Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Hypofractionated Radiation Therapy Suppresses Radioresistance in U87 Human Glioma Cells by Inhibiting Yap1 and Hsp90 Proteins

Author(s): Imran Khan, Sadaf Mahfooz, Busra Karacam, Elif Burce Elbasan, Kerime Akdur, Ganime Coban and Mustafa Aziz Hatiboglu*

Volume 17, Issue 4, 2024

Published on: 29 April, 2024

Page: [371 - 381] Pages: 11

DOI: 10.2174/0118744710300495240409074900

Price: $65

Abstract

Background: Radiotherapy plays a vital role in the management of high-grade gliomas. However, the radio resistance of glioma cells limits the effect of radiation and drives recurrence inside the irradiated tumor volume leading to poor outcomes for patients.

Methods: High-grade glioma cell radioresistance significantly contributes to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. An increasing body of evidence complies with the Yes Associated Protein 1 (Yap-1) and heat shock protein 90 (Hsp90) as biomarkers for radioresistance in glioma cells. A number of studies suggest the potential of radioresistance-associated factors as biomarkers and/ or novel therapeutic targets in glioma cells. Thus, it is essential for glioblastoma patients to identify robust druggable targets involved in radioresistance, optimizing irradiation protocol, and understanding their underlying molecular mechanisms.

Results: Therefore, in the present study, we hypothesized that hypofractionated Gamma Knife radiation therapy (HF-GKRT) could target Yap-1 and Hsp90 and downregulate the mechanism of radioresistance in high-grade glioma cells.

Conclusion: For this purpose, expression levels of radioresistance markers Yap-1 and Hsp90 were evaluated after treatment with HF-GKRT, and this was compared with single fraction Gamma Knife radiation therapy (SF-GKRT) in U87MG primary human glioblastoma cell line model. This would help design a novel radiation therapy regimen for glioblastoma patients by reducing the risk of radioresistance.

[1]
Louis, D.N. Molecular pathology of malignant gliomas. Annu. Rev. Pathol., 2006, 1(1), 97-117.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100043] [PMID: 18039109]
[2]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[3]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[4]
Bleehen, N.M.; Stenning, S.P. A medical research council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. Br. J. Cancer, 1991, 64(4), 769-774.
[http://dx.doi.org/10.1038/bjc.1991.396] [PMID: 1654987]
[5]
Yazici, G.; Cengiz, M.; Ozyigit, G.; Eren, G.; Yildiz, F.; Akyol, F.; Gurkaynak, M.; Zorlu, F. Hypofractionated stereotactic reirradiation for recurrent glioblastoma. J. Neurooncol., 2014, 120(1), 117-123.
[http://dx.doi.org/10.1007/s11060-014-1524-0] [PMID: 25012955]
[6]
Khalil, T.; Lemaire, J.J.; Dedieu, V.; Donnarieix, D.; Béatrice, C.; Lapeyre, M.; Kemeny, J.L.; Pereira, B.; Thalami, A.; Chazal, J.; Verrelle, P. MRI tumor response and clinical outcomes after LINAC radiosurgery on 50 patients with recurrent malignant gliomas. J. Radiosurg. SBRT, 2013, 2(4), 291-305.
[PMID: 29296372]
[7]
Hingorani, M.; Colley, W.P.; Dixit, S.; Beavis, A.M. Hypofractionated radiotherapy for glioblastoma: Strategy for poor-risk patients or hope for the future? Br. J. Radiol., 2012, 85(1017), e770-e781.
[http://dx.doi.org/10.1259/bjr/83827377] [PMID: 22919020]
[8]
Barani, IJ; Larson, DA Radiation therapy of glioblastoma. Cancer Treat Res., 2015, 163(49), 73.
[http://dx.doi.org/10.1007/978-3-319-12048-5_4]
[9]
McKenzie, J.T.; Guarnaschelli, J.N.; Vagal, A.S.; Warnick, R.E.; Breneman, J.C. Hypofractionated stereotactic radiotherapy for unifocal and multifocal recurrence of malignant gliomas. J. Neurooncol., 2013, 113(3), 403-409.
[http://dx.doi.org/10.1007/s11060-013-1126-2] [PMID: 23589034]
[10]
Hatiboglu, M.A.; Akdur, K.; Sakarcan, A.; Seyithanoglu, M.H.; Turk, H.M.; Sinclair, G.; Oztanir, M.N. Promising outcome of patients with recurrent glioblastoma after Gamma Knife-based hypofractionated radiotherapy. Neurochirurgie, 2024, 70(2), 101532.
[http://dx.doi.org/10.1016/j.neuchi.2024.101532] [PMID: 38215936]
[11]
Burko, P.; D’Amico, G.; Miltykh, I.; Scalia, F.; Conway de Macario, E.; Macario, A.J.L.; Giglia, G.; Cappello, F.; Caruso Bavisotto, C. Molecular pathways implicated in radioresistance of glioblastoma multiforme: What is the role of extracellular vesicles? Int. J. Mol. Sci., 2023, 24(5), 4883.
[http://dx.doi.org/10.3390/ijms24054883] [PMID: 36902314]
[12]
Kim, J.; Kang, H.; Son, B.; Kim, M.J.; Kang, J.; Park, K.H.; Jeon, J.; Jo, S.; Kim, H.Y.; Youn, H.; Youn, B. NRBF2-mediated autophagy contributes to metabolite replenishment and radioresistance in glioblastoma. Exp. Mol. Med., 2022, 54(11), 1872-1885.
[http://dx.doi.org/10.1038/s12276-022-00873-2] [PMID: 36333468]
[13]
Ali, M.Y.; Oliva, C.R.; Noman, A.S.M.; Allen, B.G.; Goswami, P.C.; Zakharia, Y.; Monga, V.; Spitz, D.R.; Buatti, J.M.; Griguer, C.E. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel), 2020, 12(9), 2511.
[http://dx.doi.org/10.3390/cancers12092511] [PMID: 32899427]
[14]
Kelley, K.; Knisely, J.; Symons, M.; Ruggieri, R. Radioresistance of Brain Tumors. Cancers (Basel), 2016, 8(4), 42.
[http://dx.doi.org/10.3390/cancers8040042] [PMID: 27043632]
[15]
Clark, P.A.; Iida, M.; Treisman, D.M.; Kalluri, H.; Ezhilan, S.; Zorniak, M.; Wheeler, D.L.; Kuo, J.S. Activation of multiple ERBB family receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition. Neoplasia, 2012, 14(5), 420-IN13.
[http://dx.doi.org/10.1596/neo.12432] [PMID: 22745588]
[16]
Di, K.; Keir, S.T.; Alexandru-Abrams, D.; Gong, X.; Nguyen, H.; Friedman, H.S.; Bota, D.A. Profiling Hsp90 differential expression and the molecular effects of the Hsp90 inhibitor IPI-504 in high-grade glioma models. J. Neurooncol., 2014, 120(3), 473-481.
[http://dx.doi.org/10.1007/s11060-014-1579-y] [PMID: 25115740]
[17]
Zhang, Y.; Xie, P.; Wang, X.; Pan, P.; Wang, Y.; Zhang, H.; Dong, Y.; Shi, Y.; Jiang, Y.; Yu, R.; Zhou, X. YAP promotes migration and invasion of human glioma cells. J. Mol. Neurosci., 2018, 64(2), 262-272.
[http://dx.doi.org/10.1007/s12031-017-1018-6] [PMID: 29306996]
[18]
Khan, I.; Mahfooz, S.; Elbasan, E.B.; Karacam, B.; Oztanir, M.N.; Hatiboglu, M.A. Targeting glioblastoma: The current state of different therapeutic approaches. Curr. Neuropharmacol., 2021, 19(10), 1701-1715.
[http://dx.doi.org/10.2174/1570159X19666210113152108] [PMID: 33441071]
[19]
Wang, Y.; Pan, P.; Wang, Z.; Zhang, Y.; Xie, P.; Geng, D.; Jiang, Y.; Yu, R.; Zhou, X. β-catenin-mediated YAP signaling promotes human glioma growth. J. Exp. Clin. Cancer Res., 2017, 36(1), 136.
[http://dx.doi.org/10.1186/s13046-017-0606-1] [PMID: 28962630]
[20]
Zhang, Y.; Wang, Y.; Zhou, D.; Wang, K.; Wang, X.; Wang, X.; Jiang, Y.; Zhao, M.; Yu, R.; Zhou, X. Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene, 2021, 40(27), 4580-4591.
[http://dx.doi.org/10.1038/s41388-021-01878-3] [PMID: 34127812]
[21]
Orth, M.; Albrecht, V.; Seidl, K.; Kinzel, L.; Unger, K.; Hess, J.; Kreutzer, L.; Sun, N.; Stegen, B.; Nieto, A.; Maas, J.; Winssinger, N.; Friedl, A.A.; Walch, A.K.; Belka, C.; Zitzelsberger, H.; Niyazi, M.; Lauber, K. Inhibition of HSP90 as a Strategy to Radiosensitize Glioblastoma: Targeting the DNA Damage Response and Beyond. Front. Oncol., 2021, 11, 612354.
[http://dx.doi.org/10.3389/fonc.2021.612354] [PMID: 33816244]
[22]
Terzioglu-Usak, S.; Nalli, A.; Elibol, B.; Ozek, E.; Hatiboglu, M.A. Anvirzel TM regulates cell death through inhibiting GSK-3 activity in human U87 glioma cells. Neurol. Res., 2020, 42(1), 68-75.
[http://dx.doi.org/10.1080/01616412.2019.1709744] [PMID: 31900072]
[23]
Khan, I.; Khan, F.; Farooqui, A.; Ansari, I.A. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr. Cancer, 2018, 70(5), 787-803.
[http://dx.doi.org/10.1080/01635581.2018.1470649] [PMID: 29781715]
[24]
Khan, I.; Mahfooz, S.; Ansari, I.A. Antiproliferative and apoptotic properties of andrographolide against human colon cancer dld1 cell line. Endocr. Metab. Immune Disord. Drug Targets, 2019.
[PMID: 31774047]
[25]
Hatiboglu, M.A.; Kocyigit, A.; Guler, E.M.; Akdur, K.; Khan, I.; Nalli, A.; Karatas, E.; Tuzgen, S. Thymoquinone enhances the effect of gamma knife in b16-f10 melanoma through inhibition of phosphorylated STAT3. World Neurosurg., 2019, 128, e570-e581.
[http://dx.doi.org/10.1016/j.wneu.2019.04.205] [PMID: 31054338]
[26]
Roa, W.; Brasher, P.M.A.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; Husain, S.; Murtha, A.; Petruk, K.; Stewart, D.; Tai, P.; Urtasun, R.; Cairncross, J.G.; Forsyth, P. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J. Clin. Oncol., 2004, 22(9), 1583-1588.
[http://dx.doi.org/10.1200/JCO.2004.06.082] [PMID: 15051755]
[27]
Roa, W.; Kepka, L.; Kumar, N.; Sinaika, V.; Matiello, J.; Lomidze, D.; Hentati, D.; Guedes de Castro, D.; Dyttus-Cebulok, K.; Drodge, S.; Ghosh, S.; Jeremić, B.; Rosenblatt, E.; Fidarova, E. International atomic energy agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol., 2015, 33(35), 4145-4150.
[http://dx.doi.org/10.1200/JCO.2015.62.6606] [PMID: 26392096]
[28]
Wick, W.; Hartmann, C.; Engel, C.; Stoffels, M.; Felsberg, J.; Stockhammer, F.; Sabel, M.C.; Koeppen, S.; Ketter, R.; Meyermann, R.; Rapp, M.; Meisner, C.; Kortmann, R.D.; Pietsch, T.; Wiestler, O.D.; Ernemann, U.; Bamberg, M.; Reifenberger, G.; von Deimling, A.; Weller, M. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J. Clin. Oncol., 2009, 27(35), 5874-5880.
[http://dx.doi.org/10.1200/JCO.2009.23.6497] [PMID: 19901110]
[29]
Malmström, A.; Grønberg, B.H.; Marosi, C.; Stupp, R.; Frappaz, D.; Schultz, H.; Abacioglu, U.; Tavelin, B.; Lhermitte, B.; Hegi, M.E.; Rosell, J.; Henriksson, R. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol., 2012, 13(9), 916-926.
[http://dx.doi.org/10.1016/S1470-2045(12)70265-6] [PMID: 22877848]
[30]
Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; Osoba, D.; Rossiter, J.P.; Sahgal, A.; Hirte, H.; Laigle-Donadey, F.; Franceschi, E.; Chinot, O.; Golfinopoulos, V.; Fariselli, L.; Wick, A.; Feuvret, L.; Back, M.; Tills, M.; Winch, C.; Baumert, B.G.; Wick, W.; Ding, K.; Mason, W.P. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med., 2017, 376(11), 1027-1037.
[http://dx.doi.org/10.1056/NEJMoa1611977] [PMID: 28296618]
[31]
Kirkpatrick, J.P.; Soltys, S.G.; Lo, S.S.; Beal, K.; Shrieve, D.C.; Brown, P.D. The radiosurgery fractionation quandary: Single fraction or hypofractionation? Neuro-oncol., 2017, 19(Suppl. 2), ii38-ii49.
[http://dx.doi.org/10.1093/neuonc/now301] [PMID: 28380634]
[32]
Li, Y.; Jia, Q.; Zhang, J.; Han, L.; Xu, D.; Zhang, A.; Zhang, Y.; Zhang, Z.; Pu, P.; Kang, C. Combination therapy with Gamma Knife radiosurgery and antisense EGFR for malignant glioma in vitro and orthotopic xenografts. Oncol. Rep., 2010, 23(6), 1585-1591.
[PMID: 20428813]
[33]
Zhang, H.; Wan, C.; Huang, J.; Yang, C.; Qin, Y.; Lu, Y.; Ma, J.; Wu, B.; Xu, S.; Wu, G.; Yang, K. In vitro radiobiological advantages of hypofractionation compared with conventional fractionation: Early-passage NSCLC cells are less aggressive after hypofractionation. Radiat. Res., 2018, 190(6), 584-595.
[http://dx.doi.org/10.1667/RR14951.1] [PMID: 30234458]
[34]
Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol., 2020, 8, 41.
[http://dx.doi.org/10.3389/fcell.2020.00041] [PMID: 32117972]
[35]
Jiao, Y.; Cao, F.; Liu, H. Radiation-induced cell death and its mechanisms. Health Phys., 2022, 123(5), 376-386.
[http://dx.doi.org/10.1097/HP.0000000000001601] [PMID: 36069830]
[36]
Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 2021, 125, 73-120.
[http://dx.doi.org/10.1016/bs.apcsb.2021.01.003] [PMID: 33931145]
[37]
Khan, I.; Mahfooz, S.; Faisal, M.; Alatar, A.A.; Ansari, I.A. Andrographolide induces apoptosis and cell cycle arrest through inhibition of aberrant hedgehog signaling pathway in colon cancer cells. Nutr. Cancer, 2021, 73(11-12), 2428-2446.
[http://dx.doi.org/10.1080/01635581.2020.1828942] [PMID: 33030050]
[38]
Khan, I.; Mahfooz, S.; Saeed, M.; Ahmad, I.; Ansari, I.A. Andrographolide inhibits proliferation of colon cancer SW-480 cells via downregulating notch signaling pathway. Anticancer. Agents Med. Chem., 2021, 21(4), 487-497.
[39]
Prasad, N.R.; Thayalan, K.; Begum, N. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(1), 45.
[http://dx.doi.org/10.4103/2231-0738.93134]
[40]
Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular stress responses in radiotherapy. Cells, 2019, 8(9), 1105.
[http://dx.doi.org/10.3390/cells8091105] [PMID: 31540530]
[41]
Ma, J.; Benitez, J.A.; Li, J.; Miki, S.; de Albuquerque, C.P.; Galatro, T. 2019, Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair. Cancer Cell, 2019, 35(3), 504-518.
[42]
Morgenroth, A.; Vogg, A.T.J.; Ermert, K.; Zlatopolskiy, B.; Mottaghy, F.M. Hedgehog signaling sensitizes Glioma stem cells to endogenous nano-irradiation. Oncotarget, 2014, 5(14), 5483-5493.
[http://dx.doi.org/10.18632/oncotarget.2123] [PMID: 24978848]
[43]
Fernandez-L, A.; Squatrito, M.; Northcott, P.; Awan, A.; Holland, E.C.; Taylor, M.D.; Nahlé, Z.; Kenney, A.M. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene, 2012, 31(15), 1923-1937.
[http://dx.doi.org/10.1038/onc.2011.379] [PMID: 21874045]
[44]
Xu, X.; Chen, Y.; Wang, X.; Mu, X. Role of Hippo/YAP signaling in irradiation-induced glioma cell apoptosis. Cancer Manag. Res., 2019, 11, 7577-7585.
[http://dx.doi.org/10.2147/CMAR.S210825] [PMID: 31496812]
[45]
Lu, X.; Xiao, L.; Wang, L.; Ruden, D.M. Hsp90 inhibitors and drug resistance in cancer: The potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem. Pharmacol., 2012, 83(8), 995-1004.
[http://dx.doi.org/10.1016/j.bcp.2011.11.011] [PMID: 22120678]
[46]
Biau, J.; Chautard, E.; De Koning, L.; Court, F.; Pereira, B.; Verrelle, P.; Dutreix, M. Predictive biomarkers of resistance to hypofractionated radiotherapy in high grade glioma. Radiat. Oncol., 2017, 12(1), 123.
[http://dx.doi.org/10.1186/s13014-017-0858-0] [PMID: 28754127]
[47]
Biau, J.; Chautard, E.; Verrelle, P.; Dutreix, M. Altering DNA repair to improve radiation therapy: Specific and multiple pathway targeting. Front. Oncol., 2019, 9, 1009.
[http://dx.doi.org/10.3389/fonc.2019.01009] [PMID: 31649878]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy