Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Transethosomal Carrier of Curcumin for Improved Topical Delivery: Optimization, In-vitro and Stability Assessment

Author(s): Raju Rathod and Pravin Pawar*

Volume 16, Issue 2, 2024

Published on: 09 April, 2024

Page: [97 - 111] Pages: 15

DOI: 10.2174/0118764029301002240326144814

Price: $65

conference banner
Abstract

Objective: Currently, there is a clear lack of effective topical treatments for psoriasis. In light of this unaddressed requirement, the work intends to develop, enhance, and assess the effectiveness of a curcumin transethosomal gel for managing psoriasis. This work signifies the delivery of a potential solution to fill the gap in topical psoriasis treatment.

Materials and Methods: Curcumin-loaded transethosomes were prepared using a mechanical dispersion method. An initial study was conducted to determine the ideal concentrations of Lipoid S100 and Isopropyl Myristate (IPM). To refine the ultimate transethosomal formulation, a full factorial design (32) was employed, incorporating different levels of Lipoid S100 and IPM. Drug release investigations and pharmacokinetics assessments of curcumin concentrations were performed using a specialized dissolution apparatus and an animal model, respectively.

Results: The characterization profile and analytical examinations have affirmed the stability of the formulation throughout the study duration. Our findings indicate that the drug release mechanism conforms to a diffusion pattern akin to Fickian transport. Furthermore, In-vivo investigations revealed that the curcumin concentration in the bloodstream after oral administration was significantly superior to that of the conventional formulation.

Conclusion: Using curcumin-loaded transethosomes extends drug contact time and facilitates controlled drug release, leading to enhanced bioavailability, decreased dosage needs, and heightened patient safety.

Graphical Abstract

[1]
Wang, B.; Liu, X.; Teng, Y.; Yu, T.; Chen, J.; Hu, Y.; Liu, N.; Zhang, L.; Shen, Y. Improving anti-melanoma effect of curcumin by biodegradable nanoparticles. Oncotarget, 2017, 8(65), 108624-108642.
[http://dx.doi.org/10.18632/oncotarget.20585] [PMID: 29312556]
[2]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov. Today, 2012, 17(1-2), 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009]
[3]
Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett., 2005, 223(2), 181-190.
[http://dx.doi.org/10.1016/j.canlet.2004.09.041] [PMID: 15896452]
[4]
Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol., 2014, 20(2), 322-330.
[http://dx.doi.org/10.1016/j.intimp.2014.03.009] [PMID: 24675438]
[5]
Yang, C.; Chen, H.; Zhao, J.; Pang, X.; Xi, Y.; Zhai, G. Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting. Colloids Surf. B Biointerfaces, 2014, 121, 206-213.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.005] [PMID: 24984268]
[6]
Sun, J.; Bi, C.; Chan, H.M.; Sun, S.; Zhang, Q.; Zheng, Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf. B Biointerfaces, 2013, 1(111), 367-375.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.032]
[7]
Li, L.; Xiang, D.; Shigdar, S.; Yang, W.; Li, Q.; Lin, J.; Liu, K.; Duan, W. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int. J. Nanomedicine, 2014, 21(9), 1083-96.
[http://dx.doi.org/10.2147/IJN.S59779]
[8]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials, 2011, 32(2), 598-609.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.112] [PMID: 20933280]
[9]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r]
[10]
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med., 2015, 5(2), 57-70.
[http://dx.doi.org/10.1016/j.hermed.2015.03.001]
[11]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[12]
Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic applications of curcumin nanoformulations. AAPS J., 2015, 17(6), 1341-1356.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[13]
Sharma, S.; Pawar, S.H.; Jain, U.K. Development and evaluation of topical gel of curcumin from different combination of polymers formulation & evaluation of herbal gel. Int. J. Pharm. Pharm. Sci., 2012, 4(4), 452-456.
[14]
Prakash, P.R.; Rao, N.R.; Chowdary, N.S. Formulation, evaluation and anti-inflammatory activity of topical etoricoxib gel. Asian J. Pharm. Clin. Res., 2010, 3(2), 126-129.
[15]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, K.S.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[http://dx.doi.org/10.2174/1567201813666160520114436]
[16]
Natsheh, H.; Vettorato, E.; Touitou, E. Ethosomes for dermal administration of natural active molecules. Curr. Pharm. Des., 2019, 25(21), 2338-2348.
[http://dx.doi.org/10.2174/1381612825666190716095826]
[17]
Touitou, E.; Natsheh, H. Topical administration of drugs incorporated in carriers containing phospholipid soft vesicles for the treatment of skin medical conditions. Pharmaceutics, 2021, 13(12), 2129.
[http://dx.doi.org/10.3390/pharmaceutics13122129] [PMID: 34959410]
[18]
Shen, L.N.; Zhang, Y.T.; Wang, Q.; Xu, L.; Feng, N.P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm., 2014, 460(1-2), 280-288.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.017]
[19]
Jain, S.; Tiwary, A.K.; Sapra, B.; Jain, N.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech, 2007, 8(4), 249.
[http://dx.doi.org/10.1208/pt0804111] [PMID: 18181532]
[20]
Mombeiny, R.; Tavakol, S.; Kazemi, M.; Mehdizadeh, M.; Hasanzadeh, A.; Babaahmadi, K.M.; Abedi, A.; Keyhanvar, P. Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study. IET Nanobiotechnol., 2021, 15(9), 710-718.
[http://dx.doi.org/10.1049/nbt2.12069]
[21]
Mishra, K.K.; Kaur, C.D.; Verma, S.; Sahu, A.K.; Dash, D.K.; Kashyap, P.; Mishra, S.P. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. Nanomedicine, 2019, 2, 33-54.
[22]
Verma, S.; Utreja, P. Transethosomes of econazole nitrate for transdermal delivery: Development, in-vitro characterization, and ex-vivo assessment. Pharm. Nanotechnol., 2018, 6(3), 171-179.
[http://dx.doi.org/10.2174/2211738506666180813122102] [PMID: 30101725]
[23]
Chen, Z.X.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci., 2017, 99, 240-245.
[http://dx.doi.org/10.1016/j.ejps.2016.12.026] [PMID: 28039091]
[24]
Albash, R.; Abdelbary, A.A.; Refai, H.; Nabarawi, E.M.A. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation. Int. J. Nanomedicine, 2019, 14, 1953-1968.
[http://dx.doi.org/10.2147/IJN.S196771]
[25]
Sguizzato, M.; Ferrara, F.; Mariani, P.; Pepe, A.; Cortesi, R.; Huang, N.; Simelière, F.; Boldrini, P.; Baldisserotto, A.; Valacchi, G.; Esposito, E. “Plurethosome” as vesicular system for cutaneous administration of mangiferin: Formulative study and 3D skin tissue evaluation. Pharmaceutics, 2021, 13(8), 1124.
[http://dx.doi.org/10.3390/pharmaceutics13081124] [PMID: 34452085]
[26]
Nasr, A.M.; Moftah, F.; Abourehab, M.A.S.; Gad, S. Design, formulation, and characterization of valsartan nanoethosomes for improving their bioavailability. Pharmaceutics, 2022, 14(11), 2268.
[http://dx.doi.org/10.3390/pharmaceutics14112268] [PMID: 36365087]
[27]
Gupta, P.; Hafeez, A.; Kushwaha, P. Development and evaluation of topical ethosomal gel for fungal infections. Drug Res., 2023, 73(1), 46-53.
[http://dx.doi.org/10.1055/a-1924-7818] [PMID: 36138545]
[28]
Safta, D.A.; Bogdan, C.; Moldovan, M.L. Vesicular nanocarriers for phytocompounds in wound care: Preparation and characterization. Pharmaceutics, 2022, 14(5), 991.
[http://dx.doi.org/10.3390/pharmaceutics14050991] [PMID: 35631577]
[29]
Nicolini, C. Ethanol based vesicular carriers in transdermal drug delivery: Nanoethosomes and transethosomes in focus. NanoWorld J., 2016, 2(3), 41-51.
[http://dx.doi.org/10.1080/10837450.2023.2229104]
[30]
Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal gel formulation of alpha phellandrene for the transdermal delivery in gout. Adv. Pharm. Bull., 2020, 11(1), 137-149.
[http://dx.doi.org/10.34172/apb.2021.015] [PMID: 33747861]
[31]
Mahmood, A.; Rapalli, V.K.; Waghule, T.; Gorantla, S.; Singhvi, G. Luliconazole loaded lyotropic liquid crystalline nanoparticles for topical delivery: QbD driven optimization, in-vitro characterization and dermatokinetic assessment. Chem. Phys. Lipids, 2021, 234, 105028.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105028] [PMID: 33309940]
[32]
Yusuf, N.A.; Abdassah, M.; Mauludin, R.; Chaerunisaa, A.Y. glibenclamide transethosome patch for transdermal delivery: Formulation and evaluations. Int. J. App. Pharm., 2023, 15(5), 303-309.
[33]
Kumari, S.; Alsaidan, O.A.; Mohanty, D.; Zafar, A.; Das, S.; Gupta, J.K.; Khalid, M. Development of soft luliconazole invasomes gel for effective transdermal delivery: Optimization to in-vivo antifungal activity. Gels, 2023, 9(8), 626.
[http://dx.doi.org/10.3390/gels9080626] [PMID: 37623081]
[34]
Munir, M.; Zaman, M.; Waqar, M.A.; Hameed, H.; Riaz, T. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J. Liposome Res., 2023, 34(1), 203-218.
[http://dx.doi.org/10.1080/08982104.2023.2221354]
[35]
Salem, H.F.; Ali, A.A.; Rabea, Y.K.; Ela, E.F.I.A.; Khallaf, R.A. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: In vitro optimization and in vivo appraisal. Drug Deliv. Transl. Res., 2022, 12(12), 3083-3103.
[http://dx.doi.org/10.1007/s13346-022-01172-z] [PMID: 35622235]
[36]
Touitou, E.; Natsheh, H. The evolution of emerging nanovesicle technologies for enhanced delivery of molecules into and across the skin. Pharmaceutics, 2024, 16(2), 267.
[http://dx.doi.org/10.3390/pharmaceutics16020267] [PMID: 38399321]
[37]
Mousa, I.A.; Hammady, T.M.; Gad, S.; Zaitone, S.A.; Sherbiny, E.M.; Sayed, O.M. Formulation and characterization of metformin-loaded ethosomes for topical application to experimentally induced skin cancer in mice. Pharmaceuticals, 2022, 15(6), 657.
[http://dx.doi.org/10.3390/ph15060657] [PMID: 35745575]
[38]
Alabada, A.; Mohammed, M. Preparation and characterization of l-ascorbic acid ethosomal formulation for enhancement of permeation. Iraqi Natl. J. Med., 2023, 5(2), 45-57.
[http://dx.doi.org/10.37319/iqnjm.5.2.4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy