Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Use of Immunoglobulin Y Antibodies: Biosensor-based Diagnostic Systems and Prophylactic and Therapeutic Drug Delivery Systems for Viral Respiratory Diseases

Author(s): Yasemin Budama-Kilinc*, Ozan Baris Kurtur, Bahar Gok, Nisanur Cakmakci, Serda Kecel-Gunduz, Necdet Mehmet Unel and Taylan Kurtulus Ozturk

Volume 24, Issue 11, 2024

Published on: 29 March, 2024

Page: [973 - 985] Pages: 13

DOI: 10.2174/0115680266289898240322073258

Price: $65

Abstract

Respiratory viruses have caused many pandemics from past to present and are among the top global public health problems due to their rate of spread. The recently experienced COVID-19 pandemic has led to an understanding of the importance of rapid diagnostic tests to prevent epidemics and the difficulties of developing new vaccines. On the other hand, the emergence of resistance to existing antiviral drugs during the treatment process poses a major problem for society and global health systems. Therefore, there is a need for new approaches for the diagnosis, prophylaxis, and treatment of existing or new types of respiratory viruses. Immunoglobulin Y antibodies (IgYs) obtained from the yolk of poultry eggs have significant advantages, such as high production volumes, low production costs, and high selectivity, which enable the development of innovative and strategic products. Especially in diagnosing respiratory viruses, antibody-based biosensors in which these antibodies are integrated have the potential to provide superiority in making rapid and accurate diagnosis as a practical diagnostic tool. This review article aims to provide information on using IgY antibodies in diagnostic, prophylactic, and therapeutic applications for respiratory viruses and to provide a perspective for future innovative applications.

« Previous
Graphical Abstract

[1]
Khomich, O.; Kochetkov, S.; Bartosch, B.; Ivanov, A. Redox biology of respiratory viral infections. Viruses, 2018, 10(8), 392.
[http://dx.doi.org/10.3390/v10080392] [PMID: 30049972]
[2]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Anti-coronavirus vaccines: Past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, oxford/astrazeneca and others under development against SARSCoV- 2 infection. Curr. Med. Chem., 2022, 29(1), 4-18.
[http://dx.doi.org/10.2174/1875533XMTE1eNzEw5] [PMID: 34355678]
[3]
Jackson, B.; Boni, M.F.; Bull, M.J.; Colleran, A.; Colquhoun, R.M.; Darby, A.C.; Haldenby, S.; Hill, V.; Lucaci, A.; McCrone, J.T. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell, 2021, 184(20), 5179-5188. e8.
[http://dx.doi.org/10.1016/j.cell.2021.08.014]
[4]
Vousden, N.; Knight, M. Lessons learned from the A (H1N1) influenza pandemic. Best Pract. Res. Clin. Obstet. Gynaecol., 2021, 76, 41-52.
[http://dx.doi.org/10.1016/j.bpobgyn.2020.08.006] [PMID: 33144076]
[5]
Bergeron, H.C.; Tripp, R.A. Immunopathology of rsv: An updated review. Viruses, 2021, 13(12), 2478.
[http://dx.doi.org/10.3390/v13122478] [PMID: 34960746]
[6]
Zavala, M.M.E.; Olvera, R.D.P.; González, G.L.H.; Delgado, O.R.; Gutiérrez, C.C. Pathogenesis of viral respiratory infection. In: Respiratory Disease and Infection: A New Insight; IntechOpen, 2013; 1, pp. 3-32.
[7]
Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.M.; Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol., 2018, 28, 142-151.
[http://dx.doi.org/10.1016/j.coviro.2018.01.001] [PMID: 29452994]
[8]
Subbarao, K.; Mahanty, S. Respiratory virus infections: Understanding COVID-19. Immunity, 2020, 52(6), 905-909.
[http://dx.doi.org/10.1016/j.immuni.2020.05.004] [PMID: 32497522]
[9]
Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res., 2020, 21(1), 224.
[http://dx.doi.org/10.1186/s12931-020-01479-w] [PMID: 32854739]
[10]
Sharma, L.; Rebaza, A.; Cruz, C.S.D. When “B” becomes “A”: The emerging threat of influenza B virus. Eur Respir J, 2019, 54(2), 1901325.
[11]
Rudrapal, M.; Khairnar, S.J.; Borse, L.B.; Jadhav, A.G. Coronavirus disease-2019 (COVID-19): An updated review. Drug Res., 2020, 70(9), 389-400.
[http://dx.doi.org/10.1055/a-1217-2397] [PMID: 32746481]
[12]
Palaniyappan, A.; Das, D.; Kammila, S.; Suresh, M.R.; Sunwoo, H.H. Diagnostics of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid antigen using chicken immunoglobulin Y. Poult. Sci., 2012, 91(3), 636-642.
[http://dx.doi.org/10.3382/ps.2011-01916] [PMID: 22334738]
[13]
Khan, J.; Asoom, L.I.A.; Khan, M.; Chakrabartty, I.; Dandoti, S.; Rudrapal, M.; Zothantluanga, J.H. Evolution of RNA viruses from SARS to SARS-CoV-2 and diagnostic techniques for COVID-19: a review. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 60.
[http://dx.doi.org/10.1186/s43088-021-00150-7] [PMID: 34642633]
[14]
McCaskill, J.L.; Ressel, S.; Alber, A.; Redford, J.; Power, U.F.; Schwarze, J.; Dutia, B.M.; Buck, A.H. Broad-spectrum inhibition of respiratory virus infection by microRNA mimics targeting p38 MAPK signaling. Mol. Ther. Nucleic Acids, 2017, 7, 256-266.
[http://dx.doi.org/10.1016/j.omtn.2017.03.008] [PMID: 28624201]
[15]
Truong, J.; Bakshi, S.; Wasim, A.; Ahmad, M.; Majid, U. What factors promote vaccine hesitancy or acceptance during pandemics? A systematic review and thematic analysis. Health Promot. Int., 2022, 37(1), daab105.
[http://dx.doi.org/10.1093/heapro/daab105] [PMID: 34244738]
[16]
Berry, C.M. Antibody immunoprophylaxis and immunotherapy for influenza virus infection: Utilization of monoclonal or polyclonal antibodies? Hum. Vaccin. Immunother., 2018, 14(3), 796-799.
[http://dx.doi.org/10.1080/21645515.2017.1363135] [PMID: 28854120]
[17]
Quigley, E. Influenza therapies: Vaccines and antiviral drugs. Drug Discov. Today, 2006, 11(11-12), 478-480.
[http://dx.doi.org/10.1016/j.drudis.2006.04.010] [PMID: 16713898]
[18]
Alyafei, K.; Ahmed, R.; Abir, F.F.; Chowdhury, M.E.H.; Naji, K.K. A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Comput. Biol. Med., 2022, 149, 106070.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106070] [PMID: 36099862]
[19]
Franchini, M.; Casadevall, A.; Joyner, M.J.; Focosi, D. WHO is recommending against the use of COVID-19 convalescent plasma in immunocompromised patients? Life, 2023, 13(1), 134.
[http://dx.doi.org/10.3390/life13010134] [PMID: 36676084]
[20]
Nagoba, B.; Gavkare, A.; Jamadar, N.; Mumbre, S.; Selkar, S. Positive aspects, negative aspects and limitations of plasma therapy with special reference to COVID-19. J. Infect. Public Health, 2020, 13(12), 1818-1822.
[http://dx.doi.org/10.1016/j.jiph.2020.08.011] [PMID: 32900666]
[21]
Focosi, D.; McConnell, S.; Casadevall, A.; Cappello, E.; Valdiserra, G.; Tuccori, M. Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect. Dis., 2022, 22(11), e311-e326.
[http://dx.doi.org/10.1016/S1473-3099(22)00311-5] [PMID: 35803289]
[22]
Lee, L.; Samardzic, K.; Wallach, M.; Frumkin, L.R.; Mochly-Rosen, D. Immunoglobulin Y for potential diagnostic and therapeutic applications in infectious diseases. Front. Immunol., 2021, 12, 696003.
[http://dx.doi.org/10.3389/fimmu.2021.696003] [PMID: 34177963]
[23]
Li, X.; Wang, L.; Zhen, Y.; Li, S.; Xu, Y. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: A review. J. Anim. Sci. Biotechnol., 2015, 6(1), 40.
[http://dx.doi.org/10.1186/s40104-015-0038-8] [PMID: 26309735]
[24]
Somasundaram, R.; Choraria, A.; Antonysamy, M. An approach towards development of monoclonal IgY antibodies against SARS CoV-2 spike protein (S) using phage display method: A review. Int. Immunopharmacol., 2020, 85, 106654.
[http://dx.doi.org/10.1016/j.intimp.2020.106654] [PMID: 32512271]
[25]
da Silva, M.C.; Schaefer, R.; Gava, D.; Souza, C.K.; da Silva Vaz, I., Jr; Bastos, A.P.; Venancio, E.J. Production and application of anti-nucleoprotein IgY antibodies for influenza A virus detection in swine. J. Immunol. Methods, 2018, 461, 100-105.
[http://dx.doi.org/10.1016/j.jim.2018.06.023] [PMID: 30158073]
[26]
Constantin, C.; Neagu, M.; Supeanu, T.; Chiurciu, V.; Spandidos, D. IgY-turning the page toward passive immunization in COVID-19 infection (Review). Exp. Ther. Med., 2020, 20(1), 151-158.
[http://dx.doi.org/10.3892/etm.2020.8704] [PMID: 32536989]
[27]
Amro, W.A.; Al-Qaisi, W.; Al-Razem, F. Production and purification of IgY antibodies from chicken egg yolk. J. Genet. Eng. Biotechnol., 2018, 16(1), 99-103.
[http://dx.doi.org/10.1016/j.jgeb.2017.10.003] [PMID: 30647711]
[28]
Pereira, E.P.V.; van Tilburg, M.F.; Florean, E.O.P.T.; Guedes, M.I.F. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int. Immunopharmacol., 2019, 73, 293-303.
[http://dx.doi.org/10.1016/j.intimp.2019.05.015] [PMID: 31128529]
[29]
Karachaliou, C.E.; Vassilakopoulou, V.; Livaniou, E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J. Methodol., 2021, 11(5), 243-262.
[http://dx.doi.org/10.5662/wjm.v11.i5.243] [PMID: 34631482]
[30]
Zhang, X.; Calvert, R.A.; Sutton, B.J.; Doré, K.A. IgY: A key isotype in antibody evolution. Biol. Rev. Camb. Philos. Soc., 2017, 92(4), 2144-2156.
[http://dx.doi.org/10.1111/brv.12325]
[31]
Liang, X.; Sheng, Y.; Yu, W.; Zhao, S.; Shan, H.; Zhang, Q.; Wang, Z. Comparison of chicken IgY and mammalian IgG in three immunoassays for detection of sulfamethazine in milk. Food Anal. Methods, 2018, 11(12), 3452-3463.
[http://dx.doi.org/10.1007/s12161-018-1316-9]
[32]
Reddy, P.N.; Nagaraj, S.; Sripathy, M.H.; Batra, H.V. Use of biotin-labeled IgY overcomes protein A interference in immunoassays involving Staphylococcus aureus antigens. Ann. Microbiol., 2015, 65(4), 1915-1922.
[http://dx.doi.org/10.1007/s13213-014-1029-2]
[33]
Diaz, A.B.; Blandino, A.; Caro, I. Value added products from fermentation of sugars derived from agro-food residues. Trends Food Sci. Technol., 2018, 71, 52-64.
[http://dx.doi.org/10.1016/j.tifs.2017.10.016]
[34]
Lemamy, G.J.; Roger, P.; Mani, J.C.; Robert, M.; Rochefort, H.; Brouillet, J.P. High-affinity antibodies from hen’s-egg yolks against human mannose-6-phosphate/insulin-like growth-factor-II receptor (M6P/IGFII-R): Characterization and potential use in clinical cancer studies. Int. J. Cancer, 1999, 80(6), 896-902.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990315)80:6<896::AID-IJC16>3.0.CO;2-J] [PMID: 10074924]
[35]
Ikemori, Y.; Peralta, R.C.; Kuroki, M.; Yokoyama, H.; Kodama, Y. Research note: Avidity of chicken yolk antibodies to enterotoxigenic Escherichia coli fimbriae. Poult. Sci., 1993, 72(12), 2361-2365.
[http://dx.doi.org/10.3382/ps.0722361] [PMID: 7906035]
[36]
Stuart, C.A.; Pietrzyk, R.A.; Furlanetto, R.W.; Green, A. High affinity antibody from hen’s eggs directed against the human insulin receptor and the human IGF-I receptor. Anal. Biochem., 1988, 173(1), 142-150.
[http://dx.doi.org/10.1016/0003-2697(88)90171-6] [PMID: 2973262]
[37]
Davison, F.; Magor, K.E.; Kaspers, B.; Fred, D.; Karel, A. Structure and evolution of avian immunoglobulins. Avian immunolog., 2008, 1, 107-127.
[38]
Shimizu, M.; Nagashima, H.; Hashimoto, K.; Suzuki, T. Egg yolk antibody (Ig Y) stability in aqueous solution with high sugar concentrations. Food Sci., 1994, 59(4), 763-765.
[39]
Abbas, A.T.; Kafrawy, E.S.A.; Sohrab, S.S.; Azhar, E.I.A. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Hum. Vaccin. Immunother., 2019, 15(1), 264-275.
[http://dx.doi.org/10.1080/21645515.2018.1514224] [PMID: 30230944]
[40]
da Silva, M.T.L.; Deodato, R.M.; Villar, L.M. Exploring the potential usefulness of IgY for antiviral therapy: A current review. Int. J. Biol. Macromol., 2021, 189, 785-791.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.078] [PMID: 34416265]
[41]
Criste, A.; Urcan, A.C.; Corcionivoschi, N. Avian IgY antibodies, ancestors of mammalian antibodies – production and application. Rom. Biotechnol. Lett., 2020, 25(2), 1311-1319.
[http://dx.doi.org/10.25083/rbl/25.2/1311.1319]
[42]
Wongso, H.; Mahendra, I.; Arnafia, W.; Idar, I.; Yusuf, M.; Achmad, A.; Holik, H. A.; Kurniawan, A.; Halimah, I.; Sriyani, M.E.J.V. Preclinical evaluation of chicken egg yolk antibody (IgY) Anti-RBD spike SARS-CoV-2—A candidate for passive immunization against COVID-19. Vaccines, 2022, 10(1), 128.
[43]
Fu, C.Y.; Huang, H.; Wang, X.M.; Liu, Y.G.; Wang, Z.G.; Cui, S.J.; Gao, H.L.; Li, Z.; Li, J.P.; Kong, X.G. Preparation and evaluation of anti-SARS coronavirus IgY from yolks of immunized SPF chickens. J. Virol. Methods, 2006, 133(1), 112-115.
[http://dx.doi.org/10.1016/j.jviromet.2005.10.027] [PMID: 16325277]
[44]
Abbas, A.T.; El-Kafrawy, S.A.; Sohrab, S.S.; Tabll, A.A.; Hassan, A.M.; Yoshikawa, I.N.; Nagata, N.; Azhar, E.I. Anti-S1 MERS-COV IgY specific antibodies decreases lung inflammation and viral antigen positive cells in the human transgenic mouse model. Vaccines, 2020, 8(4), 634.
[http://dx.doi.org/10.3390/vaccines8040634] [PMID: 33139631]
[45]
Bao, L.; Zhang, C.; Lyu, J.; Yi, P.; Shen, X.; Tang, B.; Zhao, H.; Ren, B.; Kuang, Y.; Zhou, L.; Li, Y. Egg yolk immunoglobulin (IgY) targeting SARS-CoV-2 S1 as potential virus entry blocker. J. Appl. Microbiol., 2022, 132(3), 2421-2430.
[http://dx.doi.org/10.1111/jam.15340] [PMID: 34706134]
[46]
Wei, J.; Lu, Y.; Rui, Y.; Zhu, X.; He, S.; Wu, S.; Xu, Q. A chicken IgY can efficiently inhibit the entry and replication of SARS-CoV-2 by targeting the ACE2 binding domain in vitro. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.16.430255]
[47]
Aston, E.J.; Wallach, M.G.; Narayanan, A.; Labrin, E.S.; Gallardo, R.A. Hyperimmunized chickens produce neutralizing antibodies against SARS-CoV-2. Viruses, 2022, 14(7), 1510.
[http://dx.doi.org/10.3390/v14071510] [PMID: 35891490]
[48]
Leider, J.P.; Brunker, P.A.R.; Ness, P.M. Convalescent transfusion for pandemic influenza: Preparing blood banks for a new plasma product? Transfusion, 2010, 50(6), 1384-1398.
[http://dx.doi.org/10.1111/j.1537-2995.2010.02590.x] [PMID: 20158681]
[49]
Wallach, M.G.; Webby, R.J.; Islam, F.; Brown, W.S.; Emmoth, E.; Feinstein, R.; Gronvik, K.O. Cross-protection of chicken immunoglobulin Y antibodies against H5N1 and H1N1 viruses passively administered in mice. Clin. Vaccine Immunol., 2011, 18(7), 1083-1090.
[http://dx.doi.org/10.1128/CVI.05075-11] [PMID: 21613458]
[50]
Artman, C.; Brumfield, K.D.; Khanna, S.; Goepp, J. Avian antibodies (IgY) targeting spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit receptor binding and viral replication. PLoS One, 2021, 16(5), e0252399.
[http://dx.doi.org/10.1371/journal.pone.0252399] [PMID: 34048457]
[51]
Yang, Y.; Wen, J.; Zhao, S.; Zhang, K.; Zhou, Y. Prophylaxis and therapy of pandemic H1N1 virus infection using egg yolk antibody. J. Virol. Methods, 2014, 206, 19-26.
[http://dx.doi.org/10.1016/j.jviromet.2014.05.016] [PMID: 24880066]
[52]
Yewdell, J.W. Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLoS Pathog., 2021, 17(4), e1009509.
[http://dx.doi.org/10.1371/journal.ppat.1009509] [PMID: 33901246]
[53]
Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; Pelayo, E.; Maldonado, J.O.; Lafont, B.A.; Jang, S.I.; Nasir, N.; Padilla, R.J.; Murrah, V.A.; Maile, R.; Lovell, W.; Wallet, S.M.; Bowman, N.M.; Meinig, S.L.; Wolfgang, M.C.; Choudhury, S.N.; Novotny, M.; Aevermann, B.D.; Scheuermann, R.H.; Cannon, G.; Anderson, C.W.; Lee, R.E.; Marchesan, J.T.; Bush, M.; Freire, M.; Kimple, A.J.; Herr, D.L.; Rabin, J.; Grazioli, A.; Das, S.; French, B.N.; Pranzatelli, T.; Chiorini, J.A.; Kleiner, D.E.; Pittaluga, S.; Hewitt, S.M.; Burbelo, P.D.; Chertow, D.; Frank, K.; Lee, J.; Boucher, R.C.; Teichmann, S.A.; Warner, B.M.; Byrd, K.M. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med., 2021, 27(5), 892-903.
[http://dx.doi.org/10.1038/s41591-021-01296-8] [PMID: 33767405]
[54]
Carlander, D. Avian IgY antibody: in vitro and in vivo. Doctoral thesis; Uppsala: Acta Universitatis Upsaliensis, 2002.
[55]
Chen, C.J.; Hudson, A.F.; Jia, A.S.; Kunchur, C.R.; Song, A.J.; Tran, E.; Fisher, C.J.; Zanchi, D.; Lee, L.; Kargotich, S.; Romeo, M.; Koperniku, A.; Pamnani, R.D.; Mochly-Rosen, D. Affordable IgY-based antiviral prophylaxis for resource-limited settings to address epidemic and pandemic risks. J. Glob. Health, 2022, 12, 05009.
[http://dx.doi.org/10.7189/jogh.12.05009] [PMID: 35265332]
[56]
Weltzin, R.; Monath, T.P. Intranasal antibody prophylaxis for protection against viral disease. Clin. Microbiol. Rev., 1999, 12(3), 383-393.
[http://dx.doi.org/10.1128/CMR.12.3.383] [PMID: 10398671]
[57]
Nguyen, H.H.; Tumpey, T.M.; Park, H.J.; Byun, Y.H.; Tran, L.D.; Nguyen, V.D.; Kilgore, P.E.; Czerkinsky, C.; Katz, J.M.; Seong, B.L.; Song, J.M.; Kim, Y.B.; Do, H.T.; Nguyen, T.; Nguyen, C.V. Prophylactic and therapeutic efficacy of avian antibodies against influenza virus H5N1 and H1N1 in mice. PLoS One, 2010, 5(4), e10152.
[http://dx.doi.org/10.1371/journal.pone.0010152] [PMID: 20405007]
[58]
Fan, W.; Sun, S.; Zhang, N.; Zhang, Y.; Jiao, P.; Wang, J.; Gao, G.F.; Liu, W.; Bi, Y.; Yang, L. Nasal delivery of thermostable and broadly neutralizing antibodies protects mice against SARS-CoV-2 infection. Signal Transduct. Target. Ther., 2022, 7(1), 55.
[http://dx.doi.org/10.1038/s41392-022-00911-5] [PMID: 35190525]
[59]
Frumkin, L.R.; Lucas, M.; Scribner, C.L.; Ortega-Heinly, N.; Rogers, J.; Yin, G.; Hallam, T.J.; Yam, A.; Bedard, K.; Begley, R.; Cohen, C.A.; Badger, C.V.; Abbasi, S.A.; Dye, J.M.; McMillan, B.; Wallach, M.; Bricker, T.L.; Joshi, A.; Boon, A.C.M.; Pokhrel, S.; Kraemer, B.R.; Lee, L.; Kargotich, S.; Agochiya, M.; John, T.S.; Mochly-Rosen, D. Egg-derived anti-SARS-CoV-2 immunoglobulin Y (IgY) with broad variant activity as intranasal prophylaxis against COVID-19. Front. Immunol., 2022, 13, 899617.
[http://dx.doi.org/10.3389/fimmu.2022.899617] [PMID: 35720389]
[60]
Wei, S.; Duan, S.; Liu, X.; Wang, H.; Ding, S.; Chen, Y.; Xie, J.; Tian, J.; Yu, N.; Ge; Zhang; chen, X.; Li, Y.; Meng, Q. Chicken Egg Yolk Antibodies (IgYs) block the binding of multiple SARS-CoV-2 spike protein variants to human ACE2. Int. Immunopharmacol., 2021, 90, 107172.
[http://dx.doi.org/10.1016/j.intimp.2020.107172] [PMID: 33191178]
[61]
Parray, H.A.; Shukla, S.; Perween, R.; Khatri, R.; Shrivastava, T.; Singh, V.; Murugavelu, P.; Ahmed, S.; Samal, S.; Sharma, C.; Sinha, S.; Luthra, K.; Kumar, R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl. Microbiol. Biotechnol., 2021, 105(16-17), 6315-6332.
[http://dx.doi.org/10.1007/s00253-021-11488-4] [PMID: 34423407]
[62]
Artman, C.; Idegwu, N.; Brumfield, K.D.; Lai, K.; Hauta, S.; Falzarano, D.; Parreño, V.; Yuan, L.; Geyer, J.D.; Goepp, J.G. Feasibility of polyclonal avian immunoglobulins (IgY) as prophylaxis against human norovirus infection. Viruses, 2022, 14(11), 2371.
[http://dx.doi.org/10.3390/v14112371] [PMID: 36366469]
[63]
Thang, N.H.; Van Phuc, N.; Nhi, T.T.T.; Cuong, D.X. Novel polymer-based hydrogels of recent research in drug delivery for disease treatment related to SARS-CoV-2 virus. Express Polym. Lett., 2024, 18(2)
[64]
Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-based hydrogels applied in drug delivery: An overview. Gels, 2023, 9(7), 523.
[http://dx.doi.org/10.3390/gels9070523] [PMID: 37504402]
[65]
Bakhshi, M.; Ebrahimi, F.; Nazarian, S.; Zargan, J.; Behzadi, F.; Gariz, D.S. Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: in vitro characterization. Biologicals, 2017, 49, 69-75.
[http://dx.doi.org/10.1016/j.biologicals.2017.06.002] [PMID: 28693954]
[66]
Michelmore, A. Thin film growth on biomaterial surfaces. In: Thin Film Coatings for Biomaterials and Biomedical Applications; Woodhead Publishing, 2016; pp. 29-47.
[67]
Ribeiro, B.V.; Cordeiro, T.A.R.; Oliveira e Freitas, G.R.; Ferreira, L.F.; Franco, D.L. Biosensors for the detection of respiratory viruses: A review. Talanta Open, 2020, 2, 100007.
[http://dx.doi.org/10.1016/j.talo.2020.100007] [PMID: 34913046]
[68]
Khan, J.; Rasmi, Y.; Kırboğa, K.K.; Ali, A.; Rudrapal, M.; Patekar, R.R. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 111.
[http://dx.doi.org/10.1186/s43088-022-00293-1] [PMID: 36092513]
[69]
Fu, Y.C.; Su, Y.S.; Shen, C.F.; Cheng, C.M. How to evaluate COVID-19 vaccine effectiveness—an examination of antibody production and t-cell response. Diagnostics, 2022, 12(6), 1401.
[http://dx.doi.org/10.3390/diagnostics12061401] [PMID: 35741211]
[70]
Dundar, B.; Karahangil, K.; Elgormus, C.S.; Topsakal, H.N.H. Efficacy of antibody response following the vaccination of SARS-CoV-2 infected and noninfected healthcare workers by two-dose inactive vaccine against COVID-19. J. Med. Virol., 2022, 94(6), 2431-2437.
[http://dx.doi.org/10.1002/jmv.27649] [PMID: 35128700]
[71]
Ravina; Dalal, A.; Mohan, H.; Prasad, M.; Pundir, C.S. Detection methods for influenza A H1N1 virus with special reference to biosensors: A review. Biosci. Rep., 2020, 40(2), BSR20193852.
[http://dx.doi.org/10.1042/BSR20193852] [PMID: 32016385]
[72]
Conroy, P.J.; Hearty, S.; Leonard, P.; O’Kennedy, R.J. Antibody production, design and use for biosensor-based applications. In: Seminars in cell & developmental biology; Elsevier, 2009; pp. 10-26.
[73]
Jiang, L.; Luo, J.; Dong, W.; Wang, C.; Jin, W.; Xia, Y.; Wang, H.; Ding, H.; Jiang, L.; He, H. Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus. J. Virol. Methods, 2015, 219, 38-45.
[http://dx.doi.org/10.1016/j.jviromet.2015.03.013] [PMID: 25819686]
[74]
Białobrzeska, W.; Firganek, D.; Czerkies, M.; Lipniacki, T.; Skwarecka, M.; Dziąbowska, K.; Cebula, Z.; Malinowska, N.; Bigus, D.; Bięga, E.; Pyrć, K.; Pala, K.; Żołędowska, S.; Nidzworski, D. Electrochemical immunosensors based on screen-printed gold and glassy carbon electrodes: comparison of performance for respiratory syncytial virus detection. Biosensors, 2020, 10(11), 175.
[http://dx.doi.org/10.3390/bios10110175] [PMID: 33202922]
[75]
Beduk, T.; Beduk, D.; de Filho, O.J.I.; Zihnioglu, F.; Cicek, C.; Sertoz, R.; Arda, B.; Goksel, T.; Turhan, K.; Salama, K.N.; Timur, S. Rapid point-of-care COVID-19 diagnosis with a gold-nanoarchitecture-assisted laser-scribed graphene biosensor. Anal. Chem., 2021, 93(24), 8585-8594.
[http://dx.doi.org/10.1021/acs.analchem.1c01444] [PMID: 34081452]
[76]
Sayhi, M.; Ouerghi, O.; Belgacem, K.; Arbi, M.; Tepeli, Y.; Ghram, A.; Anik, Ü.; Österlund, L.; Laouini, D.; Diouani, M.F. Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens. Bioelectron., 2018, 107, 170-177.
[http://dx.doi.org/10.1016/j.bios.2018.02.018] [PMID: 29455027]
[77]
Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim. Acta, 2019, 186(4), 224.
[http://dx.doi.org/10.1007/s00604-019-3345-5] [PMID: 30847572]
[78]
Siuzdak, K.; Niedziałkowski, P.; Sobaszek, M.; Łęga, T.; Sawczak, M.; Czaczyk, E.; Dziąbowska, K.; Ossowski, T.; Nidzworski, D.; Bogdanowicz, R. Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies. Sens. Actuators B Chem., 2019, 280, 263-271.
[http://dx.doi.org/10.1016/j.snb.2018.10.005]
[79]
Lin, C.Y.; Wang, W.H.; Li, M.C.; Lin, Y.T.; Yang, Z.S.; Urbina, A.N.; Assavalapsakul, W.; Thitithanyanont, A.; Chen, K.R.; Kuo, C.C.; Lin, Y.X.; Hsiao, H.H.; Lin, K.D.; Lin, S.Y.; Chen, Y.H.; Yu, M.L.; Su, L.C.; Wang, S.F. Boosting the detection performance of severe acute respiratory syndrome coronavirus 2 test through a sensitive optical biosensor with new superior antibody. Bioeng. Transl. Med., 2023, 8(5), e10410.
[http://dx.doi.org/10.1002/btm2.10410] [PMID: 36248235]
[80]
Liu, Y.; Zhang, L.; Wei, W.; Zhao, H.; Zhou, Z.; Zhang, Y.; Liu, S. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst, 2015, 140(12), 3989-3995.
[http://dx.doi.org/10.1039/C5AN00407A] [PMID: 25899840]
[81]
Chang, Y.F.; Wang, W.H.; Hong, Y.W.; Yuan, R.Y.; Chen, K.H.; Huang, Y.W.; Lu, P.L.; Chen, Y.H.; Chen, Y.M.A.; Su, L.C.; Wang, S.F. Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal. Chem., 2018, 90(3), 1861-1869.
[http://dx.doi.org/10.1021/acs.analchem.7b03934] [PMID: 29327590]
[82]
Xiao, M.; Xie, K.; Dong, X.; Wang, L.; Huang, C.; Xu, F.; Xiao, W.; Jin, M.; Huang, B.; Tang, Y. Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Anal. Chim. Acta, 2019, 1053, 139-147.
[http://dx.doi.org/10.1016/j.aca.2018.11.056] [PMID: 30712559]
[83]
Katayama, Y.; Ohgi, T.; Mitoma, Y.; Hifumi, E.; Egashira, N. Detection of influenza virus by a biosensor based on the method combining electrochemiluminescence on binary SAMs modified Au electrode with an immunoliposome encapsulating Ru (II) complex. Anal. Bioanal. Chem., 2016, 408(22), 5963-5971.
[http://dx.doi.org/10.1007/s00216-016-9587-8] [PMID: 27173395]
[84]
Luo, F.; Long, C.; Wu, Z.; Xiong, H.; Chen, M.; Zhang, X.; Wen, W.; Wang, S. Functional silica nanospheres for sensitive detection of H9N2 avian influenza virus based on immunomagnetic separation. Sens. Actuators B Chem., 2020, 310, 127831.
[http://dx.doi.org/10.1016/j.snb.2020.127831]
[85]
Zuo, B.; Li, S.; Guo, Z.; Zhang, J.; Chen, C. Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Anal. Chem., 2004, 76(13), 3536-3540.
[http://dx.doi.org/10.1021/ac035367b] [PMID: 15228322]
[86]
Peduru Hewa, T.M.; Tannock, G.A.; Mainwaring, D.E.; Harrison, S.; Fecondo, J.V. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J. Virol. Methods, 2009, 162(1-2), 14-21.
[http://dx.doi.org/10.1016/j.jviromet.2009.07.001] [PMID: 19628008]
[87]
Mavrikou, S.; Papaioannou, G.M.; Tsekouras, V.; Hatziagapiou, K.; Tatsi, E.B.; Filippatos, F.; Kanaka-Gantenbein, C.; Michos, A.; Kintzios, S. Ultra-fast and sensitive screening for antibodies against the SARS-CoV-2 S1 spike antigen with a portable bioelectric biosensor. Chemosensors, 2022, 10(7), 254.
[http://dx.doi.org/10.3390/chemosensors10070254]
[88]
Lanzarini, N.M.; Bentes, G.A.; Volotão, E.M.; Pinto, M.A. Use of chicken immunoglobulin Y in general virology. J. Immunoassay Immunochem., 2018, 39(3), 235-248.
[http://dx.doi.org/10.1080/15321819.2018.1500375] [PMID: 30044696]
[89]
Tran, L.T.; Tran, T.Q.; Ho, H.P.; Chu, X.T.; Mai, T.A. Simple label-free electrochemical immunosensor in a microchamber for detecting newcastle disease virus. J. Nanomater., 2019, 2019
[http://dx.doi.org/10.1155/2019/3835609]
[90]
Ge, S.; Wu, R.; Zhou, T.; Liu, X.; Zhu, J.; Zhang, X. Specific anti-SARS-CoV-2 S1 IgY-scFv is a promising tool for recognition of the virus. AMB Express, 2022, 12(1), 18.
[http://dx.doi.org/10.1186/s13568-022-01355-4] [PMID: 35150368]
[91]
Alhakimi, T.; Subroto, T.; Yusuf, M.; Arnafia, W.; Maskoen, A.M.; Gumilar, G.; Suwendar, S.; Anshori, I. Development of SarS-Cov-2 antigen detection kit based on immunoglobulin Y (Igy) using surface plasmon resonance (SPr). Biomed. Pharmacol. J., 2021, 14(4), 2029-2039.
[http://dx.doi.org/10.13005/bpj/2300]
[92]
Al-Qaoud, K.M.; Obeidat, Y.M.; Al-Omari, T.; Okour, M.; Al-Omari, M.M.; Ahmad, M.I.; Alshadfan, R.; Rawashdeh, A.M. The development of an electrochemical immunosensor utilizing chicken IgY anti-spike antibody for the detection of SARS-CoV-2. Sci. Rep., 2024, 14(1), 748.
[http://dx.doi.org/10.1038/s41598-023-50501-w] [PMID: 38185704]
[93]
Center for Biologics Evaluation and Research. Immune Globulins. Available from: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/immune-globulins (Accessed on: October 28, 2023).
[94]
U.S. National Library of Medicine. Clinical Trials. Available from: https://clinicaltrials.gov/ (Accessed on: October 28, 2023).
[95]
Center for Devices and Radiological Health. in vitro diagnostics EUAs - antigen diagnostic tests for SARS-CoV-2. Available from: in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-2">https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-2 (Accessed on: October 28, 2023).
[96]
Mei, X.; Gu, P.; Shen, C.; Lin, X.; Li, J. Computer-based immunoinformatic analysis to predict candidate t-cell epitopes for SARS-CoV-2 vaccine design. Front. Immunol., 2022, 13, 847617.
[http://dx.doi.org/10.3389/fimmu.2022.847617] [PMID: 35432316]
[97]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[98]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 183(6), 1735.
[99]
Vishwakarma, P.; Yadav, N.; Rizvi, Z.A.; Khan, N.A.; Chiranjivi, A.K.; Mani, S.; Bansal, M.; Dwivedi, P.; Shrivastava, T.; Kumar, R.; Awasthi, A.; Ahmed, S.; Samal, S. Severe acute respiratory syndrome coronavirus 2 spike protein based novel epitopes induce potent immune responses in vivo and inhibit viral replication in vitro. Front. Immunol., 2021, 12, 613045.
[http://dx.doi.org/10.3389/fimmu.2021.613045] [PMID: 33841395]
[100]
Albagi, A.S.O.; Nour, A.M.Y.; Elhag, M.; Abdelihalim, A.T.I.; Haroun, E.M.; Essa, M.E.A.; Abubaker, M.; Deka, H.; Ghosh, A.; Hassan, M.A. A multiple peptides vaccine against COVID-19 designed from the nucleocapsid phosphoprotein (N) and Spike Glycoprotein (S) via the immunoinformatics approach. Informat. Med. Unlock., 2020, 21, 100476.
[101]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[102]
El-Kafrawy, S.A.; Abbas, A.T.; Sohrab, S.S.; Tabll, A.A.; Hassan, A.M.; Iwata-Yoshikawa, N.; Nagata, N.; Azhar, E.I. Immunotherapeutic efficacy of IgY antibodies targeting the full-length spike protein in an animal model of middle east respiratory syndrome coronavirus infection. Pharmaceuticals, 2021, 14(6), 511.
[http://dx.doi.org/10.3390/ph14060511] [PMID: 34073502]
[103]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[104]
Rudrapal, M.; Celik, I.; Chinnam, S.; Ansari, A.M.; Khan, J.; Alghamdi, S.; Almehmadi, M.; Zothantluanga, J.H.; Khairnar, S.J. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J. Biol. Sci., 2022, 29(5), 3456-3465.
[http://dx.doi.org/10.1016/j.sjbs.2022.02.028] [PMID: 35233172]
[105]
Rudrapal, M.; Issahaku, A.R.; Agoni, C.; Bendale, A.R.; Nagar, A.; Soliman, M.E.S.; Lokwani, D. in silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2. J. Biomol. Struct. Dyn., 2022, 40(20), 10437-10453.
[http://dx.doi.org/10.1080/07391102.2021.1944909] [PMID: 34182889]
[106]
Le, K.P.B.; Do, P.C.; Amaro, R.E.; Le, L. Molecular docking of broad-spectrum antibodies on hemagglutinins of influenza A virus. Evol. Bioinform. Online, 2019, 15
[http://dx.doi.org/10.1177/1176934319876938] [PMID: 31555044]
[107]
Bhattacharjee, A.; Sabino, R. M.; Gangwish, J.; Manivasagam, V. K.; James, S.; Popat, K. C.; Reynolds, M.; Li, Y. V. A novel colorimetric biosensor for detecting SARS-CoV-2 by utilizing the interaction between nucleocapsid antibody and spike proteins. in vitro Models, 2022, 1(3), 241-247.
[108]
Breshears, L.E.; Nguyen, B.T.; Robles, M.S.; Wu, L.; Yoon, J.Y. Biosensor detection of airborne respiratory viruses such as SARS-CoV-2. SLAS Technol., 2022, 27(1), 4-17.
[http://dx.doi.org/10.1016/j.slast.2021.12.004] [PMID: 35058206]
[109]
Nguyen, H.Q.; Bui, H.K.; Phan, V.M.; Seo, T.S. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens. Bioelectron., 2022, 195, 113655.
[http://dx.doi.org/10.1016/j.bios.2021.113655] [PMID: 34571479]
[110]
Ma, Y.; Luo, Y.; Feng, X.; Huang, C.; Shen, X. Smartphone-controlled biosensor for viral respiratory infectious diseases: Screening and response. Talanta, 2023, 254, 124167.
[http://dx.doi.org/10.1016/j.talanta.2022.124167] [PMID: 36493567]
[111]
Yakhkeshi, S.; Wu, R.; Chelliappan, B.; Zhang, X. Trends in industrialization and commercialization of IgY technology. Front. Immunol., 2022, 13, 991931.
[http://dx.doi.org/10.3389/fimmu.2022.991931] [PMID: 36341353]
[112]
Zhang, X.; Isah, M.B.; Dang, M.; Morgan, P.M.; Sienczyk, M.; Bradley, D.; Chacana, P. Editorial: IgY technology: Theory, technical aspects, applications, and innovations. Front. Immunol., 2023, 14, 1267926.
[http://dx.doi.org/10.3389/fimmu.2023.1267926] [PMID: 37662904]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy