/2043-6262/abffc9]
[130]
Zhang J, Chen K, Ding C, et al. Fabrication of chitosan/PVP/dihydroquercetin nanocomposite film for in vitro and in vivo evaluation of wound healing. Int J Biol Macromol 2022; 206(May): 591-604.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.110] [PMID: 35217084]
[131]
Chen L. Fabrication and characterization of Rhizochitosan and its incorporation with platelet concentrates to promote wound healing. Carbohydr Polym 2021; 268: 118239.
[http://dx.doi.org/10.1016/j.carbpol.2021.118239]
[132]
Ding H, Li B, Liu Z, et al. Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering. Carbohydr Polym 2021; 252(Jan): 117143.
[http://dx.doi.org/10.1016/j.carbpol.2020.117143] [PMID: 33183602]
[133]
Amirian J, Zeng Y, Shekh MI, et al. In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing. Carbohydr Polym 2021; 251(Jan): 117005.
[http://dx.doi.org/10.1016/j.carbpol.2020.117005] [PMID: 33142572]
[134]
Qing X, He G, Liu Z, et al. Preparation and properties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing. Carbohydr Polym 2021; 261: 117875.
[http://dx.doi.org/10.1016/j.carbpol.2021.117875] [PMID: 33766362]
[135]
Chandika P, Kim M, Khan F, Kim Y, Heo S, Oh G. Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/chitooligosaccharide hydrogel. Carbohydr Polym 2021; 269: 118272.
[136]
El-Aassar MR, Ibrahim OM, Fouda MMG, et al. Wound dressing of chitosan-based-crosslinked gelatin/polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydr Polym 2021; 255: 117484.
[http://dx.doi.org/10.1016/j.carbpol.2020.117484] [PMID: 33436244]
[137]
Zhang M, Qiao X, Han W, Jiang T, Liu F, Zhao X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr Polym 2021; 266: 118100.
[http://dx.doi.org/10.1016/j.carbpol.2021.118100]
[138]
Mohamady Hussein MA, Guler E, Rayaman E, et al. Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydr Polym 2021; 270: 118373.
[http://dx.doi.org/10.1016/j.carbpol.2021.118373] [PMID: 34364617]
[139]
Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. 2021; 256: 117590.
[http://dx.doi.org/10.1016/j.carbpol.2020.117590]
[140]
Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 2021; 259: 117640.
[http://dx.doi.org/10.1016/j.carbpol.2021.117640] [PMID: 33673981]
[141]
Aderibigbe B, Buyana B. Alginate in wound dressings. Pharmaceutics 2018; 10(2): 42.
[http://dx.doi.org/10.3390/pharmaceutics10020042] [PMID: 29614804]
[142]
Sin H-J. Latest trends in wound care. Korean Nurse 1998; 37(4): 19-29.
[143]
Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym 2021; 236: 116025.
[http://dx.doi.org/10.1016/j.carbpol.2020.116025]
[144]
Tariverdian T, Navaei T, Milan PB, Samadikuchaksaraei A, Mozafari M. Functionalized polymers for tissue engineering and regenerative medicines. Adv Funct Polym BiomedApplic 2019; 323-57.
[http://dx.doi.org/10.1016/B978-0-12-816349-8.00016-3]
[145]
Gokarneshan N. Application of natural polymers and herbal extracts in wound management. Adv Text Wound Care 2019; 541-61.
[http://dx.doi.org/10.1016/B978-0-08-102192-7.00019-9]
[146]
Zhou Q, Kang H, Bielec M, et al. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr Polym 2018; 197: 292-304.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.078] [PMID: 30007617]
[147]
Shi M, Zhang H, Song T, et al. Sustainable dual release of antibiotic and growth factor from ph-responsive uniform alginate composite microparticles to enhance wound healing. ACS Appl Mater Interfaces 2019; 11(25): 22730-44.
[http://dx.doi.org/10.1021/acsami.9b04750] [PMID: 31141337]
[148]
Hu Y, Zhang Z, Li Y, et al. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun 2018; 39(20): 1800069.
[http://dx.doi.org/10.1002/marc.201800069] [PMID: 29855096]
[149]
Cao C, Yang N, Zhao Y, et al. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy. Nano Today 2021; 39: 101165.
[http://dx.doi.org/10.1016/j.nantod.2021.101165]
[150]
Zheng Y, Liang Y, Zhang D, et al. Gelatin-based hydrogels blended with gellan as an injectable wound dressing. ACS Omega 2018; 3(5): 4766-75.
[http://dx.doi.org/10.1021/acsomega.8b00308] [PMID: 30023901]
[151]
Dong Y, Li X, Rodrigues M, et al. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv Funct Mater 2017; 27(24): 1606619.
[http://dx.doi.org/10.1002/adfm.201606619]
[152]
Etxabide A, Vairo C, Santos-Vizcaino E, et al. Ultra thin hydrofilms based on lactose-crosslinked fish gelatin for wound healing applications. Int J Pharm 2017; 530(1-2): 455-67.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.001] [PMID: 28789885]
[153]
Thi PL, Lee Y, Tran DL, et al. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater 2020; 103: 142-52.
[http://dx.doi.org/10.1016/j.actbio.2019.12.009] [PMID: 31846801]
[154]
Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol 2019; 121: 633-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.056] [PMID: 30326224]
[155]
Tra Thanh N, Ho Hieu M, Tran Minh Phuong N, et al. Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater Sci Eng C 2018; 91: 318-29.
[http://dx.doi.org/10.1016/j.msec.2018.05.039] [PMID: 30033261]
[156]
Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R. Antioxidative study of cerium oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application. Bioact Mater 2018; 3(2): 201-11.
[http://dx.doi.org/10.1016/j.bioactmat.2017.09.006] [PMID: 29744458]
[157]
Nikpasand A, Parvizi MR. Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing; An animal model study. Bull Emerg Trauma 2019; 7(4): 366-72.
[http://dx.doi.org/10.29252/beat-070405] [PMID: 31857999]
[158]
Pham L, Dang LH, Truong MD, et al. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed Pharmacother 2019; 117: 109183.
[http://dx.doi.org/10.1016/j.biopha.2019.109183] [PMID: 31261029]
[159]
Dai M, Zheng X, Xu X, et al. Chitosan-alginate sponge: Preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009; 2009: 1-8.
[http://dx.doi.org/10.1155/2009/595126] [PMID: 19918372]
[160]
Taheri P, Jahanmardi R, Koosha M, Abdi S. Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. Int J Biol Macromol 2020; 154: 421-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.114] [PMID: 32184139]
[161]
Bakhsheshi-Rad HR, Ismail AF, Aziz M, et al. Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous. Mater Lett 2019; 256: 126618.
[http://dx.doi.org/10.1016/j.matlet.2019.126618]
[162]
Shamloo A, Sarmadi M, Aghababaie Z, Vossoughi M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int J Pharm 2018; 537(1-2): 278-89.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.045] [PMID: 29288809]
[163]
Cahú TB, Silva RA, Silva RPF, et al. Evaluation of chitosan-based films containing gelatin, chondroitin 4-sulfate and ZnO for wound healing. Appl Biochem Biotechnol 2017; 183(3): 765-77.
[http://dx.doi.org/10.1007/s12010-017-2462-z] [PMID: 28349375]
[164]
Yu H, Gong W, Mei J, et al. The efficacy of a paeoniflorin-sodium alginate-gelatin skin scaffold for the treatment of diabetic wound: An in vivo study in a rat model. Biomed Pharmacother 2022; 151(July): 113165.
[http://dx.doi.org/10.1016/j.biopha.2022.113165] [PMID: 35609370]
[165]
Akbari R. 3D-printing of alginate/gelatin scaffold loading tannic acid @ ZIF-8 for wound healing: In vitro and in vivo studies. Int J Biol Macromol 2024; 265(Pt 1): 130744.
[166]
Oh G, Kim S, Kim T, Jung W. Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing. Carbohydr Polym 2021; 252: 117145.
[http://dx.doi.org/10.1016/j.carbpol.2020.117145]
[167]
Rahman MA, Islam MS, Haque P, et al. Calcium ion mediated rapid wound healing by nano-ZnO doped calcium phosphate-chitosan-alginate biocomposites. Materialia 2020; 13: 100839.
[http://dx.doi.org/10.1016/j.mtla.2020.100839]
[168]
Bahadoran M, Shamloo A, Nokoorani YD. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep 2020; 10(1): 7342.
[http://dx.doi.org/10.1038/s41598-020-64480-9] [PMID: 32355267]
[169]
Chen G, He L, Zhang P, et al. Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway. Mater Sci Eng C 2020; 110: 110686.
[http://dx.doi.org/10.1016/j.msec.2020.110686] [PMID: 32204114]
[170]
Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J Biomed Mater Res A 2020; 108(3): 545-56.
[http://dx.doi.org/10.1002/jbm.a.36835] [PMID: 31702867]
[171]
Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Mater Sci Eng C 2020; 113: 110957.
[http://dx.doi.org/10.1016/j.msec.2020.110957] [PMID: 32487379]
[172]
Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 2020; 82: 106298.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106298]
[173]
Zhang X, Li Y, Ma Z, He D, Li H. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact Mater 2021; 6(11): 3692-704.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.038] [PMID: 33898873]
[174]
Perumal G, Pappuru S, Chakraborty D, Maya Nandkumar A, Chand DK, Doble M. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C 2017; 76: 1196-204.
[http://dx.doi.org/10.1016/j.msec.2017.03.200] [PMID: 28482486]
[175]
Alibolandi M, Mohammadi M, Taghdisi SM, Abnous K, Ramezani M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int J Pharm 2017; 532(1): 466-77.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.042] [PMID: 28927842]
[176]
Alippilakkotte S, Kumar S, Sreejith L. Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf A Physicochem Eng Asp 2017; 529: 771-82.
[http://dx.doi.org/10.1016/j.colsurfa.2017.06.066]
[177]
Bardania H, Mahmoudi R, Bagheri H, et al. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci Rep 2020; 10(1): 6129.
[http://dx.doi.org/10.1038/s41598-020-63032-5] [PMID: 32273549]
[178]
Pan J, Wu R, Dai X, et al. A hierarchical porous bowl-like PLA@MSNs-COOH composite for pH-dominated long-term controlled release of doxorubicin and integrated nanoparticle for potential second treatment. Biomacromolecules 2015; 16(4): 1131-45.
[http://dx.doi.org/10.1021/bm501786t] [PMID: 25714485]
[179]
Xu X lin, Li X J, Zhuang X, Wang W. Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers Polym 2016; 17: 205-11.
[180]
Bi H, Feng T, Li B, Han Y. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polymers 2020; 12(4): 839.
[181]
Foong CY, Hamzah MSA, Razak SIA, Saidin S, Nayan NHM. Influence of poly(lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials. Fibers Polym 2018; 19: 263-71.
[182]
Augustine R, Zahid AA, Hasan A, Wang M, Webster TJ. Ctgf loaded electrospun dual porous core-shell membrane for diabetic wound healing. Int J Nanomed 2019; 14: 8573-88.
[http://dx.doi.org/10.2147/IJN.S224047] [PMID: 31802870]
[183]
Wang R, Zhou B, Xu D, et al. Antimicrobial and biocompatible ε-polylysine–γ-poly(glutamic acid)–based hydrogel system for wound healing. J Bioact Compat Polym 2016; 31(3): 242-59.
[http://dx.doi.org/10.1177/0883911515610019]
[184]
Yin M, Wang X, Yu Z, et al. γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds. J Mater Chem B Mater Biol Med 2020; 8(36): 8395-404.
[http://dx.doi.org/10.1039/D0TB01190H] [PMID: 32966542]
[185]
Wang Y, Dou C, He G, et al. Biomedical potential of ultrafine Ag nanoparticles coated on poly (gamma-glutamic acid) hydrogel with special reference to wound healing. Nanomaterials 2018; 8(5): 324.
[http://dx.doi.org/10.3390/nano8050324] [PMID: 29757942]
[186]
Zhuang H, Hong Y, Gao J, Chen S, Ma Y, Wang S. A poly(γ-glutamic acid)-based hydrogel loaded with superoxide dismutase for wound healing. J Appl Polym Sci 2015; 132(23): app.42033.
[http://dx.doi.org/10.1002/app.42033]
[187]
Shi L, Yang N, Zhang H, et al. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. Mater Sci Eng C 2015; 48: 533-40.
[http://dx.doi.org/10.1016/j.msec.2014.12.047] [PMID: 25579954]
[188]
Liu WC, Wang HY, Lee TH, Chung RJ. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. Mater Sci Eng C 2019; 101: 630-9.
[http://dx.doi.org/10.1016/j.msec.2019.04.018] [PMID: 31029356]
[189]
Uddin Z, Fang TY, Siao JY, Tseng WC. Wound healing attributes of polyelectrolyte multilayers prepared with multi-l-arginyl-poly-l-aspartate pairing with hyaluronic acid and γ-polyglutamic acid. Macromol Biosci 2020; 20(8): 2000132.
[http://dx.doi.org/10.1002/mabi.202000132] [PMID: 32567226]
[190]
Lin YH, Lin JH, Hong YS. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J Biomed Mater Res B Appl Biomater 2017; 105(1): 81-90.
[http://dx.doi.org/10.1002/jbm.b.33394] [PMID: 26426455]
[191]
Buck E, Maisuria V, Tufenkji N, Cerruti M. Antibacterial properties of plga electrospun scaffolds containing ciprofloxacin incorporated by blending or physisorption. ACS Appl Bio Mater 2018; 1(3): 627-35.
[http://dx.doi.org/10.1021/acsabm.8b00112] [PMID: 34996194]
[192]
Choipang C, Chuysinuan P, Suwantong O, Ekabutr P, Supaphol P. Hydrogel wound dressings loaded with PLGA/ciprofloxacin hydrochloride nanoparticles for use on pressure ulcers. J Drug Deliv Sci Technol 2018; 47: 106-14.
[http://dx.doi.org/10.1016/j.jddst.2018.06.025]
[193]
Tang Y, Chen L, Zhao K, Wu Z, Wang Y, Tan Q. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration. Compos Sci Technol 2016; 125: 100-7.
[http://dx.doi.org/10.1016/j.compscitech.2016.02.005]
[194]
Dhal C, Mishra R. In vitro and in vivo evaluation of gentamicin sulphate-loaded PLGA nanoparticle-based film for the treatment of surgical site infection. Drug Deliv Transl Res 2020; 10(4): 1032-43.
[http://dx.doi.org/10.1007/s13346-020-00730-7] [PMID: 32100268]
[195]
Hasan N, Cao J, Lee J, et al. Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 2019; 11(5): 236.
[http://dx.doi.org/10.3390/pharmaceutics11050236] [PMID: 31096709]
[196]
Chen MM, Cao H, Liu YY, et al. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres. Colloids Surf B Biointerfaces 2017; 151: 189-95.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.045] [PMID: 28012407]
[197]
Landau S, Szklanny AA, Yeo GC, et al. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. Biomaterials 2017; 122: 72-82.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.015] [PMID: 28110114]
[198]
Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm 2018; 44(11): 1783-96.
[http://dx.doi.org/10.1080/03639045.2018.1496448] [PMID: 29973105]
[199]
Garcia-Orue I, Gainza G, Garcia-Garcia P, et al. Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications. Int J Pharm 2019; 556: 320-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.010] [PMID: 30553008]
[200]
Sun X, Cheng L, Zhu W, et al. Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin. Colloids Surf B Biointerfaces 2014; 115: 61-70.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.030] [PMID: 24333554]
[201]
Lee CH, Chang SH, Chen WJ, et al. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci 2015; 439: 88-97.
[http://dx.doi.org/10.1016/j.jcis.2014.10.028] [PMID: 25463179]
[202]
Xu K, An N, Zhang H, et al. Sustained-release of PDGF from PLGA microsphere embedded thermo-sensitive hydrogel promoting wound healing by inhibiting autophagy. J Drug Deliv Sci Technol 2020; 55: 101405.
[http://dx.doi.org/10.1016/j.jddst.2019.101405]
[203]
Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K. Biopolymer composites with high dielectric performance: Interface engineering. In: Biopolymer Composites in Electronics. Elsevier B.V. 2017; pp. 27-128.
[204]
Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances 2014; 4(47): 24777.
[http://dx.doi.org/10.1039/c4ra02450h]
[205]
Zhang Y, Chang M, Bao F, et al. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale 2019; 11(13): 6315-33.
[http://dx.doi.org/10.1039/C8NR09818B] [PMID: 30882821]
[206]
Hajilou H, Farahpour MR, Hamishehkar H. Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds. Int J Biol Macromol 2020; 164: 2358-69.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.079] [PMID: 32791277]
[207]
Huang Y, Dan N, Dan W, Zhao W. Reinforcement of polycaprolactone/chitosan with nanoclay and controlled release of curcumin for wound dressing. ACS Omega 2019; 4(27): 22292-301.
[http://dx.doi.org/10.1021/acsomega.9b02217] [PMID: 31909312]
[208]
Yang S, Li X, Liu P, Zhang M, Wang C, Zhang B. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dualdrug release for wound-healing applications. ACS Biomater Sci Eng 2020; 6(8): 4666-76.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00674] [PMID: 33455179]
[209]
Adeli-Sardou M, Yaghoobi MM, Torkzadeh-Mahani M, Dodel M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int J Biol Macromol 2019; 124: 478-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.237] [PMID: 30500508]
[210]
Khoshnevisan K, Maleki H, Samadian H, Doostan M, Khorramizadeh MR. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol 2019; 140: 1260-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.207] [PMID: 31472212]
[211]
Pavliňáková V, Fohlerová Z, Pavliňák D, Khunová V, Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C 2018; 91: 94-102.
[http://dx.doi.org/10.1016/j.msec.2018.05.033] [PMID: 30033327]
[212]
Baghirova L, Kaya Tilki E, Öztürk AA. Evaluation of cell proliferation and wound healing effects of vitamin A palmitate-loaded PLGA/chitosan-coated plga nanoparticles: Preparation, characterization, release, and release kinetics. ACS Omega 2022; 8(2): 2658-68.
[213]
Cetin N, Menevse E, Celik ZE, et al. Evaluation of burn wound healing activity of thermosensitive gel and PLGA nanoparticle formulation of quercetin in Wistar albino rats. J Drug Deliv Sci Technol 2022; 75(September): 103620.
[http://dx.doi.org/10.1016/j.jddst.2022.103620]
[214]
Mai B, Jia M, Liu S, et al. Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces 2020; 12(9): 10156-69.
[http://dx.doi.org/10.1021/acsami.0c00298] [PMID: 32027477]
[215]
Yu M, Huang J, Zhu T, et al. Liraglutide-loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing via the modulation of miR-29b-3p. Biomater Sci 2020; 8(15): 4225-38.
[http://dx.doi.org/10.1039/D0BM00442A] [PMID: 32578587]
[216]
Liao HT, Lai YT, Kuo CY, Chen JP. A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing. Mater Sci Eng C 2021; 120: 111689.
[http://dx.doi.org/10.1016/j.msec.2020.111689] [PMID: 33545851]
[217]
Lee J, Kwak D, Kim H, et al. Nitric oxide-releasing s-nitrosoglutathione-conjugated poly(Lactic-co-glycolic acid) nanoparticles for the treatment of MRSA-infected cutaneous wounds. Pharmaceutics 2020; 12(7): 618.
[http://dx.doi.org/10.3390/pharmaceutics12070618] [PMID: 32630779]
[218]
Tang KC, Yang KC, Lin CW, et al. Human adipose-derived stem cell secreted extracellular matrix incorporated into electrospun poly(lactic-co-glycolic acid) nanofibrous dressing for enhancing wound healing. Polymers 2019; 11(10): 1609.
[http://dx.doi.org/10.3390/polym11101609] [PMID: 31623334]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy