Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment

Author(s): Tugba Ozer* and Charles S. Henry

Volume 24, Issue 11, 2024

Published on: 20 February, 2024

Page: [952 - 972] Pages: 21

DOI: 10.2174/0115680266286981240207053402

Price: $65

Abstract

An individual’s therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.

Graphical Abstract

[1]
He, Y.; Barreiros, M.I.E.; Cader, H. Personalized medicine: Manufacturing oral solid dosage forms through additive manufacturing. In: Additive Manufacturing; Springer, 2022; pp. 113-150.
[2]
Sanganyado, E. Policies and regulations for the emerging pollutants in freshwater ecosystems: Challenges and opportunities. In: Emerging Freshwater Pollutants; Dalu, T.; Tavengwa, N.T., Eds.; Elsevier, 2022; pp. 361-372.
[http://dx.doi.org/10.1016/B978-0-12-822850-0.00007-7]
[3]
Spencer, M.R.; Miniño, A.M.; Warner, M.J.N.d.b. Drug overdose deaths in the United States. 2022. Available from: https://www.cdc.gov/nchs/nvss/drug-overdose-deaths.htm
[4]
Mišík, M.; Filipic, M.; Nersesyan, A.; Kundi, M.; Isidori, M.; Knasmueller, S. Environmental risk assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate). Water Res., 2019, 164, 114953.
[http://dx.doi.org/10.1016/j.watres.2019.114953] [PMID: 31404901]
[5]
Lima, H.R.S.; da Silva, J.S.; de Oliveira Farias, E.A.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.C.C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron., 2018, 108, 27-37.
[http://dx.doi.org/10.1016/j.bios.2018.02.034] [PMID: 29494885]
[6]
Cook, M.A.; Wright, G.D.J. The past, present, and future of antibiotics. Sci. Transl. Med., 2022, 14(657), abo7793.
[http://dx.doi.org/10.1126/scitranslmed.abo7793]
[7]
Anderson, D.B.; Shaheed, C.A.J. Medications for treating low back pain in adults. Evidence for the use of paracetamol, opioids, nonsteroidal anti-inflammatories, muscle relaxants, antibiotics, and antidepressants: An overview for musculoskeletal clinicians. J. Orthop. Sports Phys. Ther., 2022, 52(7), 425-431.
[8]
Alvarez-Bagnarol, Y.; Marchette, R.C.N.; Francis, C.; Morales, M.; Vendruscolo, L.F. Neuronal correlates of hyperalgesia and somatic signs of heroin withdrawal in male and female mice. eNeuro, 2022, 9(4), ENEURO.0106-22.2022.
[http://dx.doi.org/10.1523/ENEURO.0106-22.2022] [PMID: 35728954]
[9]
Montgomery, L.S.J. Pain management with opioids in adults. J. Neurosci. Res., 2022, 100(1), 10-18.
[http://dx.doi.org/10.1002/jnr.24695]
[10]
Gillette, J.R.; Mitchell, J.R.; Brodie, B.B.J. Biochemical mechanisms of drug toxicity. Annual Rev. Pharmacol., 1974, 14(1), 271-288.
[http://dx.doi.org/10.1146/annurev.pa.14.040174.001415]
[11]
Noah, N.M.; Ndangili, P.M. Nanosensor arrays: Innovative approaches for medical diagnosis. In: Nanosensors for Futuristic Smart and Intelligent Healthcare Systems; CRC Press, 2022.
[12]
Priyanka, S.; Sachin, D.; Sharma, D.K. Electrochemical behaviour and adsorptive stripping voltammetric determination of cyclophosphamide. Chem. Sci. Trans., 2018, 7(2), 229-239.
[13]
de Araujo, W.R. Portable analytical platforms for forensic chemistry: A review. Anal. Chim. Acta., 2018, 1034, 1-21.
[http://dx.doi.org/10.1016/j.aca.2018.06.014]
[14]
Ates, H.C. On-site therapeutic drug monitoring. Trends Biotechnol., 2020, 38(11), 1262-1277.
[http://dx.doi.org/10.1016/j.tibtech.2020.03.001]
[15]
Eivazzadeh-Keihan, R. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J., 2022, 442(1), 136183.
[http://dx.doi.org/10.1016/j.cej.2022.136183]
[16]
Malathi, S. Disposable biosensors based on metal nanoparticles. Sens. Int., 2022, 3, 100169.
[http://dx.doi.org/10.1016/j.sintl.2022.100169]
[17]
Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth Sci, 2023, 8(2), 140-146.
[18]
Baran, A.; Fırat Baran, M.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; İrtegün Kandemir, S.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; Rosić, G.; Selakovic, D.; Eftekhari, A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front. Bioeng. Biotechnol., 2022, 10, 855136.
[http://dx.doi.org/10.3389/fbioe.2022.855136] [PMID: 35330628]
[19]
Baran, A.; Baran, M.F.; Keskin, C.; Kandemir, S.I.; Valiyeva, M.; Mehraliyeva, S.; Khalilov, R.; Eftekhari, A. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. J. Nanomater., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/2270472]
[20]
Zhou, F. Flexible electrochemical sensor with Fe/Co bimetallic oxides for sensitive analysis of glucose in human tears. Anal. Chim. Acta., 2023, 1243, 340781.
[21]
Fu, X.; Ding, B.; D'Alessandro, D.J.C. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coordina. Chem. Rev., 2023, 475, 214814.
[http://dx.doi.org/10.1016/j.ccr.2022.214814]
[22]
Mehmandoust, M.; Soylak, M.; Erk, N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta, 2023, 253, 123991.
[http://dx.doi.org/10.1016/j.talanta.2022.123991] [PMID: 36228557]
[23]
Hu, X. An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A: Use of magnetic field improved molecularly imprinted polymer. In: Sensors and Actuators B: Chemical; Elsevier, 2022; p. 131582.
[http://dx.doi.org/10.1016/j.snb.2022.131582]
[24]
Lee, M.-H. Peptide-imprinted conductive polymer on continuous monolayer molybdenum disulfide transferred electrodes for electrochemical sensing of Matrix Metalloproteinase-1 in lung cancer culture medium. In: Biosensors and Bioelectronics: X; Elsevier, 2023.
[http://dx.doi.org/10.1016/j.biosx.2022.100258]
[25]
Afsharara, H. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. TrAC, Trends Anal. Chem., 2023, 160, 116949.
[26]
Mathad, A.; Korgaonkar, K.; Jaldappagari, S.; Kalanur, S. Ultrasensitive electrochemical sensor based on SnO2 anchored 3D porous reduced graphene oxide nanostructure produced via sustainable green protocol for subnanomolar determination of anti-diabetic drug, repaglinide. Chemosensors, 2023, 11(1), 50.
[http://dx.doi.org/10.3390/chemosensors11010050]
[27]
Nandhini, S.N. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon, 2023, 9(2), e13128.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13128]
[28]
Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta, 2022, 238(Pt 2), 123046.
[http://dx.doi.org/10.1016/j.talanta.2021.123046] [PMID: 34801903]
[29]
Chhikara, B.S.; Parang, K.J.C. Global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Lett., 2023, 10(1), 451.
[30]
Ghalkhani, M. Application of nanomaterials in development of electrochemical sensors and drug delivery systems for anticancer drugs and cancer biomarkers. Crit. Rev. Anal. Chem., 2022, 52(3), 481-503.
[http://dx.doi.org/10.1080/10408347.2020.1808442]
[31]
Nussbaumer, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034]
[32]
Rottenberg, S.; Disler, C.; Perego, P.J.N.R.C. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer, 2021, 21(1), 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y]
[33]
Sikes, R.J.B. Chemistry and pharmacology of anticancer drugs. Br. J. Cancer, 2007, 97, 1713.
[http://dx.doi.org/10.1038/sj.bjc.6604075]
[34]
Gholivand, M.B.; Ahmadi, E.; Mavaei, M. A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug. Sens. Actuators B Chem., 2019, 299, 126975.
[http://dx.doi.org/10.1016/j.snb.2019.126975]
[35]
Vaneev, A.N.; Gorelkin, P.V.; Krasnovskaya, O.O.; Akasov, R.A.; Spector, D.V.; Lopatukhina, E.V.; Timoshenko, R.V.; Garanina, A.S.; Zhang, Y.; Salikhov, S.V.; Edwards, C.R.W.; Klyachko, N.L.; Takahashi, Y.; Majouga, A.G.; Korchev, Y.E.; Erofeev, A.S. in vitro / in vivo electrochemical detection of Pt(II) species. Anal. Chem., 2022, 94(12), 4901-4905.
[http://dx.doi.org/10.1021/acs.analchem.2c00136] [PMID: 35285614]
[36]
Pereira, M.; Vale, N.J.M. Two possible strategies for drug modification of gemcitabine and future contributions to personalized medicine. Molecules, 2022, 27(1), 291.
[37]
Comandatore, A. Potential role of exosomes in the chemoresistance to gemcitabine and nab-paclitaxel in pancreatic cancer. Diagnostics, 2022, 12(2), 286.
[http://dx.doi.org/10.3390/diagnostics12020286]
[38]
Shoja, Y.; Kermanpur, A.; Karimzadeh, F.; Ghodsi, J.; Rafati, A.A.; Adhami, S. Electrochemical molecularly bioimprinted siloxane biosensor on the basis of core/shell silver nanoparticles/EGFR exon 21 L858R point mutant gene/siloxane film for ultra-sensing of Gemcitabine as a lung cancer chemotherapy medication. Biosens. Bioelectron., 2019, 145, 111611.
[http://dx.doi.org/10.1016/j.bios.2019.111611] [PMID: 31550632]
[39]
Hatamluyi, B.; Sadeghzadeh, S.; Sadeghian, R.; Mirimoghaddam, M.M.; Boroushaki, M.T. A signal on-off ratiometric electrochemical sensing platform coupled with a molecularly imprinted polymer and CuCo2O4/NCNTs signal amplification for selective determination of gemcitabine. Sens. Actuators B Chem., 2022, 371, 132552.
[http://dx.doi.org/10.1016/j.snb.2022.132552]
[40]
Taza, F. Maintenance oral etoposide after high-dose chemotherapy (HDCT) for patients with relapsed metastatic germ-cell tumors (mGCT). Clin. Genitourin. Cancer., 2023, 21(2), 213-220.
[41]
Vajedi, F.; Dehghani, H. A high-sensitive electrochemical DNA biosensor based on a novel ZnAl/layered double hydroxide modified cobalt ferrite-graphene oxide nanocomposite electrophoretically deposited onto FTO substrate for electroanalytical studies of etoposide. Talanta, 2020, 208, 120444.
[http://dx.doi.org/10.1016/j.talanta.2019.120444] [PMID: 31816745]
[42]
Özkan, A.; Atar, N.; Yola, M.L. Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, etoposide. Biosens. Bioelectron., 2019, 130, 293-298.
[http://dx.doi.org/10.1016/j.bios.2019.01.053] [PMID: 30776616]
[43]
Kalmanti, L. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia, 2015, 29(5), 1123-1132.
[http://dx.doi.org/10.1038/leu.2015.36]
[44]
Maekawa, K. Impacts of SNPs on adverse events and trough concentration of imatinib in patients with gastrointestinal stromal tumors. Drug Metab. Pharmacokinet., 2022, 43, 100441.
[http://dx.doi.org/10.1016/j.dmpk.2021.100441]
[45]
Strobelt, R. Imatinib inhibits SARS-CoV-2 infection by an off-target-mechanism. Sci. Rep., 2022, 12(1), 5728.
[http://dx.doi.org/10.1038/s41598-022-09664-1]
[46]
Gęca, I.; Korolczuk, M.J.E. Sensitive adsorptive stripping voltammetric procedure of Imatinib determination in spiked urine samples using solid lead microelectrode. Electroanalysis, 2023, 36(1)
[47]
Ghapanvari, M.; Madrakian, T.; Afkhami, A.; Ghoorchian, A. A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug. J. Appl. Electrochem., 2020, 50(2), 281-294.
[http://dx.doi.org/10.1007/s10800-019-01388-x]
[48]
Navin, K.; Kurchania, R. Nanosensors based on magnetic materials. In: Emerging Applications of Low Dimensional Magnets; , 2022; pp. 115-136.
[http://dx.doi.org/10.1201/9781003196952-8]
[49]
Deng, B. Scalable preparation of MWCNTs/PAN conductive composite fibers with Tai Chi structure for thermotherapy textiles. In: Composites Science and Technology; Elsevier, 2023.
[50]
Hua, Y.; Kukkar, D.; Brown, R.J.C.; Kim, K-H. Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites. Crit. Rev. Environ. Sci. Technol., 2023, 53(2), 258-289.
[http://dx.doi.org/10.1080/10643389.2022.2050161]
[51]
Hassan Pour, B.; Haghnazari, N.; Keshavarzi, F.; Ahmadi, E.; Rahimian Zarif, B. High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite. Microchem. J., 2021, 165, 106147.
[http://dx.doi.org/10.1016/j.microc.2021.106147]
[52]
Rezvani Jalal, N.; Madrakian, T.; Afkhami, A.; Ghoorchian, A. In situ growth of metal–organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing performance in imatinib determination. ACS Appl. Mater. Interfaces, 2020, 12(4), 4859-4869.
[http://dx.doi.org/10.1021/acsami.9b18097] [PMID: 31908170]
[53]
Kilickap, S.; Cakar, M.; Onal, I.K.; Tufan, A.; Akoglu, H.; Aksoy, S.; Erman, M.; Tekuzman, G. Nonconvulsive status epilepticus due to ifosfamide. Ann. Pharmacother., 2006, 40(2), 332-335.
[http://dx.doi.org/10.1345/aph.1G363] [PMID: 16449538]
[54]
Kalambate, P.K.; Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Mikrochim. Acta, 2020, 187(7), 402.
[http://dx.doi.org/10.1007/s00604-020-04366-9] [PMID: 32572633]
[55]
Tsai, H.L.; Huang, C.W.; Lin, Y.W.; Wang, J.H.; Wu, C.C.; Sung, Y.C.; Chen, T.L.; Wang, H.M.; Tang, H.C.; Chen, J.B.; Ke, T.W.; Tsai, C.S.; Huang, H.Y.; Wang, J.Y. Determination of the UGT1A1 polymorphism as guidance for irinotecan dose escalation in metastatic colorectal cancer treated with first-line bevacizumab and FOLFIRI (PURE FIST). Eur. J. Cancer, 2020, 138, 19-29.
[http://dx.doi.org/10.1016/j.ejca.2020.05.031] [PMID: 32829105]
[56]
Ibrahim, H.; Temerk, Y. Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan. Mikrochim. Acta, 2020, 187(10), 579.
[http://dx.doi.org/10.1007/s00604-020-04560-9] [PMID: 32979090]
[57]
Unal, D.N.; Sadak, S.; Uslu, B. A review on electrochemical and optical sensing platform based on ionic liquids for different molecules determination. Crit. Rev. Anal. Chem., 2023, 53(4), 798-824.
[http://dx.doi.org/10.1080/10408347.2021.1978055] [PMID: 34632874]
[58]
Hatamluyi, B.; Es’haghi, Z.; Modarres Zahed, F.; Darroudi, M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. Sens. Actuators B Chem., 2019, 286, 540-549.
[http://dx.doi.org/10.1016/j.snb.2019.02.017]
[59]
Borse, S.; Murthy, Z.V.P.; Kailasa, S.K. Fabrication of water-soluble blue emitting molybdenum nanoclusters for sensitive detection of cancer drug methotrexate. J. Photochem. Photobiol. Chem., 2023, 435, 114323.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114323]
[60]
Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Harvey, R.D. Preventing and managing toxicities of high-dose methotrexate. Oncologist, 2016, 21(12), 1471-1482.
[http://dx.doi.org/10.1634/theoncologist.2015-0164] [PMID: 27496039]
[61]
Jandaghi, N.; Jahani, S.; Foroughi, M.M.; Kazemipour, M.; Ansari, M. Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate. Mikrochim. Acta, 2020, 187(1), 24.
[http://dx.doi.org/10.1007/s00604-019-4016-2] [PMID: 31807919]
[62]
Zarean Mousaabadi, K.; Ensafi, A.A.; Rezaei, B. Electrochemical sensor for the determination of methotrexate based on MOF-Derived NiO/Ni@C-Poly(isonicotinic acid). Ind. Eng. Chem. Res., 2023, 62(11), 4603-4610.
[http://dx.doi.org/10.1021/acs.iecr.2c03091]
[63]
Laine, L. Approaches to nonsteroidal anti-inflammatory drug use in the high-risk patient. Gastroenterology, 2001, 120(3), 594-606.
[http://dx.doi.org/10.1053/gast.2001.21907] [PMID: 11179238]
[64]
Liu, Z.; Yuan, Z.; Hu, W.; Chen, Z. Electrochemically deposition of metal-organic framework onto carbon fibers for online in-tube solid-phase microextraction of non-steroidal anti-inflammatory drugs. J. Chromatogr. A, 2022, 1673, 463129.
[http://dx.doi.org/10.1016/j.chroma.2022.463129] [PMID: 35567815]
[65]
Fu, Q.; Fedrizzi, D.; Kosfeld, V.; Schlechtriem, C.; Ganz, V.; Derrer, S.; Rentsch, D.; Hollender, J. Biotransformation changes bioaccumulation and toxicity of diclofenac in aquatic organisms. Environ. Sci. Technol., 2020, 54(7), 4400-4408.
[http://dx.doi.org/10.1021/acs.est.9b07127] [PMID: 32036646]
[66]
Gan, T.J. Diclofenac: An update on its mechanism of action and safety profile. Curr. Med. Res. Opin., 2010, 26(7), 1715-1731.
[http://dx.doi.org/10.1185/03007995.2010.486301] [PMID: 20470236]
[67]
Li, S.; Chen, H.; Liu, X.; Li, P.; Wu, W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int. J. Biol. Macromol., 2022, 218, 473-487.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.124] [PMID: 35870627]
[68]
Durairaj, V.; Liljeström, T.; Wester, N.; Engelhardt, P.; Sainio, S.; Wilson, B.P.; Li, P.; Kontturi, K.S.; Tammelin, T.; Laurila, T.; Koskinen, J. Role of nanocellulose in tailoring electroanalytical performance of hybrid nanocellulose/multiwalled carbon nanotube electrodes. Cellulose, 2022, 29(17), 9217-9233.
[http://dx.doi.org/10.1007/s10570-022-04836-8]
[69]
Durairaj, V.; Li, P.; Liljeström, T.; Wester, N.; Etula, J.; Leppänen, I.; Ge, Y.; Kontturi, K.S.; Tammelin, T.; Laurila, T.; Koskinen, J. Functionalized nanocellulose/multiwalled carbon nanotube composites for electrochemical applications. ACS Appl. Nano Mater., 2021, 4(6), 5842-5853.
[http://dx.doi.org/10.1021/acsanm.1c00774]
[70]
Shalauddin, M.; Akhter, S.; Basirun, W.J.; Bagheri, S.; Anuar, N.S.; Johan, M.R. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim. Acta, 2019, 304, 323-333.
[http://dx.doi.org/10.1016/j.electacta.2019.03.003]
[71]
Khoobi, A.; Soltani, N.; Aghaei, M. Computational design and multivariate statistical analysis for electrochemical sensing platform of iron oxide nanoparticles in sensitive detection of anti-inflammatory drug diclofenac in biological fluids. J. Alloys Compd., 2020, 831, 154715.
[http://dx.doi.org/10.1016/j.jallcom.2020.154715]
[72]
Bukkitgar, S.D.; Shetti, N.P. Fabrication of a TiO 2 and clay nanoparticle composite electrode as a sensor. Anal. Methods, 2017, 9(30), 4387-4393.
[http://dx.doi.org/10.1039/C7AY01068K]
[73]
Killedar, L.; Ilager, D.; Shetti, N.P.; Aminabhavi, T.M.; Raghava Reddy, K. Synthesis of ruthenium doped titanium dioxide nanoparticles for the electrochemical detection of diclofenac sodium. J. Mol. Liq., 2021, 340, 116891.
[http://dx.doi.org/10.1016/j.molliq.2021.116891]
[74]
El-Wekil, M.M.; Alkahtani, S.A.; Ali, H.R.H.; Mahmoud, A.M. Advanced sensing nanomaterials based carbon paste electrode for simultaneous electrochemical measurement of esomeprazole and diclofenac sodium in human serum and urine samples. J. Mol. Liq., 2018, 262, 495-503.
[http://dx.doi.org/10.1016/j.molliq.2018.04.120]
[75]
Kokab, T.; Shah, A.; Khan, M.A.; Arshad, M.; Nisar, J.; Ashiq, M.N.; Zia, M.A. Simultaneous femtomolar detection of paracetamol, diclofenac, and orphenadrine using a carbon nanotube/zinc oxide nanoparticle-based electrochemical sensor. ACS Appl. Nano Mater., 2021, 4(5), 4699-4712.
[http://dx.doi.org/10.1021/acsanm.1c00310]
[76]
Lahcen, A.A.; Surya, S.G.; Beduk, T.; Vijjapu, M.T.; Lamaoui, A.; Durmus, C.; Timur, S.; Shekhah, O.; Mani, V.; Amine, A.; Eddaoudi, M.; Salama, K.N. Metal–organic frameworks meet molecularly imprinted polymers: Insights and prospects for sensor applications. ACS Appl. Mater. Interfaces, 2022, 14(44), 49399-49424.
[http://dx.doi.org/10.1021/acsami.2c12842] [PMID: 36315467]
[77]
Mostafavi, M.; Yaftian, M.R.; Piri, F.; Shayani-Jam, H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron., 2018, 122, 160-167.
[http://dx.doi.org/10.1016/j.bios.2018.09.047] [PMID: 30265965]
[78]
Shalauddin, M.; Akhter, S.; Basirun, W.J.; Akhtaruzzaman, M.; Mohammed, M.A.; Rahman, N.M.M.A.; Salleh, N.M. Bio-synthesized copper nanoparticle decorated multiwall carbon nanotube-nanocellulose nanocomposite: An electrochemical sensor for the simultaneous detection of acetaminophen and diclofenac sodium. Surf. Interfaces, 2022, 34, 102385.
[http://dx.doi.org/10.1016/j.surfin.2022.102385]
[79]
Nakashima, J.; Preuss, C.V. Mesalamine (USAN). In: StatPearls; StatPearls Publishing, 2023.
[80]
Hwa, K.Y.; Santhan, A.; Sharma, T.S.K. One-dimensional self-assembled Co2SnO4 nanosphere to nanocubes intertwined in two-dimensional reduced graphene oxide: an intriguing electrocatalytic sensor toward mesalamine detection. Mater. Today Chem., 2022, 23, 100739.
[http://dx.doi.org/10.1016/j.mtchem.2021.100739]
[81]
Guirguis-Blake, J.M.; Evans, C.V.; Perdue, L.A.; Bean, S.I.; Senger, C.A. Aspirin Use to Prevent Cardiovascular Disease and Colorectal Cancer. JAMA, 2022, 327(16), 1585-1597.
[http://dx.doi.org/10.1001/jama.2022.3337] [PMID: 35471507]
[82]
Feminus, J.J.; Deepa, P.J.M.C. Fabrication and application of electrodeposited CdSe QD/Meso-silica/rGO electrode as an electrochemical sensor. 2022, 289, 126440.
[83]
He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J. Preparation of Cu2O-reduced graphene nanocomposite modified electrodes towards ultrasensitive dopamine detection. Sensors, 2018, 18(2), 199.
[http://dx.doi.org/10.3390/s18010199] [PMID: 29329206]
[84]
Ying, J.; Zheng, Y.; Huaiwei, Z.; Fu, L. Room temperature biosynthesis of gold nanoparticles with Lycoris aurea leaf extract for the electrochemical determination of aspirin. Rev. Mex. Ing. Quim., 2019, 19(2), 585-592.
[http://dx.doi.org/10.24275/rmiq/Mat741]
[85]
Brillas, E.J.C. A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. Chemosphere, 2022, 286(Pt 3), 131849.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131849]
[86]
Stoytcheva, M. A zirconia-nanoparticles-modified carbon paste electrode for voltammetric determination of ibuprofen. ChemistrySelect, 2022, 9(4)
[http://dx.doi.org/10.1002/slct.202203950]
[87]
Swiech, O.; Majdecki, M.; Bilewicz, R.J.A.A.P.M. PEGylated network nanostructured by gold nanoparticles for electrochemical sensing of aromatic redox and nonredox analytes. ACS Appl. Polym. Mater., 2023, 5(1), 214-222.
[http://dx.doi.org/10.1021/acsapm.2c01451]
[88]
Nair, A.S.; Sooraj, M.P. Molecular imprinted polymer-wrapped AgNPs-decorated acid-functionalized graphene oxide as a potent electrochemical sensor for ibuprofen. J. Mater. Sci., 2020, 55(8), 3700-3711.
[http://dx.doi.org/10.1007/s10853-019-04258-1]
[89]
Moeinpour, F. Exploiting of green synthesized doped metal oxide nanosensor for electrochemical determination of aspirin and ibuprofen in biological and pharmaceutical samples. Iran. J. Anal. Chem., 2021, 8(2), 69-79.
[90]
Clissold, S.P.J.D. Paracetamol and phenacetin. Drugs, 1986, 32(S4), 46-59.
[http://dx.doi.org/10.2165/00003495-198600324-00005]
[91]
Venkata Prasad, G.; Vinothkumar, V.; Joo Jang, S.; Eun Oh, D.; Hyun Kim, T. Multi-walled carbon nanotube/graphene oxide/poly(threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples. Microchem. J., 2023, 184, 108205.
[http://dx.doi.org/10.1016/j.microc.2022.108205]
[92]
Rashmi, B.N.; Harlapur, S.F.; Gurushantha, K.; Ravikumar, C.R.; Kumar, M.R.A.; Santosh, M.S.; Kumar, V.G.D.; Kumar, A.N.; Azad, A.K.; Ananda Murthy, H.C. Facile green synthesis of lanthanum oxide nanoparticles using Centella Asiatica and Tridax plants: Photocatalytic, electrochemical sensor and antimicrobial studies. Appl. Surf. Sci. Adv., 2022, 7, 100210.
[http://dx.doi.org/10.1016/j.apsadv.2022.100210]
[93]
Shivashankar, A.; Prashantha, S.C.; Anantharaju, K.S.; Malini, S.; Manjunatha, H.C.; Vidya, Y.S.; Sridhar, K.N.; Munirathnam, R. Rod shaped zirconium titanate nanoparticles: Synthesis, comparison and systematic investigation of structural, photoluminescence, electrochemical sensing and supercapacitor properties. Ceram. Int., 2022, 48(23), 35676-35688.
[http://dx.doi.org/10.1016/j.ceramint.2022.05.254]
[94]
Abraham, P. Review on the progress in electrochemical detection of morphine based on different modified electrodes. J. Electrochem. Soc., 2020, 167, 037559.
[http://dx.doi.org/10.1149/1945-7111/ab6cf6]
[95]
Maccaferri, G. Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples. Sens. Actuators B Chem., 2019, 281, 739-745.
[http://dx.doi.org/10.1016/j.snb.2018.10.163]
[96]
Aliabadi, A.; Rounaghi, G.H. A novel electrochemical sensor for determination of morphine in a sub-microliter of human urine sample. J. Electroanal. Chem., 2019, 832, 204-208.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.052]
[97]
Rajaei, M. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J. Mol. Liquids, 2019, 284, 462-47.
[98]
Mahmoudi-Moghaddam, H.; Amiri, M.; Javar, H.A.; Yousif, Q.A.; Salavati-Niasari, M. A facile green synthesis of a perovskite-type nanocomposite using Crataegus and walnut leaf for electrochemical determination of morphine. Anal. Chim. Acta, 2022, 1203, 339691.
[http://dx.doi.org/10.1016/j.aca.2022.339691] [PMID: 35361418]
[99]
Tompa, D.R. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol., 2021, 175, 524-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.076]
[100]
Shahrokhian, S. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 53, 134-141.
[101]
Wei, Y. Ultrasensitive electrochemical detection for nanomolarity Acyclovir at ferrous molybdate nanorods and graphene oxide composited glassy carbon electrode. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects; Elsevier, 2022.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128601]
[102]
Chu, K. Efficient Electrocatalytic Nitrogen Fixation on FeMoO4 Nanorods. ACS Appl. Mater. Interfaces., 2020, 12(10), 11789-11796.
[http://dx.doi.org/10.1021/acsami.0c00860]
[103]
Lotfi, Z.; Gholivand, M.B.; Shamsipur, M.; mirzaei, M. An electrochemical sensor based on Ag nanoparticles decorated on cadmium sulfide nanowires/reduced graphene oxide for the determination of acyclovir. J. Alloys Compd., 2022, 903, 163912.
[http://dx.doi.org/10.1016/j.jallcom.2022.163912]
[104]
Lieberman, P.; Anderson, J.A. Allergic diseases: diagnosis and treatment; Springer, 2007.
[http://dx.doi.org/10.1007/978-1-59745-382-0]
[105]
Soliman, R.M.; Rostom, Y.; Mahmoud, A.M.; Fayez, Y.M.; Mostafa, N.M.; Monir, H.H. Novel fabricated potentiometric sensors for selective determination of carbinoxamine with different greenness evaluation perspectives. Microchem. J., 2023, 187, 108381.
[http://dx.doi.org/10.1016/j.microc.2022.108381]
[106]
Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. RETRACTED ARTICLE: Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol., 2021, 166(3), 949-954.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[107]
Erk, N.; Mehmandoust, M.; Soylak, M. Electrochemical sensing of favipiravir with an innovative water-dispersible molecularly imprinted polymer based on the bimetallic metal-organic framework: comparison of morphological effects. Biosensors, 2022, 12(9), 769.
[http://dx.doi.org/10.3390/bios12090769] [PMID: 36140154]
[108]
Wang, S.; Wang, C.; Xin, Y.; Li, Q.; Liu, W. Core–shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples. Mikrochim. Acta, 2022, 189(3), 125.
[http://dx.doi.org/10.1007/s00604-022-05213-9] [PMID: 35229221]
[109]
El-Wekil, M.M.; Hayallah, A.M.; Abdelgawad, M.A.; Abourehab, M.A.S.; Shahin, R.Y. Nanocomposite of gold nanoparticles@nickel disulfide-plant derived carbon for molecularly imprinted electrochemical determination of favipiravir. J. Electroanal. Chem., 2022, 922, 116745.
[http://dx.doi.org/10.1016/j.jelechem.2022.116745]
[110]
Liu, C.; Li, B.; Liu, M.; Mao, S. Demand, status, and prospect of antibiotics detection in the environment. Sens. Actuators B Chem., 2022, 369, 132383.
[http://dx.doi.org/10.1016/j.snb.2022.132383]
[111]
Pollap, A.; Kochana, J. Electrochemical immunosensors for antibiotic detection. Biosensors, 2019, 9(2), 61.
[http://dx.doi.org/10.3390/bios9020061] [PMID: 31052356]
[112]
Gielen, V.; Johnston, S.L.; Edwards, M.R. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur. Respir. J., 2010, 36(3), 646-654.
[http://dx.doi.org/10.1183/09031936.00095809] [PMID: 20150207]
[113]
Sharma, T.S.K.; Hwa, K.Y. Architecting hierarchal Zn3V2O8/P-rGO nanostructure: Electrochemical determination of anti-viral drug azithromycin in biological samples using SPCE. Chem. Eng. J., 2022, 439, 135591.
[http://dx.doi.org/10.1016/j.cej.2022.135591]
[114]
Mostafazadeh, R.; Karimi-Maleh, H.; Ghaffarinejad, A.; Tajabadi, F.; Hamidian, Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon–CoFe2O4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. Appl. Nanosci., 2023, 13(9), 5829-5838.
[http://dx.doi.org/10.1007/s13204-023-02773-x] [PMID: 36710715]
[115]
Rebelo, P.; Pacheco, J.G.; Cordeiro, M.N.D.S.; Melo, A.; Delerue-Matos, C. Azithromycin electrochemical detection using a molecularly imprinted polymer prepared on a disposable screen-printed electrode. Anal. Methods, 2020, 12(11), 1486-1494.
[http://dx.doi.org/10.1039/C9AY02566A]
[116]
El Sayed, H.; Shalaby, S.; Abdel-Halim, M.R.E.; Aboelfadl, D.M.; Samir, N. Efficacy of doxycycline in the treatment of early stages of mycosis fungoides: A randomized controlled trial. J. Dermatolog. Treat., 2021, 32(4), 424-431.
[http://dx.doi.org/10.1080/09546634.2019.1667474] [PMID: 31526286]
[117]
Xu, Z.; Jiang, X.; Liu, S.; Yang, M. Sensitive and selective molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for doxycycline hyclate determination. Chin. Chem. Lett., 2020, 31(1), 185-188.
[http://dx.doi.org/10.1016/j.cclet.2019.04.026]
[118]
Rkik, M.; Brahim, M.B.; Samet, Y. Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode. J. Electroanal. Chem., 2017, 794, 175-181.
[http://dx.doi.org/10.1016/j.jelechem.2017.04.015]
[119]
Assaf, H.F.; Shamroukh, A.A.; Rabie, E.M.; Khodari, M. Green synthesis of CaO nanoparticles conjugated with l-Methionine polymer film to modify carbon paste electrode for the sensitive detection of levofloxacin antibiotic. Mater. Chem. Phys., 2023, 294, 127054.
[http://dx.doi.org/10.1016/j.matchemphys.2022.127054]
[120]
Guan, J.; He, K.; Gunasekaran, S. Selection of ssDNA aptamer using GO-SELEX and Development of DNA nanostructure-based electrochemical aptasensor for penicillin. In: Biosensors and Bioelectronics: X; Elsevier, 2022; p. 4134081.
[http://dx.doi.org/10.1016/j.biosx.2022.100220]
[121]
Cetinkaya, A.; Yıldız, E.; Kaya, S.I.; Çorman, M.E.; Uzun, L.; Ozkan, S.A. A green synthesis route to develop molecularly imprinted electrochemical sensor for selective detection of vancomycin from aqueous and serum samples. Green Analytical Chemistry, 2022, 2, 100017.
[http://dx.doi.org/10.1016/j.greeac.2022.100017]
[122]
Blidar, A.; Feier, B.; Pusta, A.; Drăgan, A-M.; Cristea, C. Graphene–gold nanostructures hybrid composites screen-printed electrode for the sensitive electrochemical detection of vancomycin. Coatings, 2019, 9(10), 652.
[http://dx.doi.org/10.3390/coatings9100652]
[123]
Gill, A.A.S.; Singh, S.; Agrawal, N.; Nate, Z.; Chiwunze, T.E.; Thapliyal, N.B.; Chauhan, R.; Karpoormath, R. A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Mikrochim. Acta, 2020, 187(1), 79.
[http://dx.doi.org/10.1007/s00604-019-4015-3] [PMID: 31897733]
[124]
Pandey, S.P.; Jha, P.; Nadimetla, D.N.; Bhosale, S.V.; Singh, P.K. A tetracationic aggregation induced emission-based probe for efficient and improved detection of Heparin. Sens. Actuators B Chem., 2022, 353, 131016.
[http://dx.doi.org/10.1016/j.snb.2021.131016]
[125]
Rengaraj, A.; Haldorai, Y.; Hwang, S.K.; Lee, E.; Oh, M.H.; Jeon, T.J.; Han, Y.K.; Huh, Y.S. A protamine-conjugated gold decorated graphene oxide composite as an electrochemical platform for heparin detection. Bioelectrochemistry, 2019, 128, 211-217.
[http://dx.doi.org/10.1016/j.bioelechem.2019.04.002] [PMID: 31030173]
[126]
Shishkanova, T.V.; Bříza, T.; Řezanka, P.; Kejík, Z.; Jakubek, M. Pentamethinium salts nanocomposite for electrochemical detection of heparin. Materials, 2021, 14(18), 5357.
[http://dx.doi.org/10.3390/ma14185357] [PMID: 34576581]
[127]
Tian, L.; Zhao, H.; Zhao, Z.; Zhai, J.; Zhang, Z. A facile voltammetric method for detection of heparin in plasma based on the polyethylenimine modified electrode. Anal. Methods, 2019, 11(10), 1324-1330.
[http://dx.doi.org/10.1039/C8AY02722F]
[128]
Zheng, A.; Zhang, W.; Li, C.; Guo, Z.; Li, C.; Zhang, C.; Yao, J.; Zhang, Z.; Li, J.; Zhao, S.; Zhou, L. The heparinase-linked differential time method allows detection of heparin potency in whole blood with high sensitivity and dynamic range. Biosens. Bioelectron., 2022, 198, 113856.
[http://dx.doi.org/10.1016/j.bios.2021.113856] [PMID: 34871836]
[129]
Silva, S.; Almeida, A.; Vale, N. Importance of nanoparticles for the delivery of antiparkinsonian drugs. Pharmaceutics, 2021, 13(4), 508.
[http://dx.doi.org/10.3390/pharmaceutics13040508] [PMID: 33917696]
[130]
Suarez-Cedeno, G.; Suescun, J.; Schiess, M.C. Earlier intervention with deep brain stimulation for parkinson's disease. Parkinsons. Dis., 2017, 2017, 9358153.
[http://dx.doi.org/10.1155/2017/9358153]
[131]
Blair, H.A.; Dhillon, S. Safinamide: A review in Parkinson’s disease. CNS Drugs, 2017, 31(2), 169-176.
[http://dx.doi.org/10.1007/s40263-017-0408-1] [PMID: 28110399]
[132]
El-sayed, H.M.; Abdel-Raoof, A.M.; Abdellatef, H.E.; Hendawy, H.A.M.; El-Abassy, O.M.; Ibrahim, H. Versatile eco-friendly electrochemical sensor based on chromium-doped zinc oxide nanoparticles for determination of safinamide aided by green assessment criteria. Microchem. J., 2022, 182, 107900.
[http://dx.doi.org/10.1016/j.microc.2022.107900]
[133]
Lynch, H.N.; Gloekler, L.E.; Allen, L.H.; Maskrey, J.R.; Bevan, C.; Maier, A. Analysis of dermal exposure assessment in the US Environmental Protection Agency Toxic Substances Control Act risk evaluations of chemical manufacturing. Toxicol. Ind. Health, 2023, 39(1), 49-65.
[http://dx.doi.org/10.1177/07482337221140946] [PMID: 36420912]
[134]
Kowtharapu, L.P.; Katari, N.K.; Sandoval, C.A.; Rekulapally, V.K.; Jonnalagadda, S.B. Green chromatographic method for determination of active pharmaceutical ingredient, preservative, and antioxidant in an injectable formulation: robustness by design expert. ACS Omega, 2022, 7(38), 34098-34108.
[http://dx.doi.org/10.1021/acsomega.2c03387] [PMID: 36188248]
[135]
Moema, D.; Makwakwa, T.A.; Gebreyohannes, B.E.; Dube, S.; Nindi, M.M. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: Greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale. J. Food Compos. Anal., 2023, 117, 105131.
[http://dx.doi.org/10.1016/j.jfca.2023.105131]
[136]
Stoytcheva, M.; Zlatev, R.; Velkova, Z.; Gochev, V.; Valdez, B.; Curiel, M. A zirconia-nanoparticles-modified carbon paste electrode for voltammetric determination of ibuprofen. ChemistrySelect, 2022, 7(48), e202203950.
[http://dx.doi.org/10.1002/slct.202203950]
[137]
Wei, Y.; Yao, L.; Wu, Y.; Liu, X.; Feng, J.; Ding, J.; Li, K.; He, Q. Ultrasensitive electrochemical detection for nanomolarity Acyclovir at ferrous molybdate nanorods and graphene oxide composited glassy carbon electrode. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128601.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128601]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy