Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Promising Potential of Curcumin and Related Compounds for Antiviral Drug Discovery

Author(s): Archana Sharma, Twinkle Sharma, Rajveer Bhaskar, Monika Ola, Alok Sharma and Prabodh Chander Sharma*

Volume 20, Issue 6, 2024

Published on: 02 April, 2024

Page: [597 - 612] Pages: 16

DOI: 10.2174/0115734064277371240325105016

Price: $65

Abstract

Viruses are acellular, microscopic, and mobile particles containing genetic particles, either DNA/RNA strands as nucleoproteins, responsible for 69,53,743 deaths till the year 2023. Curcumin and related compounds are among the areas of pivotal interest for researchers because of their versatile pharmacological profile. Chemically known as diferuloylmethane, which is a main constituent of turmeric along with demethoxycurcumin and bisdemethoxycurcumin, they have a broad spectrum of antiviral activity against viruses such as human immunodeficiency virus, herpes simplex virus, influenza virus (Avian influenza) and Hepatitis C virus HIV. The possible role of curcumin as an antiviral agent may be attributed to the activation of the 20S proteasome, a cellular machinery responsible for degrading unfolded or misfolded proteins in a ubiquitin-independent manner. It shows suppression of HBV entry at various infection stages by inhibiting cccDNA replication by inhibiting the Wnt/β-catenin signaling pathway to attenuate IAV-induced myocarditis.

Graphical Abstract

[1]
Li, C.Z.; Chang, H.M.; Hsu, W.L.; Venkatesan, P.; Lin, M.H.C.; Lai, P.S. Curcumin-loaded oil-free self-assembled micelles inhibit the influenza A virus activity and the solidification of curcumin-loaded micelles for pharmaceutical applications. Pharmaceutics, 2022, 14(11), 2422.
[http://dx.doi.org/10.3390/pharmaceutics14112422] [PMID: 36365240]
[2]
Kharb, R.; Yar, S.M.; Sharma, C.P. Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev. Med. Chem., 2011, 11(1), 84-96.
[http://dx.doi.org/10.2174/138955711793564051] [PMID: 21034403]
[3]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027]
[4]
Upadhyay, H.C. Exploring nature’s treasure for drug discovery. Lett. Drug Des. Discov., 2023, 20(4), 373-374.
[http://dx.doi.org/10.2174/157018082004230113144404]
[5]
Patel, V.K.; Shirbhate, E.; Patel, P.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Corticosteroids for treatment of COVID-19: Effect, evidence, expectation and extent. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 78.
[http://dx.doi.org/10.1186/s43088-021-00165-0] [PMID: 34751250]
[6]
Saini, N.; Sharma, A.; Thakur, V.K.; Makatsoris, C.; Dandia, A.; Bhagat, M.; Tonk, R.K.; Sharma, P.C. Microwave assisted green synthesis of thiazolidin-4-one derivatives: A perspective on potent antiviral and antimicrobial activities. Curr. Res. Green Sustain. Chem., 2020, 3, 100021.
[http://dx.doi.org/10.1016/j.crgsc.2020.100021]
[7]
Upadhyay, H.C. Coumarin-1,2,3-triazole hybrid molecules: An emerging scaffold for combating drug resistance. Curr. Top. Med. Chem., 2021, 21(8), 737-752.
[http://dx.doi.org/10.2174/1568026621666210303145759] [PMID: 33655863]
[8]
Dwivedi, G.R.; Singh, A.; Upadhyay, H.C.; Pati, S.; Singh, D.P.; Prasad, K.N.; Darokar, M.P.; Srivastava, S.K. Determination of drug resistance mechanism (s) of clinical isolates of P. aeruginosa and phytoex-tract as drug resistance reversal agent. EC Microbiolog., 2017, 13(1), 35-41.
[9]
Sharma, D.; Sharma, N.; Manchanda, N.; Prasad, S.K.; Sharma, P.C.; Thakur, V.K.; Rahman, M.M.; Dhobi, M. Bioactivity and in silico studies of isoquinoline and related alkaloids as promising antiviral agents: An insight. Biomolecules, 2022, 13(1), 17.
[http://dx.doi.org/10.3390/biom13010017] [PMID: 36671402]
[10]
Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother., 2021, 140, 111596.
[http://dx.doi.org/10.1016/j.biopha.2021.111596] [PMID: 34126315]
[11]
Chattopadhyay, D.; Sarkar, M.C.; Chatterjee, T.; Sharma Dey, R.; Bag, P.; Chakraborti, S.; Khan, M.T.H. Recent advancements for the evaluation of anti-viral activities of natural products. N. Biotechnol., 2009, 25(5), 347-368.
[http://dx.doi.org/10.1016/j.nbt.2009.03.007] [PMID: 19464980]
[12]
Srivastava, B.B.L.; Ripanda, A.S.; Mwanga, H.M. Ethnomedicinal, phytochemistry and antiviral potential of turmeric (Curcuma longa). Compounds, 2022, 2(3), 200-221.
[http://dx.doi.org/10.3390/compounds2030017]
[13]
Pizzo, M.M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral activity exerted by natural products against human viruses. Viruses, 2021, 13(5), 828.
[http://dx.doi.org/10.3390/v13050828] [PMID: 34064347]
[14]
Moghadamtousi, Z.S.; Kadir, A.H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[15]
Chen, B.; Zhu, Z.; Chen, M.; Dong, W.; Li, Z. Viral infectious disease and natural products with antiviral activity. J. Mol. Struct., 2014, 1061, 134-139.
[http://dx.doi.org/10.1016/j.molstruc.2013.12.083]
[16]
Sharma, P.C.; Saini, A.; Bansal, K.K.; Sharma, A.; Gupta, G.K. Design, synthesis and molecular docking studies of some thiazole clubbed heterocyclic compounds as possible anti-infective agents. Lett. Org. Chem., 2018, 15(8), 716-726.
[http://dx.doi.org/10.2174/1570178615666180425120039]
[17]
Jennings, M.R.; Parks, R.J. Curcumin as an antiviral agent. Viruses, 2020, 12(11), 1242.
[http://dx.doi.org/10.3390/v12111242] [PMID: 33142686]
[18]
Hagerman, A.E. Tannin—protein interactions. In: Phenolic Compounds in Food and Their Effects on Health I; American Chemical Society, 1992; pp. 236-247.
[http://dx.doi.org/10.1021/bk-1992-0506]
[19]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[20]
Yang, M.; Lee, G.; Si, J.; Lee, S.J.; You, H.; Ko, G. Curcumin shows antiviral properties against norovirus. Molecules, 2016, 21(10), 1401.
[http://dx.doi.org/10.3390/molecules21101401] [PMID: 27775614]
[21]
Pillay, D.; Zambon, M. Antiviral drug resistance. BMJ, 1998, 317(7159), 660-662.
[http://dx.doi.org/10.1136/bmj.317.7159.660] [PMID: 9728000]
[22]
Lal, J.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Eur. J. Med. Chem., 2013, 64, 579-588.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.012] [PMID: 23685942]
[23]
Lee, G.Y.; Lee, J.S.; Son, C.G.; Lee, N.H. Combating drug resistance in colorectal cancer using herbal medicines. Chin. J. Integr. Med., 2021, 27(7), 551-560.
[http://dx.doi.org/10.1007/s11655-020-3425-8] [PMID: 32740824]
[24]
Goyal, R.; Sharma, A.; Thakur, V.K.; Ola, M.; Sharma, P.C. Green chemistry approaches towards the design and synthesis of anti-infective fluoroquinolone derivatives. Curr. Res. Green Sustain. Chem., 2021, 4, 100044.
[http://dx.doi.org/10.1016/j.crgsc.2020.100044]
[25]
Chopra, H.; Dey, P.S.; Das, D.; Bhattacharya, T.; Shah, M.; Mubin, S.; Maishu, S.P.; Akter, R.; Rahman, M.H.; Karthika, C.; Murad, W.; Qusty, N.; Qusti, S.; Alshammari, E.M.; Batiha, G.E.S.; Altalbawy, F.M.A.; Albooq, M.I.M.; Alamri, B.M. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules, 2021, 26(16), 4998.
[http://dx.doi.org/10.3390/molecules26164998] [PMID: 34443593]
[26]
Verma, R.K.; Kumari, P.; Maurya, R.K.; Verma, R.; Singh, R.K. Medicinal properties of turmeric (Curcuma longa L.): A review. Int. J. Chem. Stud., 2018, 6(4), 1354-1357.
[27]
Singh, U.; Barik, A.; Singh, B.G.; Priyadarsini, K.I. Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure–activity relationship. Free Radic. Res., 2011, 45(3), 317-325.
[http://dx.doi.org/10.3109/10715762.2010.532493] [PMID: 21034358]
[28]
Roughley, P.J.; Whiting, D.A. Experiments in the biosynthesis of curcumin. J. Chem. Soc., Perkin Trans. 1, 1973, 1, 2379.
[http://dx.doi.org/10.1039/p19730002379]
[29]
Ardebili, A.; Pouriayevali, M.H.; Aleshikh, S.; Zahani, M.; Ajorloo, M.; Izanloo, A.; Siyadatpanah, A.; Nikoo, R.H.; Wilairatana, P.; Coutinho, H.D.M. Antiviral therapeutic potential of curcumin: An update. Molecules, 2021, 26(22), 6994.
[http://dx.doi.org/10.3390/molecules26226994] [PMID: 34834089]
[30]
Akram, M.; Ahmed, A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: A review article. Rom.J.Biol.Plant Biol, 2010, 55(2), 65-70.
[31]
Reolon, J.B.; Brustolin, M.; Accarini, T.; Viçozzi, G.P.; Sari, M.H.M.; Bender, E.A.; Haas, S.E.; Brum, M.C.S.; Gündel, A.; Colomé, L.M. Co-encapsulation of acyclovir and curcumin into microparticles improves the physicochemical characteristics and potentiates in vitro antiviral action: Influence of the polymeric composition. Eur. J. Pharm. Sci., 2019, 131, 167-176.
[http://dx.doi.org/10.1016/j.ejps.2019.02.019] [PMID: 30790703]
[32]
Tabanelli, R.; Brogi, S.; Calderone, V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics, 2021, 13(10), 1715.
[http://dx.doi.org/10.3390/pharmaceutics13101715] [PMID: 34684008]
[33]
Gopi, S.; Jacob, J.; Varma, K.; Jude, S.; Amalraj, A.; Arundhathy, C.A.; George, R.; Sreeraj, T.R.; Divya, C.; Kunnumakkara, A.B.; Stohs, S.J. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open‐label parallel‐arm study. Phytother. Res., 2017, 31(12), 1883-1891.
[http://dx.doi.org/10.1002/ptr.5931] [PMID: 29027274]
[34]
Jamwal, R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. J. Integr. Med., 2018, 16(6), 367-374.
[http://dx.doi.org/10.1016/j.joim.2018.07.001] [PMID: 30006023]
[35]
Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules, 2020, 25(6), 1397.
[http://dx.doi.org/10.3390/molecules25061397] [PMID: 32204372]
[36]
Cheng, C.; Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7(42), 25978-25986.
[http://dx.doi.org/10.1039/C7RA02861J]
[37]
Gupta, A.P.; Khan, S.; Manzoor, M.M.; Yadav, A.K.; Sharma, G.; Anand, R.; Gupta, S. Anticancer curcumin: Natural analogues and structure-activity relationship. In: Studies in Natural Products Chemistry; Elsevier, 2017; 54, pp. 355-401.
[http://dx.doi.org/10.1016/B978-0-444-63929-5.00010-3]
[38]
James, J.S. Curcumin: clinical trial finds no antiviral effect. AIDS Treat. News, 1996, (242), 1-2.
[PMID: 11363190]
[39]
Prasad, S.; Tyagi, A.K. Curcumin and its analogues: A potential natural compound against HIV infection and AIDS. Food Funct., 2015, 6(11), 3412-3419.
[http://dx.doi.org/10.1039/C5FO00485C] [PMID: 26404185]
[40]
Mazumder, A.; Raghavan, K.; Weinstein, J.; Kohn, K.W.; Pommier, Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol., 1995, 49(8), 1165-1170.
[http://dx.doi.org/10.1016/0006-2952(95)98514-A] [PMID: 7748198]
[41]
Mazumder, A.; Neamati, N.; Pilon, A.A.; Sunder, S.; Pommier, Y. Chemical trapping of ternary complexes of human immunodeficiency virus type 1 integrase, divalent metal, and DNA substrates containing an abasic site. Implications for the role of lysine 136 in DNA binding. J. Biol. Chem., 1996, 271(44), 27330-27338.
[http://dx.doi.org/10.1074/jbc.271.44.27330] [PMID: 8910309]
[42]
Pedersen, U.; Rasmussen, P.B.; Lawesson, S.O. Synthesis of naturally occurring curcuminoids and related compounds. Liebigs Ann. Chem., 1985, 1985(8), 1557-1569.
[http://dx.doi.org/10.1002/jlac.198519850805]
[43]
Wei, Z.Q. Curcumin inhibits hepatitis B virus infection by down-regulating CccDNA-bound histone acetylation. World J. Gastroenterol., 2017, 23, 6252-6260.
[44]
Mehendale, R.; Joshi, M.; Patravale, V.B. Nanomedicines for treatment of viral diseases. Crit. Rev. Ther. Drug. Carrier. Syst., 2013, 30(1), 1-49.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005469]
[45]
Ferreira, V.H.; Nazli, A.; Dizzell, S.E.; Mueller, K.; Kaushic, C. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PLoS One, 2015, 10(4), e0124903.
[http://dx.doi.org/10.1371/journal.pone.0124903] [PMID: 25856395]
[46]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[47]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[48]
Wang, L.; Li, C.; Guo, H.; Kern, T.S.; Huang, K.; Zheng, L. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One, 2011, 6(8), e23194.
[http://dx.doi.org/10.1371/journal.pone.0023194] [PMID: 21858029]
[49]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[50]
Guo, L.; Xing, Y.; Pan, R.; Jiang, M.; Gong, Z.; Lin, L.; Wang, J.; Xiong, G.; Dong, J. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis. PLoS One, 2013, 8(8), e70565.
[http://dx.doi.org/10.1371/journal.pone.0070565] [PMID: 23936448]
[51]
Gupta, S.C.; Sung, B.; Kim, J.H.; Prasad, S.; Li, S.; Aggarwal, B.B. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol. Nutr. Food Res., 2013, 57(9), 1510-1528.
[http://dx.doi.org/10.1002/mnfr.201100741] [PMID: 22887802]
[52]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[53]
Dong, J.; Guo, L.; Xing, Y.; Jiang, M.; Lin, L.; Wang, J.; Xiong, G. Curcumin protects microglia and primary cortical neurons against HIV-mediated inflammation and apoptosis. J. Immunol., 2013, 190, 118.
[54]
Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol., 2018, 9, 386.
[http://dx.doi.org/10.3389/fphar.2018.00386] [PMID: 29731715]
[55]
Sharma, A.; Yadav, A.; Gupta, N.; Sharma, S.; Kakkar, R.; Cwiklinski, K.; Quaye, E.; Mahajan, S.D.; Schwartz, S.A.; Sharma, K.R. Multifunctional mesoporous curcumin encapsulated iron-phenanthroline nanocluster: A new Anti-HIV agent. Colloids Surf. B Biointerfaces, 2019, 180, 289-297.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.057] [PMID: 31071568]
[56]
Vajragupta, O.; Boonchoong, P.; Morris, G.M.; Olson, A.J. Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg. Med. Chem. Lett., 2005, 15(14), 3364-3368.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.032] [PMID: 15950462]
[57]
Chondrogianni, N.; Sakellari, M.; Lefaki, M.; Papaevgeniou, N.; Gonos, E.S. Proteasome activation delays aging in vitro and in vivo. Free Radic. Biol. Med., 2014, 71, 303-320.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.031] [PMID: 24681338]
[58]
Ali, A.; Banerjea, A.C. Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci. Rep., 2016, 6(1), 27539.
[http://dx.doi.org/10.1038/srep27539] [PMID: 27283735]
[59]
Haslett, P.A.J.; Klausner, J.D.; Makonkawkeyoon, S.; Moreira, A.; Metatratip, P.; Boyle, B.; Kunachiwa, W.; Maneekarn, N.; Vongchan, P.; Corral, L.G.; Elbeik, T.; Shen, Z.; Kaplan, G. Thalidomide stimulates T cell responses and interleukin 12 production in HIV-infected patients. AIDS Res. Hum. Retroviruses, 1999, 15(13), 1169-1179.
[http://dx.doi.org/10.1089/088922299310269] [PMID: 10480630]
[60]
Cohly, H.; Asad, S.; Das, S.; Angel, M.; Rao, M. Effect of antioxidant (turmeric, turmerin and curcumin) on human immunodeficiency virus. Int. J. Mol. Sci., 2003, 4(2), 22-33.
[http://dx.doi.org/10.3390/i4020022]
[61]
Anggakusuma, A.; Colpitts, C.C.; Schang, L.M.; Rachmawati, H.; Frentzen, A.; Pfaender, S.; Behrendt, P.; Brown, R.J.P.; Bankwitz, D.; Steinmann, J.; Ott, M.; Meuleman, P.; Rice, C.M.; Ploss, A.; Pietschmann, T.; Steinmann, E. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut, 2014, 63(7), 1137-1149.
[http://dx.doi.org/10.1136/gutjnl-2012-304299] [PMID: 23903236]
[62]
Mandal, A.; Hazra, B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother. Res., 2023, 37(10), 4353-4374.
[http://dx.doi.org/10.1002/ptr.7936]
[63]
Rechtman, M.M. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett., 2010, 584, 2485-2490.
[64]
Kim, H.J. Antiviral efect of Curcuma Longa linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124, 189-196.
[65]
Chen, S.; Zhang, L.; Chen, Y.; Fu, L. Inhibiting sodium taurocholate cotransporting polypeptide in HBV-related diseases: From biological function to therapeutic potential. J. Med. Chem., 2022, 65(19), 12546-12561.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01097] [PMID: 36111355]
[66]
Ngiamsuntorn, S.K.; Thongsri, P.; Pewkliang, Y.; Borwornpinyo, S.; Wongkajornsilp, A. A competent hepatocyte model examining hepatitis B virus entry through sodium taurocholate cotransporting polypeptide as a therapeutic target. J. Vis. Exp., 2022, (183), E63761.
[PMID: 35635460]
[67]
Thongsri, P.; Pewkliang, Y.; Borwornpinyo, S.; Wongkajornsilp, A.; Hongeng, S.; Sa-ngiamsuntorn, K. Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci. Rep., 2021, 11(1), 19125.
[http://dx.doi.org/10.1038/s41598-021-98243-x] [PMID: 34580340]
[68]
Pécheur, E.I. Curcumin against hepatitis C virus infection: Spicing up antiviral therapies with ‘nutraceuticals’? Gut, 2014, 63(7), 1035-1037.
[http://dx.doi.org/10.1136/gutjnl-2013-305646] [PMID: 24092864]
[69]
Pawlotsky, J.M.; Chevaliez, S.; McHutchison, J.G. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology, 2007, 132(5), 1979-1998.
[http://dx.doi.org/10.1053/j.gastro.2007.03.116] [PMID: 17484890]
[70]
Li, C.J.; Zhang, L.J.; Dezube, B.J.; Crumpacker, C.S.; Pardee, A.B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc. Natl. Acad. Sci., 1993, 90(5), 1839-1842.
[http://dx.doi.org/10.1073/pnas.90.5.1839] [PMID: 8446597]
[71]
Weber, J.M.; Umunyana, R.A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral. Res., 2003, 58, 167-173.
[72]
Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: Molecular mechanisms and therapeutic potential. Front. Biosci., 2007, 12(12), 4839-4854.
[http://dx.doi.org/10.2741/2432] [PMID: 17569614]
[73]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt‐SREBP‐1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[74]
Shlomai, A.; Paran, N.; Shaul, Y. PGC-1α controls hepatitis B virus through nutritional signals. Proc. Natl. Acad. Sci., 2006, 103(43), 16003-16008.
[http://dx.doi.org/10.1073/pnas.0607837103] [PMID: 17043229]
[75]
Rechtman, M.M.; Noy, H.O.; Yishay, B.I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down‐regulation of the metabolic coactivator PGC‐1α. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[76]
Liu, X.; Liu, M.; Yuan, W.; Chang, H.; Li, Y.; Chen, Z.; Deng, Y.; Li, R.; Wan, Y.; Jiang, Z.; Fan, X. Anti–viral effects of curcumin on influenza A virus–induced myocarditis via inhibiting Wnt/β–catenin signaling. Cent. Eur. J. Immunol., 2013, 38(3), 328-335.
[77]
Lai, Y.; Yan, Y.; Liao, S.; Li, Y.; Ye, Y.; Liu, N.; Zhao, F.; Xu, P. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch. Pharm. Res., 2020, 43(5), 489-502.
[PMID: 32248350]
[78]
Dai, J.; Gu, L.; Su, Y.; Wang, Q.; Zhao, Y.; Chen, X.; Deng, H.; Li, W.; Wang, G.; Li, K. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int. Immunopharmacol., 2018, 54, 177-187.
[http://dx.doi.org/10.1016/j.intimp.2017.11.009] [PMID: 29153953]
[79]
Kim, M.; Choi, H.; Kim, S.; Kang, L.W.; Kim, Y.B. Elucidating the effects of curcumin against influenza using in silico and in vitro approaches. Pharmaceuticals, 2021, 14(9), 880.
[http://dx.doi.org/10.3390/ph14090880] [PMID: 34577580]
[80]
Richart, S.M.; Li, Y.L.; Mizushina, Y.; Chang, Y.Y.; Chung, T.Y.; Chen, G.H.; Tzen, J.T.C.; Shia, K.S.; Hsu, W.L. Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. Yao Wu Shi Pin Fen Xi, 2018, 26(3), 1015-1023.
[PMID: 29976394]
[81]
Han, S.; Xu, J.; Guo, X.; Huang, M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin. Exp. Pharmacol. Physiol., 2018, 45(1), 84-93.
[http://dx.doi.org/10.1111/1440-1681.12848] [PMID: 28853207]
[82]
Umar, S.; Shah, M.A.A.; Munir, M.T.; Yaqoob, M.; Fiaz, M.; Anjum, S.; Kaboudi, K.; Bouzouaia, M.; Younus, M.; Nisa, Q.; Iqbal, M.; Umar, W. RETRACTED: Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in Turkeys. Poult. Sci., 2016, 95(7), 1513-1520.
[http://dx.doi.org/10.3382/ps/pew069] [PMID: 26944958]
[83]
Chen, D.Y.; Shien, J.H.; Tiley, L.; Chiou, S.S.; Wang, S.Y.; Chang, T.J.; Lee, Y.J.; Chan, K.W.; Hsu, W.L. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem., 2010, 119(4), 1346-1351.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.011]
[84]
Zhu, L.; Ding, X.; Zhang, D.; Yuan, C.H.; Wang, J.; Ndegwa, E.; Zhu, G. Curcumin inhibits bovine herpesvirus type 1 entry into MDBK cells. Acta Virol., 2015, 59(3), 221-227.
[http://dx.doi.org/10.4149/av_2015_03_221] [PMID: 26435144]
[85]
Lafferty, W.E.; Downey, L.; Celum, C.; Wald, A. Herpes simplex virus type 1 as a cause of genital herpes: impact on surveillance and prevention. J. Infect. Dis., 2000, 181(4), 1454-1457.
[http://dx.doi.org/10.1086/315395] [PMID: 10762576]
[86]
Kutluay, S.B.; Doroghazi, J.; Roemer, M.E.; Triezenberg, S.J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology, 2008, 373(2), 239-247.
[http://dx.doi.org/10.1016/j.virol.2007.11.028] [PMID: 18191976]
[87]
Flores, D.J.; Lee, L.H.; Adams, S.D. Inhibition of curcumin-treated herpes simplex virus 1 and 2 in vero cells. Adv. Microbiol., 2016, 6(4), 276-287.
[http://dx.doi.org/10.4236/aim.2016.64027]
[88]
Šudomová, M.; Hassan, S.T.S. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: Mechanisms and pathways. Microorganisms, 2021, 9(2), 292.
[http://dx.doi.org/10.3390/microorganisms9020292] [PMID: 33572685]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy