Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Systematic Review Article

Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2

Author(s): Suvendu Ghosh, Partha Sarathi Singha, Lakshmi Kanta Das and Debosree Ghosh*

Volume 20, Issue 6, 2024

Published on: 12 January, 2024

Page: [613 - 629] Pages: 17

DOI: 10.2174/0115734064262843231120051452

Price: $65

Abstract

Background: Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2).

Methods and Materials: Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19.

Results: Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus.

Conclusion: The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.

Graphical Abstract

[1]
Behl, T.; Rocchetti, G.; Chadha, S.; Zengin, G.; Bungau, S.; Kumar, A.; Mehta, V.; Uddin, M.S.; Khullar, G.; Setia, D.; Arora, S.; Sinan, K.I.; Ak, G.; Putnik, P.; Gallo, M.; Montesano, D. Phytochemicals from plant foods as potential source of antiviral agents: an overview. Pharmaceuticals (Basel), 2021, 14(4), 381.
[http://dx.doi.org/10.3390/ph14040381] [PMID: 33921724]
[2]
Koonin, E.V.; Starokadomskyy, P. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Biol. Biomed. Sci., 2016, 59, 125-134.
[http://dx.doi.org/10.1016/j.shpsc.2016.02.016] [PMID: 26965225]
[3]
Zareifopoulos, N.; Lagadinou, M.; Karela, A.; Kyriakopoulou, O.; Velissaris, D. Neuropsychiatric effects of antiviral drugs. Cureus, 2020, 12(8), e9536.
[http://dx.doi.org/10.7759/cureus.9536] [PMID: 32905132]
[4]
Mauss, S. Treatment of viral hepatitis in HIV–coinfected patients–adverse events and their management. J. Hepatol., 2006, 44(1), S114-S118.
[http://dx.doi.org/10.1016/j.jhep.2005.11.024] [PMID: 16356579]
[5]
Mohanty, S.S.; Sahoo, C.R.; Paidesetty, S.K.; Padhy, R.N. Role of phytocompounds as the potential anti-viral agent: An overview. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(10), 2311-2329.
[http://dx.doi.org/10.1007/s00210-023-02517-2] [PMID: 37160482]
[6]
Nik Mohamad Nek Rahimi, N.; Natrah, I.; Loh, J.Y.; Ranzil, F.K.; Gina, M.; Lim, S.H.E.; Lai, K.S.; Chong, C.M. Phytocompounds as an alternative antimicrobial approach in aquaculture. Antibiotics (Basel), 2022, 11(4), 469.
[http://dx.doi.org/10.3390/antibiotics11040469] [PMID: 35453220]
[7]
Ghosh, D.; Firdaus, S.B.; Mitra, E.; Dey, M.; Bandyopadhyay, D. Protective effect of aqueous leaf extract of Murraya koenigii against lead induced oxidative stress in rat liver, heart and kidney: A dose response study. Asian J. Pharm. Clin. Res., 2012, 5(4), 54-58.
[8]
Mitra, E.; Ghosh, A.K.; Ghosh, D.; Mukherjee, D.; Chattopadhyay, A.; Dutta, S.; Pattari, S.K.; Bandyopadhyay, D. Protective effect of aqueous Curry leaf (Murraya koenigii) extract against cadmium-induced oxidative stress in rat heart. Food Chem. Toxicol., 2012, 50(5), 1340-1353.
[http://dx.doi.org/10.1016/j.fct.2012.01.048] [PMID: 22342528]
[9]
Firenzuoli, F.; Gori, L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Alternat. Med., 2007, 4(s1), 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[10]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[11]
Liu, A.L.; Du, G.H. Antiviral properties of phytochemicals. Dietary Phytochemicals and Microbes., 2012, 18, 93-126.
[http://dx.doi.org/10.1007/978-94-007-3926-0_3]
[12]
Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: recent updates. Plant-derived Bioactives., 2020, 12, 279-295.
[http://dx.doi.org/10.1007/978-981-15-1761-7_12]
[13]
Romero-Pérez, G.A.; Egashira, M.; Harada, Y.; Tsuruta, T.; Oda, Y.; Ueda, F.; Tsukahara, T.; Tsukamoto, Y.; Inoue, R. Orally administered Salacia reticulata extract reduces H1N1 influenza clinical symptoms in murine lung tissues putatively due to enhanced natural killer cell activity. Front. Immunol., 2016, 7, 115.
[http://dx.doi.org/10.3389/fimmu.2016.00115] [PMID: 27066007]
[14]
Choi, J.G.; Jin, Y.H.; Lee, H.; Oh, T.W.; Yim, N.H.; Cho, W.K.; Ma, J.Y. Protective effect of Panax notoginseng root water extract against influenza A virus infection by enhancing antiviral interferon-mediated immune responses and natural killer cell activity. Front. Immunol., 2017, 8, 1542.
[http://dx.doi.org/10.3389/fimmu.2017.01542] [PMID: 29181006]
[15]
Alfajaro, M.M.; Kim, H.J.; Park, J.G.; Ryu, E.H.; Kim, J.Y.; Jeong, Y.J.; Kim, D.S.; Hosmillo, M.; Son, K.Y.; Lee, J.H.; Kwon, H.J.; Ryu, Y.B.; Park, S.J.; Park, S.I.; Lee, W.S.; Cho, K.O. Anti-rotaviral effects of Glycyrrhiza uralensis extract in piglets with rotavirus diarrhea. Virol. J., 2012, 9(1), 310.
[http://dx.doi.org/10.1186/1743-422X-9-310] [PMID: 23244491]
[16]
Kaliyaperumal, S.; Periyasamy, K.; Balakrishnan, U.; Palanivel, P.; Egbuna, C. Antiviral phytocompounds for drug development: A data mining studies. Phytochemicals as Lead Compounds for New Drug Discovery; Elsevier: Amsterdam, 2020.
[17]
Malekmohammad, K.; Rafieian-Kopaei, M. Mechanistic aspects of medicinal plants and secondary metabolites against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Curr. Pharm. Des., 2021, 27(38), 3996-4007.
[http://dx.doi.org/10.2174/18734286MTE2hNDY1x] [PMID: 34225607]
[18]
Claus-Desbonnet, H.; Nikly, E.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S.; Pierre, G.; Benbassat, N.; Katsarov, P.; Michaud, P.; Lukova, P.; Delattre, C. Polysaccharides and their derivatives as potential antiviral molecules. Viruses, 2022, 14(2), 426.
[http://dx.doi.org/10.3390/v14020426] [PMID: 35216019]
[19]
Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res., 2022, 36(1), 266-278.
[http://dx.doi.org/10.1002/ptr.7309] [PMID: 34709675]
[20]
Parida, P.; Yadav, R.N.S.; Dehury, B.; Ghosh, D.; Mahapatra, N.; Mitra, A.; Mohanta, T.K. Novel insights into the molecular interaction of a Panduratin: A derivative with the Non Structural protein (NS3) of dengue serotypes: A molecular dynamics study. Curr. Pharm. Biotechnol., 2017, 18(9), 769-782.
[PMID: 29173158]
[21]
Ghosh, D.; Parida, P. Multipotential therapeutic bioactive compound. Panduratin A. Everyman’s Science., 2020, 2020(1-2), 24-29.
[22]
National Cancer Institute. Lead compounds. 2023. Available From: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/lead-compound
[23]
Singha, P.S.; Jana, A.K.; Ghosh, D.; Firdaus, S.B. Antiviral phytochemicals from Adhatoda vasica, a traditional medicinal plant of India. Plant a valuable resource of Sustainable Agriculture, Food and Medicine; ABS BOOK: New Dehli, 2021.
[24]
Pilau, M.R.; Alves, S.H.; Weiblen, R.; Arenhart, S.; Cueto, A.P.; Lovato, L.T. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Braz. J. Microbiol., 2011, 42(4), 1616-1624.
[http://dx.doi.org/10.1590/S1517-83822011000400049] [PMID: 24031796]
[25]
Wikipedia. Carvacrol structure.png. 2007. Available From: https://en.wikipedia.org/wiki/File:Carvacrol_structure.png
[26]
MERCK. Carvacrol. 2023. Available From: https://www.sigmaaldrich.com/IN/en/product/aldrich/w224502
[27]
Wikipedia. Kaffeesäure.svg. 2008. Available From: https://en.wikipedia.org/wiki/File:Kaffees%C3%A4ure.svg
[28]
Utsunomiya, H.; Ichinose, M.; Ikeda, K.; Uozaki, M.; Morishita, J.; Kuwahara, T.; Koyama, A.H.; Yamasaki, H. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int. J. Mol. Med., 2014, 34(4), 1020-1024.
[http://dx.doi.org/10.3892/ijmm.2014.1859] [PMID: 25050906]
[29]
Saivish, M.V.; Pacca, C.C.; da Costa, V.G.; de Lima Menezes, G.; da Silva, R.A.; Nebo, L.; da Silva, G.C.D.; de Aguiar Milhim, B.H.G.; da Silva Teixeira, I.; Henrique, T.; Mistrão, N.F.B.; Hernandes, V.M.; Zini, N.; de Carvalho, A.C.; Fontoura, M.A.; Rahal, P.; Sacchetto, L.; Marques, R.E.; Nogueira, M.L. Caffeic acid has antiviral activity against ilhéus virus in vitro. Viruses, 2023, 15(2), 494.
[http://dx.doi.org/10.3390/v15020494] [PMID: 36851709]
[30]
Bailly, F.; Cotelle, P. Anti-HIV activities of natural antioxidant caffeic acid derivatives: Toward an antiviral supplementation diet. Curr. Med. Chem., 2005, 12(15), 1811-1818.
[http://dx.doi.org/10.2174/0929867054367239] [PMID: 16029149]
[31]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123(123), 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[32]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[33]
Sharifi-Rad, J.; Cruz-Martins, N.; López-Jornet, P.; Lopez, E.P.F.; Harun, N.; Yeskaliyeva, B.; Beyatli, A.; Sytar, O.; Shaheen, S.; Sharopov, F.; Taheri, Y.; Docea, A.O.; Calina, D.; Cho, W.C. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxid. Med. Cell. Longev., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/6492346] [PMID: 34531939]
[34]
Ghosh, R.; Singha, P.S.; Das, L.K.; Ghosh, D.; Firdaus, S.B. Anti-inflammatory activity of natural coumarin compounds from plants of the Indo-Gangetic plain. AIMS Mol. Sci., 2023, 10(2), 79-98.
[http://dx.doi.org/10.3934/molsci.2023007]
[35]
PubChem Coumarin (compound) 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Coumarin#section=2D-Structure
[36]
PubChem 2-[2-(3,4-Dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol(compound). 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/4481259#section=Names-and-Identifiers
[37]
Mohammadi, P.P.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front. Pharmacol., 2019, 10, 1207.
[http://dx.doi.org/10.3389/fphar.2019.01207] [PMID: 31787892]
[38]
Kim, H.; Chung, M.S. Antiviral activities of mulberry (Morus alba) juice and seed against influenza viruses. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/2606583] [PMID: 30515232]
[39]
Ursolic acid.svg 2010. Available From: https://en.wikipedia.org/wiki/File:Ursolic_acid.svg
[40]
Tohmé, M.J.; Giménez, M.C.; Peralta, A.; Colombo, M.I.; Delgui, L.R. Ursolic acid: A novel antiviral compound inhibiting rotavirus infection in vitro. Int. J. Antimicrob. Agents, 2019, 54(5), 601-609.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.07.015] [PMID: 31356859]
[41]
Chattopadhyay, D.; Mukherjee, H.; Bag, P.; Ghosh, S.; Samanta, A.; Chakrabarti, S. Ethnomedicines in antiviral drug discovery. Int. J. Biomed. Pharma. Sci., 2009, 3, 1-25.
[43]
Apigenin.svg 2008. Available From: https://en.wikipedia.org/wiki/File:Apigenin.svg
[44]
Xu, X.; Miao, J.; Shao, Q.; Gao, Y.; Hong, L. Apigenin suppresses influenza A virus‐induced RIG‐I activation and viral replication. J. Med. Virol., 2020, 92(12), 3057-3066.
[http://dx.doi.org/10.1002/jmv.26403] [PMID: 32776519]
[45]
Qian, S.; Fan, W.; Qian, P.; Zhang, D.; Wei, Y.; Chen, H.; Li, X. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses, 2015, 7(4), 1613-1626.
[http://dx.doi.org/10.3390/v7041613] [PMID: 25835532]
[46]
Choi, H.J. Chemical constituents of essential oils possessing anti-influenza A/WS/33 virus activity. Osong Public Health Res. Perspect., 2018, 9(6), 348-353.
[http://dx.doi.org/10.24171/j.phrp.2018.9.6.09] [PMID: 30584499]
[47]
Linalool. 2023. Available From: https://en.wikipedia.org/wiki/Linalool
[48]
Linalool, (+/-)-.. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Linalool
[49]
Linalool skeletal.svg. 2018. Available From: https://en.wikipedia.org/wiki/File:Linalool_skeletal.svg
[50]
[51]
Jafarzadeh, A.; Jafarzadeh, S.; Nemati, M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? J. Tradit. Chinese Med. Sci., 2021, 8(4), 267-279.
[http://dx.doi.org/10.1016/j.jtcms.2021.10.001]
[52]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[53]
Hayati, R.F.; Better, C.D.; Denis, D.; Komarudin, A.G.; Bowolaksono, A.; Yohan, B.; Sasmono, R.T. [6]-gingerol inhibits chikungunya virus infection by suppressing viral replication. BioMed Res. Int., 2021, 2021, 6623400.
[http://dx.doi.org/10.1155/2021/6623400] [PMID: 33855075]
[54]
Gingerol. 2023. Available From: https://en.wikipedia.org/wiki/Gingerol
[55]
Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol., 2020, 104, 219-234.
[http://dx.doi.org/10.1016/j.tifs.2020.08.006] [PMID: 32836826]
[56]
Ajoene.svg. 2018. Available From: https://en.wikipedia.org/wiki/File:Ajoene.svg
[57]
Sahoo, M.; Jena, L.; Rath, S.; Kumar, S. Identification of suitable natural inhibitor against influenza A (H1N1) neuraminidase protein by molecular docking. Genomics & Informatics, 2016, 14(3), 96-103.
[58]
R-allicin-2D-skeletal.svg 2015. Available From: https://en.wikipedia.org/wiki/File:R-allicin-2D-skeletal.svg
[59]
Mösbauer, K.; Fritsch, V.N.; Adrian, L.; Bernhardt, J.; Gruhlke, M.C.H.; Slusarenko, A.J.; Niemeyer, D.; Antelmann, H. The effect of allicin on the proteome of SARS-CoV-2 infected Calu-3 cells. Front. Microbiol., 2021, 12, 746795.
[http://dx.doi.org/10.3389/fmicb.2021.746795] [PMID: 34777295]
[60]
[61]
Xie, Y.; Chen, Y.; Guo, Y.; Huang, Y.; Zhu, B. Allicin and glycyrrhizic acid display antiviral activity against latent and lytic kaposi sarcoma-associated Herpesvirus. Infectious Microbes and Diseases, 2020, 2(1), 30-34.
[http://dx.doi.org/10.1097/IM9.0000000000000016]
[62]
Sagar, S.; Kaur, M.; Minneman, K.P. Antiviral lead compounds from marine sponges. Mar. Drugs, 2010, 8(10), 2619-2638.
[http://dx.doi.org/10.3390/md8102619] [PMID: 21116410]
[63]
Avarol. 2022. Available From: https://en.wikipedia.org/wiki/Avarol
[65]
Das, P.; Majumder, R.; Mandal, M.; Basak, P. In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (M pro) from flavonoid based phytochemical constituents of Calendula officinalis. J. Biomol. Struct. Dyn., 2021, 39(16), 6265-6280.
[http://dx.doi.org/10.1080/07391102.2020.1796799] [PMID: 32705952]
[66]
Rutin structure.svg. 2009. Available From: https://en.wikipedia.org/wiki/File:Rutin_structure.svg
[68]
Agrawal, P.K.; Agrawal, C.; Blunden, G. Rutin: A potential antiviral for repurposing as a SARS-CoV-2 main protease (Mpro) inhibitor. Nat. Prod. Commun., 2021, 16(4), 1934578X2199172.
[http://dx.doi.org/10.1177/1934578X21991723]
[69]
Rizzuti, B.; Grande, F.; Conforti, F.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Ortega-Alarcon, D.; Vega, S.; Reyburn, H.T.; Abian, O.; Velazquez-Campoy, A. Rutin: A potential antiviral for repurposing as a SARS-CoV-2 main protease (M pro) inhibitor. Biomedicines, 2021, 9(4), 375.
[http://dx.doi.org/10.3390/biomedicines9040375]
[70]
Protocatechusäure.svg. 2008. Available From: https://en.wikipedia.org/wiki/File:Protocatechus%C3%A4ure.svg
[71]
Wang, Q.; Ren, X.; Wu, J.; Li, H.; Yang, L.; Zhang, Y.; Wang, X.; Li, Z. Protocatechuic acid protects mice from influenza A virus infection. Eur. J. Clin. Microbiol. Infect. Dis., 2022, 41(4), 589-596.
[http://dx.doi.org/10.1007/s10096-022-04401-y] [PMID: 35067799]
[72]
Guo, Y.; Zhang, Q.; Zuo, Z.; Chu, J.; Xiao, H.; Javed, M.T.; He, C. Protocatechuic acid (PCA) induced a better antiviral effect by immune enhancement in SPF chickens. Microb. Pathog., 2018, 114, 233-238.
[http://dx.doi.org/10.1016/j.micpath.2017.11.068] [PMID: 29217325]
[73]
Ou, C.; Shi, N.; Yang, Q.; Zhang, Y.; Wu, Z.; Wang, B.; Compans, R.W.; He, C. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection. PLoS One, 2014, 9(10), e111004.
[http://dx.doi.org/10.1371/journal.pone.0111004] [PMID: 25337912]
[74]
Sen, D.; Bhaumik, S.; Debnath, P.; Debnath, S. Potentiality of Moringa oleifera against SARS-CoV-2: Identified by a rational computer aided drug design method. J. Biomol. Struct. Dyn., 2022, 40(16), 7517-7534.
[http://dx.doi.org/10.1080/07391102.2021.1898475] [PMID: 33719855]
[75]
Math, M.V.; Kattimani, Y.R.; Gadda, R.B.; Khadkikar, R.M. Plant products in reducing spread of coronavirus infection (COVID-19). Br. J. Oral Maxillofac. Surg., 2021, 59(4), 497-498.
[http://dx.doi.org/10.1016/j.bjoms.2020.11.005] [PMID: 33685770]
[76]
Levy, E.; Delvin, E.; Marcil, V.; Spahis, S. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)? Am. J. Physiol. Endocrinol. Metab., 2020, 319(4), E689-E708.
[http://dx.doi.org/10.1152/ajpendo.00298.2020] [PMID: 32755302]
[77]
Sonam Singh; Sanket, A. In-silico druggability studies of 4-hydroxy-α-tetralone and its derivatives with RND efflux pump of E. coli. Pharma. Biosci. J., 2020, 8, 21-26.
[http://dx.doi.org/10.20510/ukjpb/8/i2/1586224632]
[78]
Badam, L.; Joshi, S.P.; Bedekar, S.S. ‘In vitro’ antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J. Commun. Dis., 1999, 31(2), 79-90.
[PMID: 10810594]
[79]
Xu, J.; Song, X.; Yin, Z.Q.; Cheng, A.C.; Jia, R.Y.; Deng, Y.X.; Ye, K.C.; Shi, C.F.; Lv, C.; Zhang, W. Antiviral activity and mode of action of extracts from neem seed kernel against duck plague virus in vitro. Poult. Sci., 2012, 91(11), 2802-2807.
[http://dx.doi.org/10.3382/ps.2012-02468] [PMID: 23091135]
[80]
Eze, M.O.; Ejike, C.E.C.C.; Ifeonu, P.; Udeinya, I.J.; Udenigwe, C.C.; Uzoegwu, P.N. Anti-COVID-19 potential of Azadirachta indica (Neem) leaf extract. Sci. Am., 2022, 16, e01184.
[http://dx.doi.org/10.1016/j.sciaf.2022.e01184] [PMID: 35434432]
[81]
Kumar, S.; El-Kafrawy, S.A.; Bharadwaj, S.; Maitra, S.S.; Alandijany, T.A.; Faizo, A.A.; Khateb, A.M.; Dwivedi, V.D.; Azhar, E.I. Discovery of bispecific lead compounds from Azadirachta indica against ZIKA NS2B-NS3 protease and NS5 RNA dependent RNA polymerase using molecular simulations. Molecules, 2022, 27(8), 2562.
[http://dx.doi.org/10.3390/molecules27082562] [PMID: 35458761]
[82]
Frank, E.T.F.; Nanabi, M.; Steven, M.M.; Hazel, T.M. Potential of Azadirachta indica as a Capping Agent for Antiviral Nanoparticles against SARS-CoV-2. BioMed Res. Int., 2022, 2022, 12.
[http://dx.doi.org/10.1155/2022/5714035]
[83]
Pathak, R.K.; Kim, D.Y.; Lim, B.; Kim, J.M. Investigating multi-target antiviral compounds by screening of phytochemicals from neem (Azadirachta indica) against PRRSV: A vetinformatics approach. Front. Vet. Sci., 2022, 9, 854528.
[http://dx.doi.org/10.3389/fvets.2022.854528] [PMID: 35782555]
[84]
Shadrack, D.M.; Vuai, S.A.H.; Sahini, M.G.; Onoka, I. In silico study of the inhibition of SARS-COV-2 viral cell entry by neem tree extracts. RSC Advances, 2021, 11(43), 26524-26533.
[http://dx.doi.org/10.1039/D1RA04197E] [PMID: 35480004]
[85]
Baildya, N.; Khan, A.A.; Ghosh, N.N.; Dutta, T.; Chattopadhyay, A.P. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J. Mol. Struct., 2021, 1227, 129390.
[http://dx.doi.org/10.1016/j.molstruc.2020.129390] [PMID: 33041371]
[86]
Debnath, S.; Bhaumik, S.; Sen, D.; Debnath, B. Phytochemicals of Zingiberaceae family exhibit potentiality against SARS-CoV-2 main protease identified by a rational computer-aided drug design. Nat. Prod. Res., 2022, 36(17), 4557-4562.
[http://dx.doi.org/10.1080/14786419.2021.1994563] [PMID: 34694165]
[87]
Kregiel, D.; Berłowska, J.; Witońska, I.A. Saponin-based, biological-active surfactants from plants. In: Application and characterization of surfactants; Najjar, E., Ed.; InTech: London, England, 2017; pp. 183-205.
[http://dx.doi.org/10.5772/68062]
[88]
Ghosh, D.; Mitra, E.; Firdaus, S.B.; Dey, M.; Ghosh, A.K.; Chattopadhyay, A.; Bndyopadhya, D. In vitro studies on the antioxidant potential of the aqueous extract of Curry leaves (Murraya koenigii L.) collected from different parts of the state of West Bengal. Indian J. Physiol. Allied Sci., 2012, 66(3), 77-95.
[89]
Wadanambi, P.M.; Jayathilaka, N.; Seneviratne, K.N. A computational study of carbazole alkaloids from Murraya koenigii as potential SARS-CoV-2 main protease inhibitors. Appl. Biochem. Biotechnol., 2023, 195(1), 573-596.
[http://dx.doi.org/10.1007/s12010-022-04138-6] [PMID: 36107386]
[90]
Dharita, D.; Thulasi, G. P. Nanoparticles from Tulsi (Ocimum sanctum) in immune enhancement against COVID-19 situation. Determinations Nanomed. Nanotechnol., 2022, 2(3)
[91]
Das, K. Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine. J. Herb. Med., 2022, 32, 100501.
[http://dx.doi.org/10.1016/j.hermed.2021.100501] [PMID: 34377631]
[92]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J. Biomol. Struct. Dyn., 2022, 40(1), 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[93]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J. Mol. Struct., 2021, 1229, 129489.
[http://dx.doi.org/10.1016/j.molstruc.2020.129489] [PMID: 33100380]
[94]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Kaushik, A.; Kujawska, M.; Batiha, G.E.S. Ginkgo biloba in the management of the COVID‐19 severity. Arch. Pharm. (Weinheim), 2022, 355(10), 2200188.
[http://dx.doi.org/10.1002/ardp.202200188] [PMID: 35672257]
[95]
Sa-Ngiamsuntorn, K.; Suksatu, A.; Pewkliang, Y.; Thongsri, P.; Kanjanasirirat, P.; Manopwisedjaroen, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Pitiporn, S.; Chaopreecha, J.; Kongsomros, S.; Jearawuttanakul, K.; Wannalo, W.; Khemawoot, P.; Chutipongtanate, S.; Borwornpinyo, S.; Thitithanyanont, A.; Hongeng, S. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod., 2021, 84(4), 1261-1270.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01324]
[96]
Murugan, N.A.; Pandian, C.J.; Jeyakanthan, J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn., 2021, 39(12), 4415-4426.
[http://dx.doi.org/10.1080/07391102.2020.1777901] [PMID: 32543978]
[97]
Intharuksa, A.; Arunotayanun, W.; Yooin, W.; Sirisa-Ard, P. A comprehensive review of Andrographis paniculata (Burm. f.) nees and its constituents as potential lead compounds for COVID-19 drug discovery. Molecules, 2022, 27(14), 4479.
[http://dx.doi.org/10.3390/molecules27144479]
[98]
Yadav, V.; Singh, G.; Jha, R.; Kaushik, P. Visiting Bael (Aegle marmelos) as a protective agent against COVID-19: A review. Indian J. Tradit. Knowl., 2020, 19, 153-157.
[99]
Maity, P.; Hansda, D.; Bandyopadhyay, U.; Mishra, D.K. Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr. Indian J. Exp. Biol., 2009, 47(11), 849-861.
[PMID: 20099458]
[100]
Shaji, D.; Suzuki, R.; Yamamoto, S.; Orihashi, D.; Kurita, N. Natural inhibitors for severe acute respiratory syndrome coronavirus 2 main protease from Moringa oleifera, Aloe vera, and Nyctanthes arbor-tristis: Molecular docking and ab initio fragment molecular orbital calculations. Struct. Chem., 2022, 33, 1771-1788.
[http://dx.doi.org/10.1007/s11224-022-02021-y]
[101]
Parida, P.K.; Paul, D.; Chakravorty, D. Nature to nurture- identifying phytochemicals from indian medicinal plants as prophylactic medicine by rational screening to be potent against multiple drug targets of SARS-CoV-2. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12355937.v1]
[102]
Ongtanasup, T.; Wanmasae, S.; Srisang, S.; Manaspon, C.; Net-anong, S.; Eawsakul, K. In silico investigation of ACE2 and the main protease of SARS-CoV-2 with phytochemicals from Myristica fragrans (Houtt.) for the discovery of a novel COVID-19 drug. Saudi J. Biol. Sci., 2022, 29(9), 103389.
[http://dx.doi.org/10.1016/j.sjbs.2022.103389] [PMID: 35935103]
[103]
Rolta, R.; Salaria, D.; Sharma, P.; Sharma, B.; Kumar, V.; Rathi, B.; Verma, M.; Sourirajan, A.; Baumler, D.J.; Dev, K. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit Spike Protein of SARS-CoV-2 Binding to ACE2 Receptor: In Silico Approach. Curr. Pharmacol. Rep., 2021, 7(4), 135-149.
[http://dx.doi.org/10.1007/s40495-021-00259-4] [PMID: 34306988]
[104]
Basu, A.; Sarkar, A.; Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV-2 spike protein and human ACE2. Sci. Rep., 2020, 10(1), 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[105]
Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules, 2007, 12(8), 1641-1673.
[http://dx.doi.org/10.3390/12081641] [PMID: 17960080]
[106]
Tabeshpour, J.; Mehri, S.; Shaebani Behbahani, F.; Hosseinzadeh, H. Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother. Res., 2018, 32(11), 2164-2190.
[http://dx.doi.org/10.1002/ptr.6168] [PMID: 30088293]
[107]
Tang, K.S.C.; Konczak, I.; Zhao, J. Identification and quantification of phenolics in Australian native mint (Mentha australis R. Br.). Food Chem., 2016, 192, 698-705.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.032] [PMID: 26304400]
[108]
Mengist, H.M.; Dilnessa, T.; Jin, T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem., 2021, 9, 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[109]
Khalid, H.; Khalid, S.; Sufyan, M.; Ashfaq, U.A. In-silico elucidation reveals potential phytochemicals against angiotensin-converting enzyme 2 (ACE-2) receptor to fight coronavirus disease 2019 (COVID-19). Z. Naturforsch. C J. Biosci., 2022, 77(11-12), 473-482.
[http://dx.doi.org/10.1515/znc-2021-0325]
[110]
Mishra, K.N.; Upadhyay, H.C. Coumarin-1,2,3-triazole hybrids as leading-edge anticancer agents. Front. Drug Discov., 2022, 2, 1072448.
[http://dx.doi.org/10.3389/fddsv.2022.1072448]
[111]
Upadhyay, H.C. Coumarin-1,2,3-triazole hybrid molecules: an emerging scaffold for combating drug resistance. Curr. Top. Med. Chem., 2021, 21(8), 737-752.
[http://dx.doi.org/10.2174/1568026621666210303145759] [PMID: 33655863]
[112]
Nicholson, L.B. The immune system. Essays Biochem., 2016, 60(3), 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[113]
Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol., 2010, 125(2), S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[114]
Hosseinzade, A.; Sadeghi, O.; Naghdipour Biregani, A.; Soukhtehzari, S.; Brandt, G.S.; Esmaillzadeh, A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front. Immunol., 2019, 10, 51.
[http://dx.doi.org/10.3389/fimmu.2019.00051] [PMID: 30766532]
[115]
Patra, S.; Maity, P.; Chakraborty, I.; Sen, I.K.; Ghosh, D.; Rout, D.; Bhanja, S.K. Structural studies of immunomodulatory (1 → 3)-, (1 → 4)-α glucan from an edible mushroom Polyporus grammocephalus. Int. J. Biol. Macromol., 2021, 168, 649-655.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.121] [PMID: 33220371]
[116]
Nair, M.S.; Huang, Y.; Fidock, D.A.; Polyak, S.J.; Wagoner, J.; Towler, M.J.; Weathers, P.J. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol., 2021, 274, 114016.
[http://dx.doi.org/10.1016/j.jep.2021.114016] [PMID: 33716085]
[117]
Vidoni, C.; Fuzimoto, A.; Ferraresi, A.; Isidoro, C. Targeting autophagy with natural products to prevent SARS-CoV-2 infection. J. Tradit. Complement. Med., 2022, 12(1), 55-68.
[http://dx.doi.org/10.1016/j.jtcme.2021.10.003] [PMID: 34664025]
[118]
van Breemen, R.B.; Muchiri, R.N.; Bates, T.A.; Weinstein, J.B.; Leier, H.C.; Farley, S.; Tafesse, F.G. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants. J. Nat. Prod., 2022, 85(1), 176-184.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00946] [PMID: 35007072]
[119]
Magazine, N.; Zhang, T.; Wu, Y.; McGee, M.C.; Veggiani, G.; Huang, W. Mutations and evolution of the SARS-CoV-2 spike protein. Viruses, 2022, 14(3), 640.
[http://dx.doi.org/10.3390/v14030640] [PMID: 35337047]
[120]
Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; Robertson, D.L. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol., 2021, 19(7), 409-424.
[http://dx.doi.org/10.1038/s41579-021-00573-0] [PMID: 34075212]
[121]
Ghosh, D.; Parida, P. Can Chicken make you immune to antibiotics? WJPR, 2015, 4(3), 1607-1609.
[122]
COVID-19 and antimicrobial resistance 2020. Available From: https://www.lshtm.ac.uk/research/centres/amr/covid-19-and-antimicrobial-resistance
[124]
COVID-19 & Antimicrobial Resistance 2022. Available From: https://www.cdc.gov/drugresistance/covid19.html
[125]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[126]
Fajardo, A.; Martínez-Martín, N.; Mercadillo, M.; Galán, J.C.; Ghysels, B.; Matthijs, S.; Cornelis, P.; Wiehlmann, L.; Tümmler, B.; Baquero, F.; Martínez, J.L. The neglected intrinsic resistome of bacterial pathogens. PLoS One, 2008, 3(2), e1619.
[http://dx.doi.org/10.1371/journal.pone.0001619] [PMID: 18286176]
[127]
Cox, G.; Wright, G.D. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol., 2013, 303(6-7), 287-292.
[http://dx.doi.org/10.1016/j.ijmm.2013.02.009] [PMID: 23499305]
[128]
Adebisi, Y.A.; Alaran, A.J.; Okereke, M.; Oke, G.I.; Amos, O.A.; Olaoye, O.C.; Oladunjoye, I.; Olanrewaju, A.Y.; Ukor, N.A.; Lucero-Prisno, D.E., III. COVID-19 and antimicrobial resistance: a review. Infect. Dis. (Auckl.), 2021, 14.
[http://dx.doi.org/10.1177/11786337211033870] [PMID: 34376994]
[129]
Rezasoltani, S.; Yadegar, A.; Hatami, B.; Asadzadeh Aghdaei, H.; Zali, M.R. Antimicrobial resistance as a hidden menace lurking behind the COVID-19 outbreak: the global impacts of too much hygiene on AMR. Front. Microbiol., 2020, 11, 590683.
[http://dx.doi.org/10.3389/fmicb.2020.590683] [PMID: 33384670]
[130]
Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[131]
Strasfeld, L.; Chou, S. Antiviral drug resistance: Mechanisms and clinical implications. Infect. Dis. Clin. North Am., 2010, 24(2), 413-437.
[http://dx.doi.org/10.1016/j.idc.2010.01.001] [PMID: 20466277]
[132]
Vitiello, A. SARS-CoV-2 and risk of antiviral drug resistance. Ir. J. Med. Sci., 2022, 191(5), 2367-2368.
[http://dx.doi.org/10.1007/s11845-021-02820-y] [PMID: 34714491]
[133]
Irwin, K.K.; Renzette, N.; Kowalik, T.F.; Jensen, J.D. Antiviral drug resistance as an adaptive process. Virus Evol., 2016, 2(1), vew014.
[http://dx.doi.org/10.1093/ve/vew014] [PMID: 28694997]
[134]
Biswas, D.; Nandy, S.; Mukherjee, A.; Pandey, D.K.; Dey, A. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S. Afr. J. Bot., 2020, 129, 272-282.
[http://dx.doi.org/10.1016/j.sajb.2019.07.049]
[135]
Deacetylgedunin 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Deacetylgedunin
[136]
Isorhamnetin 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Isorhamnetin
[137]
[138]
[140]
[141]
O-Methylmurrayamine A 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/O-Methylmurrayamine-A
[142]
[143]
Girinimbine. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Girinimbine
[144]
Vicenin 2. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Vicenin-2
[145]
Isorientin 4'-O-glucoside 2''-O-p-hydroxybenzoagte. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Isorientin-4_-O-glucoside-2_-O-p-hydroxybenzoagte
[146]
Ursolic Acid. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/ursolic_acid
[148]
Somniferine. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Somniferine
[150]
González-Masís, J.; Cubero-Sesin, J.M.; Corrales-Ureña, Y.R.; González-Camacho, S.; Mora-Ugalde, N.; Vega-Baudrit, J.R.; Rischka, K.; Verma, V.; Gonzalez-Paz, R.J. Nonirritant and cytocompatible Tinospora cordifolia nanoparticles for topical antioxidant treatments. Int. J. Biomater., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/3637098] [PMID: 32904553]
[151]
Anisotine. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Anisotine
[153]
Sharma, V.; Qayum, A.; Kaul, S.; Singh, A.; Kapoor, K.K.; Mukherjee, D.; Singh, S.K.; Dhar, M.K. Carbohydrate modifications of neoandrographolide for improved reactive oxygen species-mediated apoptosis through mitochondrial pathway in colon cancer. ACS Omega, 2019, 4(24), 20435-20442.
[http://dx.doi.org/10.1021/acsomega.9b01249] [PMID: 31858026]
[154]
Feralolide. 2023. Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Feralolide
[155]
Speranza, G.; Manitto, P. Feralolide, a dihydroisocoumarin from cape aloe. Phytochemistry, 1993, 33(1), 175-178.
[156]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev., 2021, 10(1), 89.
[http://dx.doi.org/10.1186/s13643-021-01626-4] [PMID: 33781348]
[157]
Alizadeh, S.R.; Ebrahimzadeh, M.A. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur. J. Med. Chem., 2022, 229, 114068.
[http://dx.doi.org/10.1016/j.ejmech.2021.114068] [PMID: 34971873]
[158]
Upadhyay, H.C. Exploring nature’s treasure for drug discovery. Lett. Drug Des. Discov., 2023, 20(4), 373-374.
[http://dx.doi.org/10.2174/157018082004230113144404]
[159]
Bhattacharya, D.; Singha, P.S.; Firdaus, S.B.; Ghosh, D. Medicinal plants in the daily diet of the indigenous people of Bhagabanbasan village: A study in the Paschim Midnapore District of West bengal European J. Pharmaceut. Med. Res., 2023, 8(3), 273-278.
[160]
Ghosh, S.; Singha, P.S.; Ghosh, D. Leaves of Coriandrum sativum as an indigenous medicinal spice herb of India: A mini review. Int. J. Pharm. Sci. Rev. Res., 2017, 45(2), 110-114.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy