Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Mini-Review Article

Exploring Microsponges in Dermatology: Opportunities and Hurdles Ahead

Author(s): Prerna Sharma*, Peeyush Kaushik, Satish Kumar Sharma, Sanchit Dhankhar, Nitika Garg and Nidhi Rani*

Volume 16, Issue 2, 2024

Published on: 08 April, 2024

Page: [65 - 74] Pages: 10

DOI: 10.2174/0118764029295903240328054858

Price: $65

conference banner
Abstract

Microsponges are porous, polymeric particles that have been extensively explored in the field of dermatology. They offer numerous advantages as a topical delivery system, including controlled release of active ingredients, enhanced bioavailability, and improved stability. Microsponges have been used for a wide range of dermatological applications, including the treatment of acne, psoriasis, and other skin disorders. This review article provides an overview of the various applications of microsponges in dermatology, along with the challenges associated with their development and use. The article begins with a brief introduction to microsponges, the benefits of microsponges, and their properties. It then discusses the different methods of microsponge preparation, such as emulsion solvent evaporation and spray drying, along with their mechanism of drug release and also applications of microsponges in dermatology, including their use in the treatment of acne, psoriasis, and other skin disorders, are discussed in detail. Overall, microsponges have shown great promise as a topical delivery system in dermatology, and their continued development and use will likely lead to significant advances in the field.

[1]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[2]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[3]
Magnusson, B.M.; Walters, K.A.; Roberts, M.S. Veterinary drug delivery: Potential for skin penetration enhancement. Adv. Drug Deliv. Rev., 2001, 50(3), 205-227.
[http://dx.doi.org/10.1016/S0169-409X(01)00158-2] [PMID: 11500228]
[4]
Menon, G.K. New insights into skin structure: Scratching the surface. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S3-S17.
[http://dx.doi.org/10.1016/S0169-409X(02)00121-7] [PMID: 12460712]
[5]
Benson, H.A.; Watkinson, A.C. Topical and Transdermal Drug Delivery: Principles and Practice; Wiley: Hoboken, NJ, USA, 2012.
[6]
Lambert, P.H.; Laurent, P.E. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine, 2008, 26(26), 3197-3208.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.095] [PMID: 18486285]
[7]
Pathan, I.B.; Setty, C.M. Chemical penetration enhancers for transdermal drug delivery system. Trop. J. Pharm. Res., 2009, 8(2), 173-179.
[http://dx.doi.org/10.4314/tjpr.v8i2.44527]
[8]
Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, Skin (Integument), Epidermis; Stat Pearls Publishing, 2021.
[9]
Keleb, E.; Sharma, R.K.; Mosa, E.; Aljahwi, A-a. Transdermal drug delivery system-design and evaluation. Int. J. Adv. Pharm. Sci., 2010, 1(1), 201-211.
[10]
Igarashi, T.; Nishino, K.; Nayar, S.K. The appearance of human skin: A survey. Found. Trends Comput. Graph. Vis., 2007, 3(1), 1-95.
[http://dx.doi.org/10.1561/0600000013]
[11]
Donnelly, R.F.; Singh, T.R.R.; Morrow, D.I.; Woolfson, A.D. Microneedle-Mediated Transdermal and Intradermal Drug Delivery; Wiley: Hoboken, NJ, USA, 2012.
[http://dx.doi.org/10.1002/9781119959687]
[12]
Han, T.; Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm., 2015, 89, 312-328.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.020] [PMID: 25541440]
[13]
Ita, K.B. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol., 2014, 24(3), 245-250.
[http://dx.doi.org/10.1016/S1773-2247(14)50041-X]
[14]
Osmani, R.A.M.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Jayachandra Dev, D. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm. J., 2015, 23(5), 562-572.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[15]
Goyal, A.; Kumar, S.; Nagpal, M.; Singh, I.; Arora, S. Potential of novel drug delivery systems for herbal drugs. Ind. J. Pharm. Edu. Res., 2011, 45(3), 225-235.
[16]
Dhiman, A.; Nanda, A.; Ahmad, S. Novel herbal drug delivery system (NHDDS): The need of Hour. IPCBEE, 2012, 49(34), 1-5.
[17]
Nacht, S.; Kantz, M. The microsponge: A novel topical programmable delivery system. Drugs Pharm. Sci., 1990, 42, 299-325.
[18]
Vyas, S.P.; Khar, R.K. Targeted and controlled drug delivery novel carrier system, First ed;; CBS Publication: New Delhi, 2002.
[19]
Won, R. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen. U.S Patent 4690825, 1987.
[20]
Avhad, P.S.; Patil, P.B. A new era In topical formulations- microsponge drug delivery system. Int. J. Pharm. Sci. Res., 2016, 7(7), 2756-2761.
[21]
Kumar, K.A.; Banhishikha, K. A novel approach on microsponge: Multifunctional modren dosage form. Int. J. Pharm. Sci. Rev. Res., 2018, 51(2), 64-72.
[22]
Osborne, O.W.; Amann, A.H. Topical Drug Delivery Formulation; Marcel Dekker Inc.: New York, Basel, 1990, pp. 308-309.
[23]
Kumari, P.; Mishra, S.K. A Comprehensive review on novel microsponge drug delivery approach. Asian J. Pharm. Clin. Res., 2016, 9, 25-3.
[24]
Patel, S.B.; Patel, H.J.; Seth, A.K. Microsponge drug delivery system: An overview. J. Glob. Pharma Technol., 2010, 2(8), 1-9.
[25]
Patravale, V.B.; Mandawgade, S.D. Novel cosmetic delivery systems: An application update. Int. J. Cosmet. Sci., 2008, 30(1), 19-33.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00416.x] [PMID: 18377627]
[26]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1-2), 103-117.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.025] [PMID: 16687222]
[27]
Embil, K.; Nacht, S. The Microsponge® Delivery System (MDS): A topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J. Microencapsul., 1996, 13(5), 575-588.
[http://dx.doi.org/10.3109/02652049609026042] [PMID: 8864994]
[28]
Chanchal, D.; Swarnlata, S. Novel approaches in herbal cosmetics. J. Cosmet. Dermatol., 2008, 7(2), 89-95.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00369.x] [PMID: 18482010]
[29]
Nokhodchi, A.; Jelvehgari, M.; Siahi, M.R.; Mozafari, M.R. Factors affecting the morphology of benzoyl peroxide microsponges. Micron, 2007, 38(8), 834-840.
[http://dx.doi.org/10.1016/j.micron.2007.06.012] [PMID: 17692528]
[30]
He, Y.; Majid, K.; Maqbool, M.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Mehmood, Y.; Aleem, A.; Arshad, M.S.; Younus, A.; Nirwan, J.S.; Ghori, M.U.; Rizvi, S.A.A.; Shahzad, Y. Formulation and characterization of lornoxicam-loaded cellulosic-microsponge gel for possible applications in arthritis. Saudi Pharm. J., 2020, 28(8), 994-1003.
[http://dx.doi.org/10.1016/j.jsps.2020.06.021] [PMID: 32792844]
[31]
Jain, V.; Singh, R. Dicyclomine-loaded Eudragit®-based microsponge with potential for colonic delivery: Preparation and characterization. Trop. J. Pharm. Res., 2010, 9(1), 67-72.
[http://dx.doi.org/10.4314/tjpr.v9i1.52039]
[32]
Osmani, R.A.M.; Aloorkar, N.H.; Thaware, B.U.; Kulkarni, P.K.; Moin, A.; Hani, U.; Srivastava, A.; Bhosale, R.R. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J. Pharm. Sci., 2015, 10(5), 442-451.
[http://dx.doi.org/10.1016/j.ajps.2015.06.003]
[33]
Barde, P.M.; Basarkar, G.D. Formulation, development and in vitro evaluation of terbinafine HCl microsponge gel. Int. J. Pharm. Sci. Rev. Res., 2015, 32, 310-314.
[34]
Kadian, S.S.; Harikumar, S.L. Eudragit and its pharmaceutical significance. Eudragit Pharm. Signif., 2009, 17, 247667. Avaialable from: www.researchgate.net/publication/228097715_Eudragit_and_its_Pharmaceutical_Significance
[35]
Yüksel, N.; Tinçer, T.; Baykara, T. Interaction between nicardipine hydrochloride and polymeric microspheres for a controlled release system. Int. J. Pharm., 1996, 140(2), 145-154.
[http://dx.doi.org/10.1016/0378-5173(96)04560-7]
[36]
Kumar, P.M.; Ghosh, A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur. J. Pharm. Sci., 2017, 96, 243-254.
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[37]
Kawashima, Y.; Niwa, T.; Handa, T.; Takeuchi, H.; Iwamoto, T.; Itoh, K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J. Pharm. Sci., 1989, 78(1), 68-72.
[http://dx.doi.org/10.1002/jps.2600780118] [PMID: 2709323]
[38]
Mahajan, A.G.; Jagtap, L.S.; Chaudhary, A.L.; Swami Sima, P. Formulation & evaluation of Microsponge drug delivery system using Indomethacin. Int. Res. J. Pharm., 2011, 2(10), 64-69.
[39]
Kavya, L.S.; Shankar, M.; Likhitha, D.; Dastagiri, J.; Niranjan Babu, M. A current view on microsponge drug delivery system. Eur. J. Mol. Biol. Biochem., 2016, 3(1), 33-38.
[40]
Jain, N.; Sharma, P.K.; Banik, A. Recent advances on microsponge delivery. Int. J. Pharm. Sci. Rev. Res., 2011, 8(2), 13-23.
[41]
Deore, M.B.; Salunkhe, K.S.; Pawbake, G.; Chaudhari, S.R.; Gaikwad, P.R. Microsponges as a modified drug delivery system. World J. Pharm. Res., 2020, 4(3), 657-667.
[42]
Alookar, N.H.; Kulkarni, A.S.; Ingale, D.J.; Patil, R.A. Microsponge as innovative durg delivery system. IJPSN, 2012, 5, 1600-1601.
[43]
Namrata, J.; Patel, V.; Mungekar, S.; Karpe, M.; Kadam, V. Microsponge delivery system: An updated review current status and future prospects. World J. Pharm. Pharm. Sci., 2007, 2(6), 6463-6485.
[44]
Jadav, N.; Patel, V.; Mungekar, S.; Bhamare, G.; Karpe, M.; Kadams, V. Microsponge delivery system: An updated review, current status and future prospects. J. Sci. Innov. Res., 2013, 2(6), 1097-1110.
[45]
Li, S.S.; Li, G.F.; Liu, L.; Jiang, X.; Zhang, B.; Liu, Z.G.; Li, X.L.; Weng, L.D.; Zuo, T.; Liu, Q. Evaluation of paeonol skin-target delivery from its microsponge formulation: In vitro skin permeation and in vivo microdialysis. PLoS One, 2013, 8(11), e79881.
[http://dx.doi.org/10.1371/journal.pone.0079881] [PMID: 24278204]
[46]
Pawar, A.P.; Gholap, A.P.; Kuchekar, A.B.; Bothiraja, C.; Mali, A.J. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/261068] [PMID: 25789176]
[47]
Bhimavarapu, R.; Rama D, R. Microsponges as a novel imperative for drug delivery system. Res. J. Pharm. Technol., 2013, 6(8), 842-848.
[48]
Puglia, C.; Bonina, F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin. Drug Deliv., 2012, 9(4), 429-441.
[http://dx.doi.org/10.1517/17425247.2012.666967] [PMID: 22394125]
[49]
Patel, A.; Upadhyay, P.; Trivedi, J.; Shah, S.; Patel, J. Microsponges as the versatile tool for topical route: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2926-2937.
[50]
Khopade, A.J.; Jain, S.; Jain, N.K. The microsponge. East Pharm., 1996, 39, 49-53.
[51]
Aloorkar, N.H.; Kulkarni, A.S.; Ingale, D.J.; Patil, R.A. Microsponges as innovative drug delivery systems. Int. J. Pharm. Sci. Nanotechnol, 2012, (5), 1597-1606.
[52]
Jelvehgari, M.; Siahi-Shadbad, M.R.; Azarmi, S.; Martin, G.P.; Nokhodchi, A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int. J. Pharm., 2006, 308(1-2), 124-132.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[53]
Grimes, P.E. A microsponge formulation of hydroquinone 4% and retinol 0.15% in the treatment of melasma and postinflammatory hyperpigmentation. Cutis, 2004, 74(6), 362-368.
[PMID: 15663072]
[54]
D’souza, J.I. Topical anti-inflammatory gels of fluocinolone acetonide entrapped in eudragit based microsponge delivery system. Res. J. Pharm. Technol., 2008, 1(4), 502-506.
[55]
Shah, C.N.; Shah, D.P. Design and optimization of fluconazole microsponges containing ethyl cellulose for topical delivery system using quality by design approach. Pharma Sci. Monitor, 2014, 5(3), 95-133.
[56]
ZakiRizkalla, C.M.; Latif Aziz, R. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS PharmSciTech, 2011, 12(3), 989-1001.
[57]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[58]
Srilakshmi, P.; Srinivas, M.P. Development and evaluation of voriconazole microsponges for topical delivery. Invent. Rapid. Pharm. Technol., 2011, 75-81.
[59]
Rekha, U.; Manjula, B.P. Formulation and evaluation of microsponges for topical drug delivery of mometasone furoate. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 133-137.
[60]
Saboji, J.K.; Manvi, F.V.; Gadad, A.P.; Patel, B.D. Formulation and evaluation of ketoconazole microsponge gel by quassi emulsion solvent diffusion. J. Cell Tissue Res., 2011, 11(1), 2691-2696.
[61]
Chandramouli, Y.; Firoz, S.; Rajalakshmi, R.; Vikram, A.; Yasmeen, B.R.; Chakravarthi, R.N. Preparation and evaluation of microsponge loaded controlled release topical gel of acyclovir sodium. Int. J. Biopharm., 2012, 3(2), 96-102.
[62]
Bothiraja, C.; Gholap, A.D.; Shaikh, K.S.; Pawar, A.P. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther. Deliv., 2014, 5(7), 781-794.
[http://dx.doi.org/10.4155/tde.14.43] [PMID: 25287385]
[63]
Deshmukh, K.; Poddar, S.S. Tyrosinase inhibitor-loaded microsponge drug delivery system: New approach for hyperpigmentation disorders. J. Microencapsul., 2012, 29(6), 559-568.
[http://dx.doi.org/10.3109/02652048.2012.668955] [PMID: 22468629]
[64]
Ravi, R.; Senthi, K.S.K. Standarization of process parameters involved erythormycin microsponges by Quassi emulsion solvent diffusion method. Int. J. Pharm. Dev. Technol., 2013, 3, 28-34.
[65]
Bhimavarapu, R.; Chitra, K.P.; Karunkiran, P.; Raviteja, G.; Meharagavendra, Y.; Sundaramma, S.; Chaitanya, D. Itraconazole loaded microsponges – A novel carrier system. Int. J. Inv. Pharm. Sci., 2011, 1, 67-76.
[66]
Dineshmohan, S.; Gupta, V.R. Formulation and in vitro evaluation of fluconazole loaded microsponge gel for topical sustained delivery. IOSR-JPBS, 2015, 10, 15-20.
[67]
Kadnor, N.A.; Pande, V.V.; Kadam, R.; Upadhye, S.A. Fabrication and characterization of sertaconazole nitrate microsponge as a topical drug delivery system. Indian J. Pharm. Sci., 2015, 77(6), 675-680.
[http://dx.doi.org/10.4103/0250-474X.174986] [PMID: 26997694]
[68]
Salah, S.; Awad, G.E.A.; Makhlouf, A.I.A. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur. J. Pharm. Sci., 2018, 114(114), 255-266.
[http://dx.doi.org/10.1016/j.ejps.2017.12.023] [PMID: 29288706]
[69]
Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. J. Food Drug Anal., 2018, 27(1), 60-70.
[PMID: 30648595]
[70]
Yadav, E.; Rao, R.; Kumar, S.; Mahant, S.; Vohra, P. Microsponge based gel of tea tree oil for dermatological microbial infections. Nat. Prod. J., 2020, 10(3), 286-297.
[71]
Iwai, S.; Sawa, Y.; Ichikawa, H.; Taketani, S.; Uchimura, E.; Chen, G.; Hara, M.; Miyake, J.; Matsuda, H. Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis. J. Thorac. Cardiovasc. Surg., 2004, 128(3), 472-479.
[http://dx.doi.org/10.1016/j.jtcvs.2004.04.013] [PMID: 15354111]
[72]
Chen, G.; Sato, T.; Ohgushi, H.; Ushida, T.; Tateishi, T.; Tanaka, J. Culturing of skin fibroblasts in a thin PLGA–collagen hybrid mesh. Biomaterials, 2005, 26(15), 2559-2566.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.034] [PMID: 15585258]
[73]
S, S.; S, A. Nanosponges: A novel class of drug delivery system - Review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[74]
Mandal, S.; Km Bhumika, B.; Kumar, M.; Hak, J.; Vishvakarma, P.; Sharma, U.K. A novel approach on micro sponges drug delivery system: Method of preparations, application, and its future prospective. Indian J. Pharm. Educ. Res., 2023, 58(1), 45-63.
[http://dx.doi.org/10.5530/ijper.58.1.5]
[75]
Das, D.; Afnan, T.; Chhetri, P.; Dutta Chakraborty, D.; Chakraborty, P. An outlook towards nano-sponges: A unique drug delivery system and its application in drug delivery. Curr. Drug Deliv., 2023, 20(7), 884-903.
[http://dx.doi.org/10.2174/1567201819666220520111032] [PMID: 35619316]
[76]
Garg, A.; Lai, W.C.; Chopra, H.; Agrawal, R.; Singh, T.; Chaudhary, R.; Dubey, B.N. Nanosponge: A promising and intriguing strategy in medical and pharmaceutical Science. Heliyon, 2024, 10(1), e23303.
[http://dx.doi.org/10.1016/j.heliyon.2023.e23303] [PMID: 38163139]
[77]
Chasara, R.S.; Ajayi, T.O.; Leshilo, D.M.; Poka, M.S.; Witika, B.A. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon, 2023, 9(9), e19896.
[http://dx.doi.org/10.1016/j.heliyon.2023.e19896] [PMID: 37809420]
[78]
Wadhwa, P.; Vij, M.; Dand, N. Wave-assisted techniques, a greener and quicker alternative to synthesis of cyclodextrin-based nanosponges: A review. Recent Pat. Nanotechnol., 2024, 18(2), 207-219.
[http://dx.doi.org/10.2174/1872210516666220928114103] [PMID: 36173084]
[79]
Kadian, V.; Rao, R. Exploring the in vitro anti-arthritic potential of capsaicin-coordinated β-cyclodextrin nanosponges. J. Drug Deliv. Sci. Technol., 2023, 87, 104801.
[http://dx.doi.org/10.1016/j.jddst.2023.104801]
[80]
Raina, N.; Rani, R.; Thakur, V.K.; Gupta, M. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective. ACS Omega, 2023, 8(22), 19145-19167.
[http://dx.doi.org/10.1021/acsomega.2c08016] [PMID: 37305231]
[81]
Li, Mo Multifunctional cell membranes-based nano-carriers for targeted therapies: A review of recent trends and future perspective. Drug Deliv., 2023, 30(1), 2288797.
[http://dx.doi.org/10.1080/10717544.2023.2288797]
[82]
Jadhav, V.; Roy, A.; Kaur, K.; Rai, A.K.; Rustagi, S. Recent advances in nanomaterial-based drug delivery systems. Nano-Structures & Nano-Objects, 2024, 37, 101103.
[http://dx.doi.org/10.1016/j.nanoso.2024.101103]
[83]
Cheng, G.; Xie, A.; Yan, Z.; Song, Y.; Chen, T. Nanomedicines for Alzheimer's disease: Therapies based on pathological mechanisms. Brain‐X, 2023, 1(3), e27.
[http://dx.doi.org/10.1002/brx2.27]
[84]
Mahato, R.K.; Singh, M.; Pathak, H.; Gogoi, N.R.; Kharbithai, R.; Chowrasia, P.; Bora, P.L.; Sarkar, T.; Jana, B.K.; Mazumder, B. Emerging nanotechnology backed formulations for the management of atopic dermatitis. Ther. Deliv., 2023, 14(9), 543-569.
[http://dx.doi.org/10.4155/tde-2023-0033] [PMID: 37671556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy