Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications

Author(s): Surinya Traipop, Whitchuta Jesadabundit, Wisarut Khamcharoen, Tavechai Pholsiri, Sarida Naorungroj, Sakda Jampasa and Orawon Chailapakul*

Volume 24, Issue 11, 2024

Published on: 04 April, 2024

Page: [986 - 1009] Pages: 24

DOI: 10.2174/0115680266304711240327072348

Price: $65

Abstract

This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.

Graphical Abstract

[1]
Ozawa, S.; Higgins, C.R.; Yemeke, T.T.; Nwokike, J.I.; Evans, L.; Hajjou, M.; Pribluda, V.S. Importance of medicine quality in achieving universal health coverage. PLoS One, 2020, 15(7), e0232966.
[http://dx.doi.org/10.1371/journal.pone.0232966] [PMID: 32645019]
[2]
Singh, A. Modern medicine: Towards prevention, cure, well-being and longevity. Mens Sana Monogr., 2010, 8(1), 17-29.
[http://dx.doi.org/10.4103/0973-1229.58817] [PMID: 21327168]
[3]
Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[4]
Alamgir, A.N.M. Therapeutic use of medicinal plants and their extracts: volume 1.Pharmacognosy., 2017, 73
[5]
Nadelmann, E.A. Drug prohibition in the United States: Costs, consequences, and alternatives. Science, 1989, 245(4921), 939-947.
[http://dx.doi.org/10.1126/science.2772647] [PMID: 2772647]
[6]
Galeano, D.; Li, S.; Gerstein, M.; Paccanaro, A. Predicting the frequencies of drug side effects. Nat. Commun., 2020, 11(1), 4575.
[http://dx.doi.org/10.1038/s41467-020-18305-y] [PMID: 32917868]
[7]
Due, A. What are side effects? Eur. J. Philos. Sci., 2023, 13(1), 16.
[http://dx.doi.org/10.1007/s13194-023-00519-8] [PMID: 36936702]
[8]
Petrelli, F.; Ghidini, M.; Ghidini, A.; Perego, G.; Cabiddu, M.; Khakoo, S.; Oggionni, E.; Abeni, C.; Hahne, J.C.; Tomasello, G.; Zaniboni, A. Use of antibiotics and risk of cancer: A systematic review and meta-analysis of observational studies. Cancers, 2019, 11(8), 1174.
[http://dx.doi.org/10.3390/cancers11081174] [PMID: 31416208]
[9]
Schleicher, S.M.; Bach, P.B.; Matsoukas, K.; Korenstein, D. Medication overuse in oncology: Current trends and future implications for patients and society. Lancet Oncol., 2018, 19(4), e200-e208.
[http://dx.doi.org/10.1016/S1470-2045(18)30099-8] [PMID: 29611528]
[10]
Khan, D.A.; Solensky, R. Drug allergy. J. Allergy. Clin. Immunol., 2010, 125(2), S126-S137.
[http://dx.doi.org/10.1016/j.jaci.2009.10.028]
[11]
Vaarkamp, H. [Maximum residue levels (MRL’s) of veterinary medicines in relation to food safety. MRL’s really do matter--the Benzaprocpen case]. Tijdschr. Diergeneeskd., 2002, 127(1), 2-6.
[PMID: 11795030]
[12]
Fanning, S.; Wang, J.; Leonard, N. Encyclopedia of food safety, 2014, 39-44.
[http://dx.doi.org/10.1016/B978-0-12-378612-8.00242-0]
[13]
Pragst, F. Handbook of analytical separations, 2008, Vol. 6, 1-1007.
[14]
Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol., 2013, 133(9), 1-3.
[http://dx.doi.org/10.1038/jid.2013.287] [PMID: 23949770]
[15]
Acharya, B.; Behera, A.; Behera, S. Optimizing drug discovery: Surface plasmon resonance techniques and their multifaceted applications. Chemical Physics Impact, 2024, 8, 100414.
[http://dx.doi.org/10.1016/j.chphi.2023.100414]
[16]
Loch, A.S.; Burn, P.L.; Shaw, P.E. Fluorescent sensors for the detection of free-base illicit drugs – Effect of tuning the electronic properties. Sens. Actuators B Chem., 2023, 387, 133766.
[http://dx.doi.org/10.1016/j.snb.2023.133766]
[17]
Kailasa, S.K.; Koduru, J.R.; Desai, M.L.; Park, T.J.; Singhal, R.K.; Basu, H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. Trends Analyt. Chem., 2018, 105, 106-120.
[http://dx.doi.org/10.1016/j.trac.2018.05.004]
[18]
Fu, E.; Khederlou, K.; Lefevre, N.; Ramsey, S.A.; Johnston, M.L.; Wentland, L. Progress on electrochemical sensing of pharmaceutical drugs in complex biofluids., Chemosensors, 2023, 11(8), 467.
[19]
Arjun, A.M.; Krishna, P.H.; Nath, A.R.; Rasheed, P.A. A review on advances in the development of electrochemical sensors for the detection of anesthetic drugs. Anal. Methods, 2022, 14(41), 4040-4052.
[http://dx.doi.org/10.1039/D2AY01290A] [PMID: 36173296]
[20]
Materón, E.M.; Wong, A.; Freitas, T.A.; Faria, R.C.; Oliveira, O.N., Jr A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. J. Pharm. Anal., 2021, 11(5), 646-652.
[http://dx.doi.org/10.1016/j.jpha.2021.03.004] [PMID: 34765278]
[21]
Lee, G.; Lee, J.; Kim, J.; Choi, H.S.; Kim, J.; Lee, S.; Lee, H. Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses. Sci. Rep., 2017, 7(1), 7545.
[http://dx.doi.org/10.1038/s41598-017-06144-9] [PMID: 28790334]
[22]
Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Echelpoel, V.R.; De Wael, K.; Wang, J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens., 2020, 5(9), 2679-2700.
[http://dx.doi.org/10.1021/acssensors.0c01318] [PMID: 32822166]
[23]
Zanfrognini, B.; Pigani, L.; Zanardi, C. Recent advances in the direct electrochemical detection of drugs of abuse. J. Solid State Electrochem., 2020, 24(11-12), 2603-2616.
[http://dx.doi.org/10.1007/s10008-020-04686-z]
[24]
Rycke, D.E.; Stove, C.; Dubruel, P.; Saeger, D.S.; Beloglazova, N. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens. Bioelectron., 2020, 169, 112579.
[http://dx.doi.org/10.1016/j.bios.2020.112579] [PMID: 32947080]
[25]
Jampasa, S.; Pummoree, J.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O.; Chaiyo, S. “Signal-On” electrochemical biosensor based on a competitive immunoassay format for the sensitive determination of oxytetracycline. Sens. Actuators B Chem., 2020, 320, 128389.
[http://dx.doi.org/10.1016/j.snb.2020.128389]
[26]
Youn, H.; Lee, K.; Her, J.; Jeon, J.; Mok, J.; So, J.; Shin, S.; Ban, C. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci. Rep., 2019, 9(1), 7659.
[http://dx.doi.org/10.1038/s41598-019-44051-3] [PMID: 31114011]
[27]
Akarapipad, P.; Bertelson, E.; Pessell, A.; Wang, T.-H.; Hsieh, K. Emerging multiplex nucleic acid diagnostic tests for combating COVID-19. Biosensors, 2022, 12(11), 978.
[http://dx.doi.org/10.3390/bios12110978]
[28]
Jampasa, S.; Khamcharoen, W.; Traipop, S.; Jesadabundit, W.; Ozer, T.; Chailapakul, O. Recent advances on nanomaterial-modified film-electrode-based sensors: Approach to clinical purpose. Curr. Opin. Electrochem., 2023, 42, 101420.
[http://dx.doi.org/10.1016/j.coelec.2023.101420]
[29]
Nandre, V.; Jadhav, Y.; Das, D.K.; Ahire, R.; Ghosh, S.; Jadkar, S.; Kodam, K.; Waghmode, S. Advanced nanomaterials for point of care diagnosis and therapy, 2022, 477-492.
[http://dx.doi.org/10.1016/B978-0-323-85725-3.00011-8]
[30]
Curulli, A. Nanomaterials in electrochemical sensing area: Applications and challenges in food analysis. Molecules, 2020, 25(23), 5759.
[http://dx.doi.org/10.3390/molecules25235759] [PMID: 33297366]
[31]
Mohan, A.M.V.; Rajendran, V.; Mishra, R.K.; Jayaraman, M. Recent advances and perspectives in sweat based wearable electrochemical sensors. Trends Analyt. Chem., 2020, 131, 116024.
[http://dx.doi.org/10.1016/j.trac.2020.116024]
[32]
Mohan, J.M.; Amreen, K.; Javed, A.; Dubey, S.K.; Goel, S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Curr. Opin. Electrochem., 2022, 33, 100930.
[http://dx.doi.org/10.1016/j.coelec.2021.100930]
[33]
Wang, Y.; Wang, S.; Tao, L.; Min, Q.; Xiang, J.; Wang, Q.; Xie, J.; Yue, Y.; Wu, S.; Li, X.; Ding, H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens. Bioelectron., 2015, 65, 31-38.
[http://dx.doi.org/10.1016/j.bios.2014.09.099] [PMID: 25461135]
[34]
Tajik, S.; Beitollahi, H.; Shahsavari, S.; Nejad, F.G. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere, 2022, 291(Pt 3), 132736.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132736] [PMID: 34728224]
[35]
Muthusankar, G.; Devi, R.K.; Gopu, G. Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosens. Bioelectron., 2020, 150, 111947.
[http://dx.doi.org/10.1016/j.bios.2019.111947] [PMID: 31818763]
[36]
Khairy, M.; Mahmoud, B.G.; Banks, C.E. Simultaneous determination of codeine and its co-formulated drugs acetaminophen and caffeine by utilising cerium oxide nanoparticles modified screen-printed electrodes. Sens. Actuators B Chem., 2018, 259, 142-154.
[http://dx.doi.org/10.1016/j.snb.2017.12.054]
[37]
Galus, Z. Fundamentals of electrochemical analysis; 2nd ed; Ellis Horwood, 1991.
[38]
Yue, X.; Li, Z.; Zhao, S. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchem. J., 2020, 159, 105440.
[http://dx.doi.org/10.1016/j.microc.2020.105440]
[39]
Ashoka, N.B.; Swamy, B.E.K.; Jayadevappa, H. Nanorod TiO 2 sensor for dopamine: A voltammetric study. New J. Chem., 2017, 41(20), 11817-11827.
[http://dx.doi.org/10.1039/C7NJ02188G]
[40]
Ali, A.M.B.H.; Rageh, A.H.; Abdel-aal, F.A.M.; Mohamed, A.M.I. Anatase titanium oxide nanoparticles and multi-walled carbon nanotubes-modified carbon paste electrode for simultaneous determination of avanafil and doxorubicin in plasma samples. Microchem. J., 2023, 185, 108261.
[http://dx.doi.org/10.1016/j.microc.2022.108261]
[41]
Nouri, M.; Rahimnejad, M.; Najafpour, G.; Moghadamnia, A.A. Simultaneous voltammetric determination of rizatriptan and acetaminophen using a carbon paste electrode modified with NiFe2O4 nanoparticles. Mikrochim. Acta, 2020, 187(6), 315.
[http://dx.doi.org/10.1007/s00604-020-04290-y] [PMID: 32383071]
[42]
Alqarni, S.A.; Hussein, M.A.; Ganash, A.A.; Khan, A. Composite material–based conducting polymers for electrochemical sensor applications: A Mini Review. Bionanoscience, 2020, 10(1), 351-364.
[http://dx.doi.org/10.1007/s12668-019-00708-x]
[43]
Ting, W.T.; Wang, M.J.; Howlader, M.M.R. Interleukin-6 electrochemical sensor using poly(o-phenylenediamine)-based molecularly imprinted polymer. Sens. Actuators B Chem., 2024, 404, 135282.
[http://dx.doi.org/10.1016/j.snb.2024.135282]
[44]
Ayankojo, A.G.; Boroznjak, R.; Reut, J.; Tuvikene, J.; Timmusk, T.; Syritski, V. Electrochemical sensor based on molecularly imprinted polymer for rapid quantitative detection of brain-derived neurotrophic factor. Sens. Actuators B Chem., 2023, 397, 134656.
[http://dx.doi.org/10.1016/j.snb.2023.134656]
[45]
Chen, F.; Lv, C.; Xing, Y.; Luo, L.; Wang, J.; Cheng, Y.; Xie, X. Electrospinning carbon fibers based molecularly imprinted polymer self-supporting electrochemical sensor for sensitive detection of glycoprotein. Sens. Actuators B Chem., 2023, 396, 134552.
[http://dx.doi.org/10.1016/j.snb.2023.134552]
[46]
Kafshgari, L.A.; Ghorbani, M.; Lashkenari, M.S.; Jahanshahi, M. A new sensing platform for electrochemical assay of amitriptyline based on molecularly imprinted polymer/NiCo2O4 modified carbon cloth. Sens. Actuators B Chem., 2024, 398, 134766.
[http://dx.doi.org/10.1016/j.snb.2023.134766]
[47]
Hu, X.; Xia, Y.; Liu, Y.; Chen, Y.; Zeng, B. An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A: Use of magnetic field improved molecularly imprinted polymer. Sens. Actuators B Chem., 2022, 359, 131582.
[http://dx.doi.org/10.1016/j.snb.2022.131582]
[48]
Lahcen, A.A.; Amine, A. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis, 2019, 31(2), 188-201.
[http://dx.doi.org/10.1002/elan.201800623]
[49]
Chacón, H.A.; Cetó, X.; Valle, D.M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem., 2021, 413(24), 6117-6140.
[http://dx.doi.org/10.1007/s00216-021-03313-8] [PMID: 33928404]
[50]
Zhang, T.; Xuan, X.; Li, M.; Li, C.; Li, P.; Li, H. Molecularly imprinted Ni-polyacrylamide-based electrochemical sensor for the simultaneous detection of dopamine and adenine. Anal. Chim. Acta, 2022, 1202, 339689.
[http://dx.doi.org/10.1016/j.aca.2022.339689] [PMID: 35341508]
[51]
Hu, C.; Huang, H.; Sun, H.; Yan, Y.; Xu, F.; Liao, J. Simultaneous analysis of catechol and hydroquinone by polymelamine/CNT with dual-template molecular imprinting technology. Polymer, 2022, 242, 124593.
[http://dx.doi.org/10.1016/j.polymer.2022.124593]
[52]
Oghli, H.A.; Soleymanpour, A. Ultrasensitive electrochemical sensor for simultaneous determination of sumatriptan and paroxetine using molecular imprinted polymer/sol-gel/polyoxometalate/rGO modified pencil graphite electrode. Sens. Actuators B Chem., 2021, 344, 130215.
[http://dx.doi.org/10.1016/j.snb.2021.130215]
[53]
Oghli, A.H.; Soleymanpour, A. Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater. Sci. Eng. C, 2020, 108, 110407.
[http://dx.doi.org/10.1016/j.msec.2019.110407] [PMID: 31923952]
[54]
Nate, Z.; Gill, A.A.S.; Chauhan, R.; Karpoormath, R. Polyaniline- cobalt oxide nanofibers for simultaneous electrochemical determination of antimalarial drugs: Primaquine and proguanil. Microchem. J., 2021, 160, 105709.
[http://dx.doi.org/10.1016/j.microc.2020.105709]
[55]
Ta’alia, S.A.H.; Rohaeti, E.; Putra, B.R.; Wahyuni, W.T. Electrochemical sensors for simultaneous detection of dopamine and uric acid based on a composite of electrochemically reduced graphene oxide and PEDOT:PSS-modified glassy carbon electrode. Results Chem., 2023, 6, 101024.
[http://dx.doi.org/10.1016/j.rechem.2023.101024]
[56]
Sharma, S.; Singh, N.; Tomar, V.; Chandra, R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron., 2018, 107, 76-93.
[http://dx.doi.org/10.1016/j.bios.2018.02.013] [PMID: 29448224]
[57]
Nguyen, T.D.; Nguyen, M.T.N.; Lee, J.S. Carbon-based materials and their applications in sensing by electrochemical voltammetry. Inorganics, 2023, 11(2), 81.
[http://dx.doi.org/10.3390/inorganics11020081]
[58]
Zhang, C.; Du, X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease. Front Chem., 2020, 8, 651.
[http://dx.doi.org/10.3389/fchem.2020.00651] [PMID: 32850664]
[59]
Fredj, Z.; Sawan, M. Advanced nanomaterials-based electrochemical biosensors for catecholamines detection: Challenges and trends. Biosensors, 2023, 13(2), 211.
[http://dx.doi.org/10.3390/bios13020211] [PMID: 36831978]
[60]
Li, J.; Huang, X.; Shi, W.; Jiang, M.; Tian, L.; Su, M.; Wu, J.; Liu, Q.; Yu, C.; Gu, H. Pt nanoparticle decorated carbon nanotubes nanocomposite based sensing platform for the monitoring of cell-secreted dopamine. Sens. Actuators B Chem., 2021, 330, 129311.
[http://dx.doi.org/10.1016/j.snb.2020.129311]
[61]
Motaghedifard, M.H.; Pourmortazavi, S.M.; Mirsadeghi, S. Selective and sensitive detection of Cr(VI) pollution in waste water via polyaniline/sulfated zirconium dioxide/multi walled carbon nanotubes nanocomposite based electrochemical sensor. Sens. Actuators B Chem., 2021, 327, 128882.
[http://dx.doi.org/10.1016/j.snb.2020.128882]
[62]
Koskun, Y.; Şavk, A.; Şen, B.; Şen, F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta, 2018, 1010, 37-43.
[http://dx.doi.org/10.1016/j.aca.2018.01.035] [PMID: 29447669]
[63]
Mao, S.; Li, W.; Long, Y.; Tu, Y.; Deng, A. Sensitive electrochemical sensor of tryptophan based on Ag@C core–shell nanocomposite modified glassy carbon electrode. Anal. Chim. Acta, 2012, 738, 35-40.
[http://dx.doi.org/10.1016/j.aca.2012.06.008] [PMID: 22790697]
[64]
Huang, K.J.; Niu, D.J.; Xie, W.Z.; Wang, W. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal. Chim. Acta, 2010, 659(1-2), 102-108.
[http://dx.doi.org/10.1016/j.aca.2009.11.023] [PMID: 20103110]
[65]
Chen, Y.; Tao, B.; Deng, X.; Wang, X.; Zhang, M.; Cao, Y.; Wei, Z.; Sun, S. A novel electrochemical sensor based on N, S co--doped liquorice carbon/functionalized MWCNTs nanocomposites for simultaneous detection of licochalcone A and liquiritin. Talanta, 2023, 252, 123869.
[http://dx.doi.org/10.1016/j.talanta.2022.123869] [PMID: 36058197]
[66]
Li, Y.; Shen, Y.; Zhang, Y.; Zeng, T.; Wan, Q.; Lai, G.; Yang, N. A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal. Chim. Acta, 2021, 1158, 338419.
[http://dx.doi.org/10.1016/j.aca.2021.338419] [PMID: 33863410]
[67]
Hsine, Z.; Bizid, S.; Mlika, R.; Dorizon, S.H.; Said, H.A.; Youssoufi, K.H. Nanocomposite based on poly (para-phenylene)/chemical reduced graphene oxide as a platform for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors, 2020, 20(5), 1256.
[http://dx.doi.org/10.3390/s20051256] [PMID: 32106578]
[68]
Wang, S.; Ferrag, C.; Noroozifar, M.; Kerman, K. Simultaneous determination of four DNA bases at graphene oxide/multi-walled carbon nanotube nanocomposite-modified electrode. Micromachines, 2020, 11(3), 294.
[http://dx.doi.org/10.3390/mi11030294] [PMID: 32168840]
[69]
Devi, R.K.; Ganesan, M.; Chen, T.W.; Chen, S.M.; Abbasi, A.M.; Ali, M.A.; Elshikh, M.S.; Yu, J.; Chuang, H.Y.; Xu, B.; Ravi, S.K. MXene-interdigitated Holey-graphene oxide nanocomposite for simultaneous detection of antibiotic and anticancer drugs with ultra-high sensitivity. Chem. Eng. J., 2023, 474, 145693.
[http://dx.doi.org/10.1016/j.cej.2023.145693]
[70]
Jang, J.S.; Jung, H.J.; Chong, S.; Kim, D.H.; Kim, J.; Kim, S.O.; Kim, I.D. 2D Materials decorated with ultrathin and porous graphene oxide for high stability and selective surface activity. Adv. Mater., 2020, 32(36), 2002723.
[http://dx.doi.org/10.1002/adma.202002723] [PMID: 32700344]
[71]
Bayraktepe, D.E.; Yazan, Z.; Önal, M. Sensitive and cost effective disposable composite electrode based on graphite, nano-smectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta, 2019, 203, 131-139.
[http://dx.doi.org/10.1016/j.talanta.2019.05.063] [PMID: 31202317]
[72]
Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem., 2018, 29(10), 3231-3239.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00592] [PMID: 30216055]
[73]
Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, N.P. Fundamentals of bio-electrochemical sensing. Chem. Eng. J. Adv., 2023, 16, 100516.
[http://dx.doi.org/10.1016/j.ceja.2023.100516]
[74]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[75]
Beduk, D.; Beduk, T.; Filho, D.O.J.I.; Lahcen, A.A.; Aldemir, E.; Celik, G.E.; Salama, K.N.; Timur, S. Smart multiplex point-of-care platform for simultaneous drug monitoring. ACS Appl. Mater. Interfaces, 2023, 15(31), 37247-37258.
[http://dx.doi.org/10.1021/acsami.3c06461] [PMID: 37499237]
[76]
Eissa, S.; Almthen, R.A.; Zourob, M. Disposable electrochemical immunosensor array for the multiplexed detection of the drug metabolites morphine, tetrahydrocannabinol and benzoylecgonine. Mikrochim. Acta, 2019, 186(8), 523.
[http://dx.doi.org/10.1007/s00604-019-3646-8] [PMID: 31292788]
[77]
Khoshbin, Z.; Sameiyan, E.; Abnous, K.; Taghdisi, S.M. Nanosensing and bioanalytical technologies in food quality control; , 2022, pp. 65-88.
[http://dx.doi.org/10.1007/978-981-16-7029-9_3]
[78]
Park, H.; Lee, H.; Lee, M.; Baek, C.; Park, J.A.; Jang, M.; Kwon, Y.; Min, J.; Lee, T. Synthesis of isolated dna aptamer and its application of ac-electrothermal flow-based rapid biosensor for the detection of dengue virus in a spiked sample. Bioconjug. Chem., 2023, 34(8), 1486-1497.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00249] [PMID: 37527337]
[79]
Wu, Y.; Tehrani, F.; Teymourian, H.; Mack, J.; Shaver, A.; Reynoso, M.; Kavner, J.; Huang, N.; Furmidge, A.; Duvvuri, A.; Nie, Y.; Laffel, L.M.; Doyle, F.J., III; Patti, M.E.; Dassau, E.; Wang, J.; Currás, A.N. Microneedle aptamer-based sensors for continuous, real-time therapeutic drug monitoring. Anal. Chem., 2022, 94(23), 8335-8345.
[http://dx.doi.org/10.1021/acs.analchem.2c00829] [PMID: 35653647]
[80]
Liu, Y.; Alkhamis, O.; Liu, X.; Yu, H.; Canoura, J.; Xiao, Y. Aptamer-integrated multianalyte-detecting paper electrochemical device. ACS Appl. Mater. Interfaces, 2021, 13(15), 17330-17339.
[http://dx.doi.org/10.1021/acsami.1c01822] [PMID: 33826286]
[81]
Li, Z.; Liu, C.; Sarpong, V.; Gu, Z. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens. Bioelectron., 2019, 126, 632-639.
[http://dx.doi.org/10.1016/j.bios.2018.10.025] [PMID: 30513482]
[82]
Rus, I.; Tertiș, M.; Barbălată, C.; Porfire, A.; Tomuță, I.; Săndulescu, R.; Cristea, C. An electrochemical strategy for the simultaneous detection of doxorubicin and simvastatin for their potential use in the treatment of cancer. Biosensors, 2021, 11(1), 15.
[http://dx.doi.org/10.3390/bios11010015] [PMID: 33401625]
[83]
Ali, R.; Wekil, E.M.M. Construction of MIP/Bi2S3 nanoparticles/rGO nanoprobe for simultaneous electrochemical determination of amoxicillin and clavulanic acid. J. Alloys Compd., 2023, 962, 171180.
[http://dx.doi.org/10.1016/j.jallcom.2023.171180]
[84]
Li, D.; Qiu, F.; Yuan, R.; Xiang, Y. Multiplexed and amplified electrochemical aptasensor for sensitive assay of piperaquine and mefloquine. Sens. Actuators B Chem., 2023, 395, 134483.
[http://dx.doi.org/10.1016/j.snb.2023.134483]
[85]
Mohamed, R.M.K.; Mohamed, S.H.; Asran, A.M.; Alsohaimi, I.H.; Hassan, H.M.A.; Ibrahim, H.; Wekil, E.M.M. Synergistic effect of gold nanoparticles anchored on conductive carbon black as an efficient electrochemical sensor for sensitive detection of anti-COVID-19 drug Favipiravir in absence and presence of co-administered drug Paracetamol. Microchem. J., 2023, 190, 108696.
[http://dx.doi.org/10.1016/j.microc.2023.108696] [PMID: 37034437]
[86]
Priscillal, J.D.I.; Wang, S.F. Fergusonite-type rare earth niobates ANbO 4 (A = Nd, Sm, and Eu) as electrode modifiers: Deep insights into A site variations towards bifunctional electrochemical sensing applications. Nanoscale, 2023, 15(19), 8693-8705.
[http://dx.doi.org/10.1039/D3NR00127J] [PMID: 36971234]
[87]
Taherizadeh, M.; Jahani, S.; Moradalizadeh, M.; Foroughi, M.M. Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta, 2023, 255, 124216.
[http://dx.doi.org/10.1016/j.talanta.2022.124216] [PMID: 36587425]
[88]
Li, F.; Wu, Y.; Chen, D.; Guo, Y.; Wang, X.; Sun, X. Sensitive dual-labeled electrochemical aptasensor for simultaneous detection of multi-antibiotics in milk. Int. J. Hydrogen Energy, 2021, 46(45), 23301-23309.
[http://dx.doi.org/10.1016/j.ijhydene.2021.04.007]
[89]
Atta, N.F.; Galal, A.; Ahmed, Y.M.; Ads, E.E.H. Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine. Sens. Actuators B Chem., 2019, 297, 126648.
[http://dx.doi.org/10.1016/j.snb.2019.126648]
[90]
Ghasemi, L.; Jahani, S.; Ghazizadeh, M.; Foroughi, M.M. Simultaneous determination of amitriptyline and venlafaxine using a novel voltammetric sensor of carbon paste electrode modified with octahedral Pd2+-doped Co3O4 composite. Mater. Chem. Phys., 2023, 296, 127176.
[http://dx.doi.org/10.1016/j.matchemphys.2022.127176]
[91]
Sharafi, E.; Sadeghi, S. A highly sensitive and ecofriendly assay platform for the simultaneous electrochemical determination of rifampicin and isoniazid in human serum and pharmaceutical formulations. New J. Chem., 2022, 47(1), 500-514.
[http://dx.doi.org/10.1039/D2NJ04263K]
[92]
Baniahmad, B.; Nadiki, H.H.; Jahani, S.; Pour, N.N.; Toolabi, A.; Foroughi, M.M. Simultaneous electrochemical determination of chlorzoxazone and diclofenac on an efficient modified glassy carbon electrode by lanthanum oxide@ copper(i) sulfide composite. Front Chem., 2022, 10, 889590.
[http://dx.doi.org/10.3389/fchem.2022.889590] [PMID: 35783211]
[93]
Nabizadeh, H.; Feyzi, B.; Salarian, A.A.; Abtahi, R.S.; Mohammadi, A.; Hami, Z. Electrochemical sensing platform based on graphene oxide-chitosan for simultaneous determination of some antihypertensive drugs. Electroanalysis, 2023, 35(1), e202200022.
[http://dx.doi.org/10.1002/elan.202200022]
[94]
Pholsiri, T.; Lomae, A.; Pungjunun, K.; Vimolmangkang, S.; Siangproh, W.; Chailapakul, O. A chromatographic paper-based electrochemical device to determine Δ⁹-tetrahydrocannabinol and cannabidiol in cannabis oil. Sens. Actuators B Chem., 2022, 355, 131353.
[http://dx.doi.org/10.1016/j.snb.2021.131353]
[95]
Pholsiri, T.; Khamcharoen, W.; Vimolmangkang, S.; Siangproh, W.; Chailapakul, O. Paper-based electrochemical sensor for simultaneous detection of salivary Δ⁹-tetrahydrocannabinol and thiocyanate to differentiate illegal cannabis smokers. Sens. Actuators B Chem., 2023, 383, 133571.
[http://dx.doi.org/10.1016/j.snb.2023.133571]
[96]
Mishra, R.K.; Sempionatto, J.R.; Li, Z.; Brown, C.; Galdino, N.M.; Shah, R.; Liu, S.; Hubble, L.J.; Bagot, K.; Tapert, S.; Wang, J. Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a wearable electrochemical ring sensor. Talanta, 2020, 211, 120757.
[http://dx.doi.org/10.1016/j.talanta.2020.120757] [PMID: 32070607]
[97]
Luhana, C.; Mashazi, P. Simultaneous detection of dopamine and paracetamol on electroreduced graphene oxide–cobalt phthalocyanine polymer nanocomposite electrode. Electrocatalysis, 2023, 14(3), 406-417.
[http://dx.doi.org/10.1007/s12678-022-00806-7]
[98]
Sasikumar, R.; Kim, B.; Ishfaque, A. Active-site-rich binary metal oxides integrated organic–inorganic hybrid nanocomposite: Electrochemical simultaneous detection of multi-drugs of isoprenaline and resorcinol in real samples. Microchem. J., 2023, 187, 108375.
[http://dx.doi.org/10.1016/j.microc.2022.108375]
[99]
Ahmed, Y.M.; Eldin, M.A.; Galal, A.; Atta, N.F. Electrochemical sensor for simultaneous determination of trifluoperazine and dopamine in human serum based on graphene oxide–carbon nanotubes/iron–nickel nanoparticles. RSC Advances, 2023, 13(36), 25209-25217.
[http://dx.doi.org/10.1039/D3RA04334G] [PMID: 37622009]
[100]
Thangphatthanarungruang, J.; Chotsuwan, C.; Chailapakul, O.; Siangproh, W. Single-step electropolymerization on a printed sensor towards a conductive thin film polymer for the simultaneous determination of drug metabolites: 5-aminosalicylic acid and sulfapyridine. Analyst, 2023, 148(13), 3107-3116.
[http://dx.doi.org/10.1039/D3AN00612C] [PMID: 37313729]
[101]
Adeniyi, K.O.; Osmanaj, B.; Manavalan, G.; Samikannu, A.; Mikkola, J.P.; Avni, B.; Boily, J.F.; Tesfalidet, S. Engineering of layered iron vanadate nanostructure for electrocatalysis: Simultaneous detection of methotrexate and folinic acid in blood serum. Electrochim. Acta, 2023, 458, 142538.
[http://dx.doi.org/10.1016/j.electacta.2023.142538]
[102]
Xie, A.; Wang, H.; Lin, J.; Pan, J.; Li, M.; Wang, J.; Jiang, S.; Luo, S. 3D RGO/MWCNTs-loaded bimetallic-organic gel derived ZrFeOx as an electrochemical sensor for simultaneous detection of dopamine and paracetamol. J. Alloys Compd., 2023, 938, 168647.
[http://dx.doi.org/10.1016/j.jallcom.2022.168647]
[103]
Murugan, E.; Poongan, A. Synchronous electrochemical detection of nanomolar acetaminophen, cytosine and phenylephrine hydrochloride in drugs using Zn3V2O8/ZrO2@f-MWCNTs nanocomposite GC electrode. Results Chem., 2023, 5, 100886.
[http://dx.doi.org/10.1016/j.rechem.2023.100886]
[104]
Shahinfard, H.; Nooshabadi, S.M.; Vanani, R.A.; Darabi, R. Electrochemical sensor based on CuO/reduced graphene nanoribbons and ionic liquid for simultaneous determination of tramadol, olanzapine and acetaminophen. Carbon Letters, 2023, 33(5), 1433-1444.
[http://dx.doi.org/10.1007/s42823-023-00512-4]
[105]
Mohammadi, N.; Bahmaei, M.; Sharif, A.M. Highly sensitive CuZnO-Fe3O4/rGO modified glassy carbon electrode for the electrochemical determination of acetaminophen, tyrosine and codeine in human blood plasma and urine. J. Electroanal. Chem., 2021, 902, 115768.
[http://dx.doi.org/10.1016/j.jelechem.2021.115768]
[106]
Rycke, D.E.; Leman, O.; Dubruel, P.; Hedström, M.; Völker, M.; Beloglazova, N.; Saeger, D.S. Novel multiplex capacitive sensor based on molecularly imprinted polymers: A promising tool for tracing specific amphetamine synthesis markers in sewage water. Biosens. Bioelectron., 2021, 178, 113006.
[http://dx.doi.org/10.1016/j.bios.2021.113006] [PMID: 33556808]
[107]
Foroughi, M.M.; Jahani, S.; Boroujeni, A.Z.; Fathabadi, V.M.; Rafsanjani, H.H.; Dolatabad, R.M. Template-free synthesis of ZnO/Fe3O4/Carbon magnetic nanocomposite: Nanotubes with hexagonal cross sections and their electrocatalytic property for simultaneous determination of oxymorphone and heroin. Microchem. J., 2021, 170, 106679.
[http://dx.doi.org/10.1016/j.microc.2021.106679]
[108]
Mousaabadi, K.Z.; Ensafi, A.A.; Rezaei, B. Simultaneous determination of some opioid drugs using Cu-hemin MOF@MWCNTs as an electrochemical sensor. Chemosphere, 2022, 303(Pt 3), 135149.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135149] [PMID: 35660395]
[109]
de Faria, L.V.; Rocha, R.G.; Arantes, L.C.; Ramos, D.L.O.; Lima, C.D.; Richter, E.M.; Santos, P.D.W.T.; Muñoz, R.A.A. Cyclic square-wave voltammetric discrimination of the amphetamine-type stimulants MDA and MDMA in real-world forensic samples by 3D-printed carbon electrodes. Electrochim. Acta, 2022, 429, 141002.
[http://dx.doi.org/10.1016/j.electacta.2022.141002]
[110]
Liu, Z.; Jin, M.; Cao, J.; Niu, R.; Li, P.; Zhou, G.; Yu, Y.; Berg, V.D.A.; Shui, L. Electrochemical sensor integrated microfluidic device for sensitive and simultaneous quantification of dopamine and 5-hydroxytryptamine. Sens. Actuators B Chem., 2018, 273, 873-883.
[http://dx.doi.org/10.1016/j.snb.2018.06.123]
[111]
Dossi, N.; Petrazzi, S.; Terzi, F.; Toniolo, R.; Bontempelli, G. Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices. Talanta, 2019, 199, 14-20.
[http://dx.doi.org/10.1016/j.talanta.2019.01.126] [PMID: 30952237]
[112]
Wentland, L.; Cook, J.M.; Minzlaff, J.; Ramsey, S.A.; Johnston, M.L.; Fu, E. Field-use device for the electrochemical quantification of carbamazepine levels in a background of human saliva. J. Appl. Electrochem., 2023, 53(3), 523-534.
[http://dx.doi.org/10.1007/s10800-022-01785-9]
[113]
Bian, S.; Zhu, B.; Rong, G.; Sawan, M. Towards wearable and implantable continuous drug monitoring: A review. J. Pharm. Anal., 2021, 11(1), 1-14.
[http://dx.doi.org/10.1016/j.jpha.2020.08.001] [PMID: 32837742]
[114]
Zhu, L.; Liu, X.; Yang, J.; He, Y.; Li, Y. Application of multiplex microfluidic electrochemical sensors in monitoring hematological tumor biomarkers. Anal. Chem., 2020, 92(17), 11981-11986.
[http://dx.doi.org/10.1021/acs.analchem.0c02430] [PMID: 32786466]
[115]
Kurbanoglu, S.; Unal, M.A.; Ozkan, S.A. Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds. Electrochim. Acta, 2018, 287, 135-148.
[http://dx.doi.org/10.1016/j.electacta.2018.04.217]
[116]
Liu, J.; Zhang, Y.; Jiang, M.; Tian, L.; Sun, S.; Zhao, N.; Zhao, F.; Li, Y. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosens. Bioelectron., 2017, 91, 714-720.
[http://dx.doi.org/10.1016/j.bios.2017.01.037] [PMID: 28126661]
[117]
Damiati, S.; Kompella, U.B.; Damiati, S.A.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes; , 2018, 9, p. (2)103.
[http://dx.doi.org/10.3390/genes9020103]
[118]
Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal., 2019, 9(4), 238-247.
[http://dx.doi.org/10.1016/j.jpha.2018.12.001] [PMID: 31452961]
[119]
Primpray, V.; Chailapakul, O.; Tokeshi, M.; Rojanarata, T.; Laiwattanapaisal, W. A paper-based analytical device coupled with electrochemical detection for the determination of dexamethasone and prednisolone in adulterated traditional medicines. Anal. Chim. Acta, 2019, 1078, 16-23.
[http://dx.doi.org/10.1016/j.aca.2019.05.072] [PMID: 31358214]
[120]
Steijlen, A.S.M.; Parrilla, M.; Echelpoel, V.R.; Wael, D.K. Dual microfluidic sensor system for enriched electrochemical profiling and identification of illicit drugs on-site. Anal. Chem., 2024, 96(1), 590-598.
[http://dx.doi.org/10.1021/acs.analchem.3c05039] [PMID: 38154077]
[121]
de Jong, M.; Sleegers, N.; Kim, J.; Durme, V.F.; Samyn, N.; Wang, J.; Wael, D.K. Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders. Chem. Sci., 2016, 7(3), 2364-2370.
[http://dx.doi.org/10.1039/C5SC04309C] [PMID: 29997780]
[122]
Pereira, R.P.A.; Gomes, N.O.; Machado, S.A.S.; Oliveira, O.N., Jr Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem. Eng. J., 2022, 435, 135047.
[http://dx.doi.org/10.1016/j.cej.2022.135047]
[123]
Promphet, N.; Thanawattano, C.; Buekban, C.; Laochai, T.; Rattanawaleedirojn, P.; Siralertmukul, K.; Potiyaraj, P.; Hinestroza, J.P.; Rodthongkum, N. Thread-based wristwatch sensing device for noninvasive and simultaneous detection of glucose and lactate. Adv. Mater. Technol., 2022, 7(6), 2101684.
[http://dx.doi.org/10.1002/admt.202101684]
[124]
Laochai, T.; Yukird, J.; Promphet, N.; Qin, J.; Chailapakul, O.; Rodthongkum, N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/ MXene modified thread electrode. Biosens. Bioelectron., 2022, 203, 114039.
[http://dx.doi.org/10.1016/j.bios.2022.114039] [PMID: 35121444]
[125]
Zhao, L.; Zhang, C.; Ershaid, A.J.M.; Li, M.; Li, Y.; Naser, Y.; Dai, X.; Abbate, M.T.A.; Donnelly, R.F. Smart responsive microarray patches for transdermal drug delivery and biological monitoring. Adv. Healthc. Mater., 2021, 10(20), 2100996.
[http://dx.doi.org/10.1002/adhm.202100996] [PMID: 34449129]
[126]
Mishra, R.K.; Goud, K.Y.; Li, Z.; Moonla, C.; Mohamed, M.A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J. Am. Chem. Soc., 2020, 142(13), 5991-5995.
[http://dx.doi.org/10.1021/jacs.0c01883] [PMID: 32202103]
[127]
Ferreira, P.C.; Ataíde, V.N.; Chagas, S.C.L.; Angnes, L.; Coltro, T.W.K.; Paixão, L.C.T.R.; de Araujo, R.W. Wearable electrochemical sensors for forensic and clinical applications. Trends Analyt. Chem., 2019, 119, 115622.
[http://dx.doi.org/10.1016/j.trac.2019.115622]
[128]
Lin, S.; Yu, W.; Wang, B.; Zhao, Y.; En, K.; Zhu, J.; Cheng, X.; Zhou, C.; Lin, H.; Wang, Z.; Hojaiji, H.; Yeung, C.; Milla, C.; Davis, R.W.; Emaminejad, S. Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics. Proc. Natl. Acad. Sci. USA, 2020, 117(32), 19017-19025.
[http://dx.doi.org/10.1073/pnas.2009979117] [PMID: 32719130]
[129]
Zhang, X.; Tang, Y.; Wu, H.; Wang, Y.; Niu, L.; Li, F. Integrated aptasensor array for sweat drug analysis. Anal. Chem., 2022, 94(22), 7936-7943.
[http://dx.doi.org/10.1021/acs.analchem.2c00736] [PMID: 35608073]
[130]
Sinawang, P.D.; Rai, V.; Ionescu, R.E.; Marks, R.S. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens. Bioelectron., 2016, 77, 400-408.
[http://dx.doi.org/10.1016/j.bios.2015.09.048] [PMID: 26433352]
[131]
Sadeghi, P.; Sohrabi, H.; Hejazi, M.; Esfahlan, J.A.; Baradaran, B.; Tohidast, M.; Majidi, M.R.; Mokhtarzadeh, A.; Tavangar, S.M.; de la Guardia, M. Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt. Chem., 2021, 145, 116460.
[http://dx.doi.org/10.1016/j.trac.2021.116460] [PMID: 34697511]
[132]
Perju, A.; Wongkaew, N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal. Bioanal. Chem., 2021, 413(22), 5535-5549.
[http://dx.doi.org/10.1007/s00216-021-03301-y] [PMID: 33913001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy