Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Approaches Towards Better Immunosuppressive Agents

Author(s): Juliusz Walczak, Dorota Iwaszkiewicz-Grześ and Grzegorz Cholewiński*

Volume 24, Issue 14, 2024

Published on: 29 March, 2024

Page: [1230 - 1263] Pages: 34

DOI: 10.2174/0115680266292661240322072908

Price: $65

Abstract

Several classes of compounds are applied in clinics due to their immunosuppressive properties in transplantology and the treatment of autoimmune diseases. Derivatives of mycophenolic acid, corticosteroids and chemotherapeutics bearing heterocyclic moieties like methotrexate, azathioprine, mizoribine, and ruxolitinib are active substances with investigated mechanisms of action. However, improved synthetic approaches of known drugs and novel derivatives are still being reported to attempt better accessibility and therapeutic properties. In this review article, we present the synthesis of the designed chemical structures based on recent literature reports concerning novel compounds as promising immunosuppressive drugs. Moreover, some of the discussed derivers revealed also other types of activities with prospective medicinal potential.

Graphical Abstract

[1]
Rong, Y.; Kiang, T. Clinical evidence on the purported pharmacokinetic interactions between corticosteroids and mycophenolic Acid. Clin. Pharmacokinet., 2023, 62(2), 157-207.
[http://dx.doi.org/10.1007/s40262-023-01212-y] [PMID: 36848031]
[2]
Sahman, M.; Mugosa, S.; Rancic, N. Utilization of mycophenolic acid, azathioprine, tacrolimus, cyclosporin, sirolimus, and everolimus: Multinational study. Front. Public Health, 2021, 9, 671316.
[http://dx.doi.org/10.3389/fpubh.2021.671316] [PMID: 33869136]
[3]
Silva, R.; Portela, R.; da Costa, I.; de Oliveira, A.; Woods, D.; de Oliveira, C.; Fonteles, M.; Beserra, M. Immunosuppressives and enteral feeding tubes: An integrative review. J. Clin. Pharm. Ther., 2020, 45(3), 408-418.
[http://dx.doi.org/10.1111/jcpt.13093] [PMID: 31854065]
[4]
Spasić, A.; Catić-Đorđević, A.; Veličković-Radovanović, R.; Stefanović, N.; Džodić, P.; Cvetković, T. Adverse effects of mycophenolic acid in renal transplant recipients: Gender differences. Int. J. Clin. Pharm., 2019, 41(3), 776-784.
[http://dx.doi.org/10.1007/s11096-019-00837-z] [PMID: 31028595]
[5]
Ponticelli, C.; Glassock, R.J. Prevention of complications from use of conventional immunosuppressants: A critical review. J. Nephrol., 2019, 32(6), 851-870.
[http://dx.doi.org/10.1007/s40620-019-00602-5] [PMID: 30927190]
[6]
Halle, M.B.; Lee, W.; Yudhistira, T.; Kim, M.; Churchill, D.G. Mycophenolic acid: Biogenesis, compound isolation, biological activity, and historical advances in total synthesis. Eur. J. Org. Chem., 2019, 2019(13), 2315-2334.
[http://dx.doi.org/10.1002/ejoc.201900245]
[7]
Wu, Q.; Li, M.; Bilal, M.; Yang, Y.; Zhang, J.; Li, X. Enhanced production of mycophenolic acid from Penicillium brevicompactumvia optimized fermentation strategy. Appl. Biochem. Biotechnol., 2022, 194(7), 3001-3015.
[http://dx.doi.org/10.1007/s12010-022-03886-9] [PMID: 35316476]
[8]
Siebert, A.; Prejs, M.; Cholewinski, G.; Dzierzbicka, K. New analogues of mycophenolic acid. Mini Rev. Med. Chem., 2017, 17(9), 734-745.
[http://dx.doi.org/10.2174/1389557516666161129160001] [PMID: 27903231]
[9]
Hedstrom, L. IMP dehydrogenase: Structure, mechanism, and inhibition. Chem. Rev., 2009, 109(7), 2903-2928.
[http://dx.doi.org/10.1021/cr900021w] [PMID: 19480389]
[10]
Beaulieu, Q.; Zhang, D.; Melki, I.; Baudouin, V.; Goldwirst, L.; Woillard, J.B.; Jacqz-Aigrain, E. Pharmacokinetics of mycophenolic acid and external evaluation of two limited sampling strategies of drug exposure in patients with juvenile systematic lupus erythematosus. Eur. J. Clin. Pharmacol., 2022, 78(6), 1003-1010.
[http://dx.doi.org/10.1007/s00228-022-03295-1] [PMID: 35294622]
[11]
Cholewiński, G.; Iwaszkiewicz-Grześ, D.; Prejs, M.; Głowacka, A.; Dzierzbicka, K. Synthesis of the inosine 5′-monophosphate dehydrogenase (IMPDH) inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 550-563.
[http://dx.doi.org/10.3109/14756366.2014.951349] [PMID: 25198892]
[12]
Pilevneli, A.D.; Ebada, S.S.; Kaşkatepe, B.; Konuklugil, B. Penicacids H–J, three new mycophenolic acid derivatives from the marine-derived fungus Rhizopus oryzae. RSC Advances, 2021, 11(55), 34938-34944.
[http://dx.doi.org/10.1039/D1RA07196C] [PMID: 35494752]
[13]
Song, X.; Tu, R.; Mei, X.; Wu, S.; Lan, B.; Zhang, L.; Luo, X.; Liu, J.; Luo, M. A mycophenolic acid derivative from the fungus Penicillium sp. SCSIO sof101. Nat. Prod. Res., 2020, 34(9), 1206-1212.
[http://dx.doi.org/10.1080/14786419.2018.1553881] [PMID: 30760051]
[14]
Iwaszkiewicz-Grzes, D.; Cholewinski, G.; Kot-Wasik, A.; Trzonkowski, P.; Dzierzbicka, K. Investigations on the immunosuppressive activity of derivatives of mycophenolic acid in immature dendritic cells. Int. Immunopharmacol., 2017, 44, 137-142.
[http://dx.doi.org/10.1016/j.intimp.2017.01.011] [PMID: 28092865]
[15]
Prejs, M.; Cholewiński, G.; Trzonkowski, P.; Kot-Wasik, A.; Dzierzbicka, K. Synthesis and antiproliferative activity of new mycophenolic acid conjugates with adenosine derivatives. J. Asian Nat. Prod. Res., 2019, 21(2), 178-185.
[PMID: 29607657]
[16]
Cholewinski, G.; Iwaszkiewicz-Grzes, D.; Trzonkowski, P.; Dzierzbicka, K. Synthesis and biological activity of ester derivatives of mycophenolic acid and acridines/acridones as potential immunosuppressive agents. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 974-982.
[http://dx.doi.org/10.3109/14756366.2015.1077821] [PMID: 26308114]
[17]
Ohnuki, T.; Ejiri, M.; Kizuka, M.; Fujiwara, M.; Nishi, T. Practical one-step glucuronidation via biotransformation. Bioorg. Med. Chem. Lett., 2019, 29(2), 199-203.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.056] [PMID: 30551902]
[18]
Klangjorhor, J.; Chaiyawat, P.; Teeyakasem, P.; Sirikaew, N.; Phanphaisarn, A.; Settakorn, J.; Lirdprapamongkol, K.; Yama, S.; Svasti, J.; Pruksakorn, D. Mycophenolic acid is a drug with the potential to be repurposed for suppressing tumor growth and metastasis in osteosarcoma treatment. Int. J. Cancer, 2020, 146(12), 3397-3409.
[http://dx.doi.org/10.1002/ijc.32735] [PMID: 31609477]
[19]
Yuan, S.; Gopal, J.V.; Ren, S.; Chen, L.; Liu, L.; Gao, Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur. J. Med. Chem., 2020, 202, 112502.
[http://dx.doi.org/10.1016/j.ejmech.2020.112502] [PMID: 32652407]
[20]
Naffouje, R.; Grover, P.; Yu, H.; Sendilnathan, A.; Wolfe, K.; Majd, N.; Smith, E.P.; Takeuchi, K.; Senda, T.; Kofuji, S.; Sasaki, A.T. Anti-tumor potential of IMP dehydrogenase inhibitors: A century-long story. Cancers, 2019, 11(9), 1346.
[http://dx.doi.org/10.3390/cancers11091346] [PMID: 31514446]
[21]
Valvezan, A.J.; McNamara, M.C.; Miller, S.K.; Torrence, M.E.; Asara, J.M.; Henske, E.P.; Manning, B.D. IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. JCI Insight, 2020, 5(7), e135071.
[http://dx.doi.org/10.1172/jci.insight.135071] [PMID: 32271165]
[22]
Hirunsatitpron, P.; Hanprasertpong, N.; Noppakun, K.; Pruksakorn, D.; Teekachunhatean, S.; Koonrungsesomboon, N. Mycophenolic acid and cancer risk in solid organ transplant recipients: Systematic review and meta‐analysis. Br. J. Clin. Pharmacol., 2022, 88(2), 476-489.
[http://dx.doi.org/10.1111/bcp.14979] [PMID: 34240462]
[23]
Benjanuwattra, J.; Chaiyawat, P.; Pruksakorn, D.; Koonrungsesomboon, N. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur. J. Pharmacol., 2020, 887, 173580.
[http://dx.doi.org/10.1016/j.ejphar.2020.173580] [PMID: 32949604]
[24]
Shah, C.P.; Kharkar, P.S. Newer human inosine 5′-monophosphate dehydrogenase 2 (h IMPDH2) inhibitors as potential anticancer agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 972-977.
[http://dx.doi.org/10.1080/14756366.2018.1474211] [PMID: 29792360]
[25]
Khater, I.; Nassar, A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem. Biophys. Rep., 2021, 27, 101032.
[http://dx.doi.org/10.1016/j.bbrep.2021.101032] [PMID: 34099985]
[26]
Schoot, T.S.; Kerckhoffs, A.P.M.; Hilbrands, L.B.; van Marum, R.J. Immunosuppressive drugs and COVID-19: A review. Front. Pharmacol., 2020, 11, 1333.
[http://dx.doi.org/10.3389/fphar.2020.01333] [PMID: 32982743]
[27]
Kato, F.; Matsuyama, S.; Kawase, M.; Hishiki, T.; Katoh, H.; Takeda, M. Antiviral activities of mycophenolic acid and IMD‐0354 against SARS‐CoV‐2. Microbiol. Immunol., 2020, 64(9), 635-639.
[http://dx.doi.org/10.1111/1348-0421.12828] [PMID: 32579258]
[28]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[29]
Shang, F.F.; Wang, M.Y.; Ai, J.P.; Shen, Q.K.; Guo, H.Y.; Jin, C-M.; Chen, F.E.; Quan, Z.S.; Jin, L.; Zhang, C. Synthesis and evaluation of mycophenolic acid derivatives as potential anti-Toxoplasma gondii agents. Med. Chem. Res., 2021, 30(12), 2228-2239.
[http://dx.doi.org/10.1007/s00044-021-02803-9]
[30]
Raza, M.; Khan, Z.; Ahmad, A.; Raza, S.; Khan, A.; Mohammadzai, I.U.; Zada, S. In silico 3-D structure prediction and molecular docking studies of inosine monophosphate dehydrogenase from Plasmodium falciparum. Comput. Biol. Chem., 2017, 71, 10-19.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.09.002] [PMID: 28957725]
[31]
Chen, Z.; Fang, H.; Hua, X.; Liu, W.; Liu, Y.; Xue, C.; Wang, B.; Bazhanau, D.; Zhu, X.; Yuan, M.; Ru, J.; Chu, P. Research on crystal structure and fungicidal activity of the amide derivatives based on the natural products sinapic scid and mycophenolic acid. J. Chem., 2021, 1036199.
[32]
Ferraris, D.M.; Gelardi, E.L.M.; Garavaglia, S.; Miggiano, R.; Rizzi, M. Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem. Soc. Trans., 2020, 48(2), 693-707.
[http://dx.doi.org/10.1042/BST20191261] [PMID: 32311017]
[33]
Sahu, N.U.; Singh, V.; Ferraris, D.M.; Rizzi, M.; Kharkar, P.S. Hit discovery of Mycobacterium tuberculosis inosine 5′-monophosphate dehydrogenase, GuaB2, inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(10), 1714-1718.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.045] [PMID: 29699922]
[34]
Lee, S.; Ku, A.F.; Vippila, M.R.; Wang, Y.; Zhang, M.; Wang, X.; Hedstrom, L.; Cuny, G.D. Mycophenolic anilides as broad specificity inosine-5′-monophosphate dehydrogenase (IMPDH) inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(24), 127543.
[http://dx.doi.org/10.1016/j.bmcl.2020.127543] [PMID: 32931912]
[35]
Charette, A.B.; Côté, B. Stereoselective synthesis of sll four isomers of coronarme acid: A general approach to 3-methanoamino acids. J. Am. Chem. Soc., 1995, 117(51), 12721-12732.
[http://dx.doi.org/10.1021/ja00156a009]
[36]
Tang, C.; Li, Q.; Deng, X.; Wu, W.; Liao, L.; Liang, K.; Huo, R.; Li, C.; Han, J.; Tang, W.; Jiang, N. Discovery of lixisenatide analogues as long-acting hypoglycemic agents using novel peptide half-life extension technology based on mycophenolic acid. RSC Advances, 2020, 10(20), 12089-12104.
[http://dx.doi.org/10.1039/D0RA01002B] [PMID: 35496622]
[37]
Siebert, A.; Wysocka, M.; Krawczyk, B.; Cholewiński, G.; Rachoń, J. Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid. Eur. J. Med. Chem., 2018, 143, 646-655.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.094] [PMID: 29216563]
[38]
Siebert, A.; Cholewiński, G.; Trzonkowski, P.; Rachon, J. Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid. Eur. J. Med. Chem., 2020, 189, 112091.
[http://dx.doi.org/10.1016/j.ejmech.2020.112091] [PMID: 32007665]
[39]
Felczak, K.; Vince, R.; Pankiewicz, K.W. NAD-based inhibitors with anticancer potential. Bioorg. Med. Chem. Lett., 2014, 24(1), 332-336.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.005] [PMID: 24269162]
[40]
Siebert, A.; Deptuła, M.; Cichorek, M.; Ronowska, A.; Cholewiński, G.; Rachon, J. Anticancer properties of amino acid and peptide derivatives of mycophenolic acid. Anticancer. Agents Med. Chem., 2021, 21(4), 462-467.
[http://dx.doi.org/10.2174/1871520620666200516151456] [PMID: 32416705]
[41]
Tsolaki, E.; Eleftheriou, P.; Kartsev, V.; Geronikaki, A.; Saxena, A.K. Application of docking analysis in the prediction and biological evaluation of the lipoxygenase inhibitory action of thiazolyl derivatives of mycophenolic acid. Molecules, 2018, 23(7), 1621.
[http://dx.doi.org/10.3390/molecules23071621] [PMID: 29970872]
[42]
Walczak, J.M.; Iwaszkiewicz-Grześ, D.; Ziomkowska, M.; Śliwka-Kaszyńska, M.; Daśko, M.; Trzonkowski, P.; Cholewiński, G. Novel amides of mycophenolic acid and some heterocyclic derivatives as immunosuppressive agents. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2725-2741.
[http://dx.doi.org/10.1080/14756366.2022.2127701] [PMID: 36189734]
[43]
Yadav, J.P.; Lodhi, L.; Fatma, T.; Dey, K.K.; Ghosh, M. Investigation of the influence of various functional groups on the dynamics of glucocorticoids. ACS Omega, 2022, 7(47), 43190-43209.
[http://dx.doi.org/10.1021/acsomega.2c05892] [PMID: 36467925]
[44]
Jouve, R.; Thery, V.; Ducki, S.; Helfenbein, J.; Thiery, J.C.; Job, A.; Picard, E.; Mallet, C.; Ripoche, I.; Bennis, K. Optimization of the synthesis of a key intermediate for the preparation of glucocorticoids. Steroids, 2018, 137, 14-21.
[http://dx.doi.org/10.1016/j.steroids.2018.06.007] [PMID: 30017852]
[45]
Ghidini, E.; Capelli, A.M.; Carnini, C.; Cenacchi, V.; Marchini, G.; Virdis, A.; Italia, A.; Facchinetti, F. Discovery of a novel isoxazoline derivative of prednisolone endowed with a robust anti-inflammatory profile and suitable for topical pulmonary administration. Steroids, 2015, 95, 88-95.
[http://dx.doi.org/10.1016/j.steroids.2014.12.016] [PMID: 25556984]
[46]
Pan, X.; Xie, F.; Xiao, D.; Zhou, X.; Xiao, J. Design, synthesis, and renal targeting of methylprednisolone-lysozyme. Int. J. Mol. Sci., 2020, 21(6), 1922.
[http://dx.doi.org/10.3390/ijms21061922] [PMID: 32168938]
[47]
Närhi, F.; Moonesinghe, S.R.; Shenkin, S.D.; Drake, T.M.; Mulholland, R.H.; Donegan, C.; Dunning, J.; Fairfield, C.J.; Girvan, M.; Hardwick, H.E.; Ho, A.; Leeming, G.; Nguyen-Van-Tam, J.S.; Pius, R.; Russell, C.D.; Shaw, C.A.; Spencer, R.G.; Turtle, L.; Openshaw, P.J.M.; Baillie, J.K.; Harrison, E.M.; Semple, M.G.; Docherty, A.B.; Baillie, J.K.; Semple, M.G.; Openshaw, P.J.M.; Carson, G.; Alex, B.; Andrikopoulos, P.; Bach, B.; Barclay, W.S.; Bogaert, D.; Chand, M.; Chechi, K.; Cooke, G.S.; da Silva Filipe, A.; de Silva, T.; Docherty, A.B. dos Santos Correia, G¸.; Dumas, M-E.; Dunning, J.; Fletcher, T.; Green, C.A.; Greenhalf, W.; Griffin, J.; Gupta, R.K.; Harrison, E.M.; Hiscox, J.A.; Ho, A.Y.W.; Horby, P.W.; Ijaz, S.; Khoo, S.; Klenerman, P.; Law, A.; Lewis, M.; Liggi, S.; Lim, W.S.; Maslen, L.; Mentzer, A.J.; Merson, L.; Meynert, A.M.; Moore, S.C.; Noursadeghi, M.; Olanipekun, M.; Osagie, A.; Palmarini, M.; Palmieri, C.; Paxton, W.A.; Pollakis, G.; Price, N.; Rambaut, A.; Robertson, D.L.; Russell, C.D.; Sancho-Shimizu, V.; Sands, C.; Scott, J.T.; Sigfrid, L.; Solomon, T.; Sriskandan, S.; Stuart, D.; Summers, C.; Swann, O.V.; Takats, Z.; Takis, P.; Tedder, R.S.; Thompson, A.A.R.; Thomson, E.C.; Thwaites, R.S.; Turtle, L.C.W.; Zambon, M.; Hardwick, H.; Donohue, C.; Griffiths, F.; Oosthuyzen, W.; Donegan, C.; Spencer, R.G.; Norman, L.; Pius, R.; Drake, T.M.; Fairfield, C.J.; Knight, S.R.; Mclean, K.A.; Murphy, D.; Shaw, C.A.; Dalton, J.; Girvan, M.; Saviciute, E.; Roberts, S.; Harrison, J.; Marsh, L.; Connor, M.; Halpin, S.; Jackson, C.; Gamble, C.; Plotkin, D.; Lee, J.; Leeming, G.; Law, A.; Wham, M.; Clohisey, S.; Hendry, R.; Scott-Brown, J.; Shaw, V.; McDonald, S.E.; Keating, S.; Ahmed, K.A.; Armstrong, J.A.; Ashworth, M.; Asiimwe, I.G.; Bakshi, S.; Barlow, S.L.; Booth, L.; Brennan, B.; Bullock, K.; Catterall, B.W.A.; Clark, J.J.; Clarke, E.A.; Cole, S.; Cooper, L.; Cox, H.; Davis, C.; Dincarslan, O.; Dunn, C.; Dyer, P.; Elliott, A.; Evans, A.; Finch, L.; Fisher, L.W.S.; Foster, T.; Garcia-Dorival, I.; Gunning, P.; Hartley, C.; Jensen, R.L.; Jones, C.B.; Jones, T.R.; Khandaker, S.; King, K.; Kiy, R.T.; Koukorava, C.; Lake, A.; Lant, S.; Latawiec, D.; Lavelle-Langham, L.; Lefteri, D.; Lett, L.; Livoti, L.A.; Mancini, M.; McDonald, S.; McEvoy, L.; McLauchlan, J.; Metelmann, S.; Miah, N.S.; Middleton, J.; Mitchell, J.; Moore, S.C.; Murphy, E.G.; Penrice-Randal, R.; Pilgrim, J.; Prince, T.; Reynolds, W.; Ridley, P.M.; Sales, D.; Shaw, V.E.; Shears, R.K.; Small, B.; Subramaniam, K.S.; Szemiel, A.; Taggart, A.; Tanianis-Hughes, J.; Thomas, J.; Trochu, E.; van Tonder, L.; Wilcock, E.; Zhang, J.E.; Flaherty, L.; Maziere, N.; Cass, E.; Doce Carracedo, A.; Carlucci, N.; Holmes, A.; Massey, H.; Murphy, L.; McCafferty, S.; Clark, R.; Fawkes, A.; Morrice, K.; Maclean, A.; Wrobel, N.; Donelly, L.; Coutts, A.; Hafezi, K.; MacGillivray, L.; Gilchrist, T.; Adeniji, K.; Agranoff, D.; Agwuh, K.; Ail, D.; Aldera, E.L.; Alegria, A.; Allen, S.; Angus, B.; Ashish, A.; Atkinson, D.; Bari, S.; Barlow, G.; Barnass, S.; Barrett, N.; Bassford, C.; Basude, S.; Baxter, D.; Beadsworth, M.; Bernatoniene, J.; Berridge, J.; Berry, C.; Best, N.; Bothma, P.; Chadwick, D.; Brittain-Long, R.; Bulteel, N.; Burden, T.; Burtenshaw, A.; Caruth, V.; Chadwick, D.; Chambler, D.; Chee, N.; Child, J.; Chukkambotla, S.; Clark, T.; Collini, P.; Cosgrove, C.; Cupitt, J.; Cutino-Moguel, M-T.; Dark, P.; Dawson, C.; Dervisevic, S.; Donnison, P.; Douthwaite, S.; Drummond, A.; DuRand, I.; Dushianthan, A.; Dyer, T.; Evans, C.; Eziefula, C.; Fegan, C.; Finn, A.; Fullerton, D.; Garg, S.; Garg, S.; Garg, A.; Gkrania-Klotsas, E.; Godden, J.; Goldsmith, A.; Graham, C.; Hardy, E.; Hartshorn, S.; Harvey, D.; Havalda, P.; Hawcutt, D.B.; Hobrok, M.; Hodgson, L.; Hormis, A.; Jacobs, M.; Jain, S.; Jennings, P.; Kaliappan, A.; Kasipandian, V.; Kegg, S.; Kelsey, M.; Kendall, J.; Kerrison, C.; Kerslake, I.; Koch, O.; Koduri, G.; Koshy, G.; Laha, S.; Laird, S.; Larkin, S.; Leiner, T.; Lillie, P.; Limb, J.; Linnett, V.; Little, J.; Lyttle, M.; MacMahon, M.; MacNaughton, E.; Mankregod, R.; Masson, H.; Matovu, E.; McCullough, K.; McEwen, R.; Meda, M.; Mills, G.; Minton, J.; Mirfenderesky, M.; Mohandas, K.; Mok, Q.; Moon, J.; Moore, E.; Morgan, P.; Morris, C.; Mortimore, K.; Moses, S.; Mpenge, M.; Mulla, R.; Murphy, M.; Nagel, M.; Nagarajan, T.; Nelson, M.; Norris, L.; O’Shea, M.K.; Otahal, I.; Ostermann, M.; Pais, M.; Palmieri, C.; Panchatsharam, S.; Papakonstantinou, D.; Paraiso, H.; Patel, B.; Pattison, N.; Pepperell, J.; Peters, M.; Phull, M.; Pintus, S.; Singh Pooni, J.; Planche, T.; Post, F.; Price, D.; Prout, R.; Rae, N.; Reschreiter, H.; Reynolds, T.; Richardson, N.; Roberts, M.; Roberts, D.; Rose, A.; Rousseau, G.; Ruge, B.; Ryan, B.; Saluja, T.; Schmid, M.; Shah, A.; Shanmuga, P.; Sharma, A.; Shawcross, A.; Sizer, J.; Shankar-Hari, M.; Smith, R.; Snelson, C.; Spittle, N.; Staines, N.; Stambach, T.; Stewart, R.; Subudhi, P.; Szakmany, T.; Tatham, K.; Thomas, J.; Thompson, C.; Thompson, R.; Tridente, A.; Tupper-Carey, D.; Twagira, M.; Vallotton, N.; Vancheeswaran, R.; Vincent-Smith, L.; Visuvanathan, S.; Vuylsteke, A.; Waddy, S.; Wake, R.; Walden, A.; Welters, I.; Whitehouse, T.; Whittaker, P.; Whittington, A.; Papineni, P.; Wijesinghe, M.; Williams, M.; Wilson, L.; Sarah, S.; Winchester, S.; Wiselka, M.; Wolverson, A.; Wootton, D.G.; Workman, A.; Yates, B.; Young, P. Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO clinical characterisation protocol UK: Prospective, cohort study. Lancet Digit. Health, 2022, 4(4), e220-e234.
[http://dx.doi.org/10.1016/S2589-7500(22)00018-8] [PMID: 35337642]
[48]
Ebrahimi Chaharom, F.; Pourafkari, L.; Ebrahimi Chaharom, A.A.; Nader, N.D. Effects of corticosteroids on Covid-19 patients: A systematic review and meta-analysis on clinical outcomes. Pulm. Pharmacol. Ther., 2022, 72, 102107.
[http://dx.doi.org/10.1016/j.pupt.2021.102107] [PMID: 34933068]
[49]
Mehta, J.; Rolta, R.; Mehta, B.B.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Role of dexamethasone and methylprednisolone corticosteroids in coronavirus disease 2019 hospitalized patients: A review. Front. Microbiol., 2022, 13, 813358.
[http://dx.doi.org/10.3389/fmicb.2022.813358] [PMID: 35242118]
[50]
Tiwari, G.; Chauhan, M.S.; Sharma, D. Systematic in silico studies of corticosteroids and its binding affinities with glucocorticoid receptor for covid-19 treatment: Ab-initio, molecular docking and MD simulation studies. Polycycl. Aromat. Compd., 2023, 43(5), 4654-4669.
[http://dx.doi.org/10.1080/10406638.2022.2092878] [http://dx.doi.org/10.1080/10406638.2022.2092878]
[51]
Khan, M.O.F.; Park, K.K.; Lee, H.J. Antedrugs: An approach to safer drugs. Curr. Med. Chem., 2005, 12(19), 2227-2239.
[http://dx.doi.org/10.2174/0929867054864840] [PMID: 16178782]
[52]
Moss, G.P. Nomenclature of steroids (Recommendations 1989). Pure Appl. Chem., 1989, 61(10), 1783-1822.
[http://dx.doi.org/10.1351/pac198961101783]
[53]
Fernández-Cabezón, L.; Galán, B.; García, J.L. New insights on steroids biotechnology. Front. Microbiol., 2018, 9, 958.
[http://dx.doi.org/10.3389/fmicb.2018.00958] [PMID: 29867863]
[54]
Costa, S.; Zappaterra, F.; Summa, D.; Semeraro, B.; Fantin, G. ∆1-Dehydrogenation and C20 reduction of cortisone and hydrocortisone catalyzed by Rhodococcus Strains. Molecules, 2020, 25(9), 2192.
[http://dx.doi.org/10.3390/molecules25092192] [PMID: 32392887]
[55]
Herráiz, I. Chemical pathways of corticosteroids, industrial synthesis from sapogenins. In: Microbial Steroids. Methods in Molecular Biology; Barredo, J.L.; Herráiz, I., Eds.; Humana Press: New York, 2017; pp. 15-27.
[http://dx.doi.org/10.1007/978-1-4939-7183-1_2]
[56]
Bowers, A.; Ringold, H.J. Steroids. XCV. 1 Synthesis of 6α-Methyl-21-desoxycortisone. A new route to 6α-Methylcortisone. J. Am. Chem. Soc., 1958, 80(12), 3091-3093.
[http://dx.doi.org/10.1021/ja01545a047]
[57]
Vardanyan, R.S.; Hruby, V.J. Corticosteroids. In: Synthesis of Essential Drugs; Elsevier, 2006; pp. 349-363.
[http://dx.doi.org/10.1016/B978-044452166-8/50027-3]
[58]
Walker, M.C.; Chang, M.C.Y. Natural and engineered biosynthesis of fluorinated natural products. Chem. Soc. Rev., 2014, 43(18), 6527-6536.
[http://dx.doi.org/10.1039/C4CS00027G] [PMID: 24776946]
[59]
Rahman, M.; Anjum, F. Fludrocortisone. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[60]
Baymeeva, N.V.; Platova, A.I.; Miroshnichenko, I.I.; Belovolov, A.Y.; Gladkikh, V.D.; Tatarinov, A.M. High performance liquid chromatography/mass spectrometry method for quantitative determination of fludrocortisone in human blood plasma. Pharm. Chem. J., 2021, 55(5), 510-515.
[http://dx.doi.org/10.1007/s11094-021-02453-6]
[61]
Cooper, M.S.; Stewart, P.M. 11β-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J. Clin. Endocrinol. Metab., 2009, 94(12), 4645-4654.
[http://dx.doi.org/10.1210/jc.2009-1412] [PMID: 19837912]
[62]
Drug Bank 2023. Available from: https://go.drugbank.com/drugs/DB00860
[63]
Irwin, J.B.; Baldwin, A.L.; Stenberg, V.I. General theory of inflammation: Patient self-administration of hydrocortisone safely achieves superior control of hydrocortisone-responding disorders by matching dosage with symptom intensity. J. Inflamm. Res., 2019, 12, 161-166.
[http://dx.doi.org/10.2147/JIR.S195165] [PMID: 31354330]
[64]
Toehwé, L.H.; Prado, L.D.; Rocha, H.V.A. Prednisone raw material characterization and formulation development. Braz. J. Pharm. Sci., 2017, 53(4), e00088.
[65]
Henry, A.; Mahajan, A.; Crowther, C.A.; Lainchbury, A.; Roberts, L.; Shand, A.W.; Welsh, A.W. Short-term effects of dexamethasone versus betamethasone on ultrasonic measures of fetal well-being: Cohort from a blinded, randomized trial. Fetal Diagn. Ther., 2021, 48(7), 526-540.
[http://dx.doi.org/10.1159/000517623] [PMID: 34350865]
[66]
Jobe, A.H.; Milad, M.A.; Peppard, T.; Jusko, W.J. Pharmacokinetics and pharmacodynamics of intramuscular and oral betamethasone and dexamethasone in reproductive age women in India. Clin. Transl. Sci., 2020, 13(2), 391-399.
[http://dx.doi.org/10.1111/cts.12724] [PMID: 31808984]
[67]
Issa, A.K.; Taha, W.S.; Elsayeh, A.A.; Elhadad, H.K. Comparative study between betamethasone and dexamethasone as a prophylactic corticosteroids therapy on neonatal outcome in elective cesarean section at 37 weeks. Egypt. J. Hosp. Med., 2019, 74(2), 420-427.
[http://dx.doi.org/10.21608/ejhm.2019.23108]
[68]
Wang, S.; Shi, Y.; Tian, W. A formal synthesis of betamethasone. Chin. J. Chem., 2015, 33(6), 637-642.
[http://dx.doi.org/10.1002/cjoc.201500335]
[69]
Tang, J.; Liu, X.; Zeng, C.; Meng, H.; Tian, M.; Guo, C. A novel route for the preparation of betamethasone from 9α-hydroxy-androst-4-ene-3,17-dione (9αOH-AD) by chemical synthesis and fermentation. J. Chem. Res., 2017, 41(5), 266-270.
[http://dx.doi.org/10.3184/174751917X14925986241025]
[70]
Edwards, J.A.; Ringold, H.J.; Djerassi, C. Steroids. CXXXVI. Synthesis of a new class of potent cortical hormones. 6α-Fluoro- and 6α,9β-difluoro-16α-methylprednisolone and related steroids. J. Am. Chem. Soc., 1960, 82(9), 2318-2322.
[http://dx.doi.org/10.1021/ja01494a054]
[71]
Henbest, H.B.; Wrigley, T.I. 960. Aspects of stereochemistry. Part IX. The formation of fluorohydrins from the cholesterol 5: 6-epoxides and boron trifluoride–ether complex. J. Chem. Soc., 1957, 0(0), 4765-4768.
[http://dx.doi.org/10.1039/JR9570004765]
[72]
Biggadike, K. Fluticasone furoate/fluticasone propionate - different drugs with different properties. Clin. Respir. J., 2011, 5(3), 183-184.
[http://dx.doi.org/10.1111/j.1752-699X.2011.00244.x] [PMID: 21569222]
[73]
Solanki, K.; Bavadia, R.Z.; Patel, D.P.; Patel, D.J.; Shah, T.C.; Singh, M.K. Process for preparing fluticasone propionate/furoate. W.O. Patent 2012029077A2, 2011.
[74]
Chu, D.; Ji, H.; Hong, X. Method for preparing fluticasone furoate. U.S. Patent 8969547 B2, 2013.
[75]
Zhou, J.; Jin, C.; Su, W. Improved synthesis of fluticasone propionate. Org. Process Res. Dev., 2014, 18(8), 928-933.
[http://dx.doi.org/10.1021/op5001226]
[76]
Biggadike, K.; Bledsoe, R.K.; Hassell, A.M.; Kirk, B.E.; McLay, I.M.; Shewchuk, L.M.; Stewart, E.L. X-ray crystal structure of the novel enhanced-affinity glucocorticoid agonist fluticasone furoate in the glucocorticoid receptor-ligand binding domain. J. Med. Chem., 2008, 51(12), 3349-3352.
[http://dx.doi.org/10.1021/jm800279t] [PMID: 18522385]
[77]
Kandula, V.R.; Shaikh, L.; Samanta, G. Utilization of quality by design, kinetic modeling, and computational fluid dynamics for process optimization and scale-up. Org. Process Res. Dev., 2023, 27(5), 875-889.
[http://dx.doi.org/10.1021/acs.oprd.3c00015]
[78]
Lenna, R.; Montoro, M. Process for preparing budesonide. US 8119793 B2, 2008.
[79]
Phull, M.S.; Jadav, S.S.; Bohara, C.S.; Gundla, R.; Mainkar, P.S. Continuous flow process for preparing budesonide. J. Flow Chem., 2022, 12(2), 237-246.
[http://dx.doi.org/10.1007/s41981-022-00221-5] [PMID: 35465101]
[80]
Restaino, O.F.; Barbuto Ferraiuolo, S.; Perna, A.; Cammarota, M.; Borzacchiello, M.G.; Fiorentino, A.; Schiraldi, C. Biotechnological transformation of hydrocortisone into 16α- hydroxyprednisolone by coupling Arthrobacter simplex and Streptomyces roseochromogenes. Molecules, 2020, 25(21), 4912.
[http://dx.doi.org/10.3390/molecules25214912] [PMID: 33114231]
[81]
Ghidini, E.; Marchini, G.; Capelli, A.M.; Carnini, C.; Cenacchi, V.; Fioni, A.; Facchinetti, F.; Rancati, F. Novel pyrrolidine derivatives of budesonide as long acting inhaled corticosteroids for the treatment of pulmonary inflammatory diseases. J. Med. Chem., 2018, 61(11), 4757-4773.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01873] [PMID: 29741897]
[82]
Yan, Y.; Wang, P.; Li, R.; Sun, Y.; Zhang, R.; Huo, C.; Xing, J.; Dong, Y. Synthesis of budesonide conjugates and their anti-inflammatory effects: A preliminary study. Drug Des. Devel. Ther., 2019, 13, 681-694.
[http://dx.doi.org/10.2147/DDDT.S192348] [PMID: 30858698]
[83]
Kowalczyk, A.; Pieczonka, A.; Rachwalski, M.; Leśniak, S.; Stączek, P. Synthesis and evaluation of biological activities of aziridine derivatives of urea and thiourea. Molecules, 2017, 23(1), 45.
[http://dx.doi.org/10.3390/molecules23010045] [PMID: 29295572]
[84]
Sachdeva, H.; Khaturia, S.; Saquib, M.; Khatik, N.; Khandelwal, A.R.; Meena, R.; Sharma, K. Oxygen- and sulphur-containing heterocyclic compounds as potential anticancer agents. Appl. Biochem. Biotechnol., 2022, 194(12), 6438-6467.
[http://dx.doi.org/10.1007/s12010-022-04099-w] [PMID: 35900713]
[85]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[86]
Parmar, D.R.; Soni, J.Y.; Guduru, R.; Rayani, R.H.; Kusurkar, R.V.; Vala, A.G. Azetidines of pharmacological interest. Arch. Pharm., 2021, 354(11), 2100062.
[http://dx.doi.org/10.1002/ardp.202100062] [PMID: 34184778]
[87]
Niu, Z.X.; Wang, Y.T.; Zhang, S.N.; Li, Y.; Chen, X.B.; Wang, S.Q.; Liu, H.M. Application and synthesis of thiazole ring in clinically approved drugs. Eur. J. Med. Chem., 2023, 250, 115172.
[http://dx.doi.org/10.1016/j.ejmech.2023.115172] [PMID: 36758304]
[88]
Sprangers, B.; Pirenne, J.; Mathieu, C.; Waer, M. Other Forms of Immunosuppression; Kidney Transplantation - Principles and Practice, 2019, pp. 313-332.
[89]
Hussain, Y.; Khan, H. Immunosuppressive Drugs; Encyclopedia of Infection and Immunity., 2022, pp. 726-740.
[90]
Humble, R.W.; Middleton, D.F.; Banoub, J.; Ewing, D.F.; Boa, A.N.; Mackenzie, G. A synthesis of bredinin (Mizoribine®) from an acyclic precursor. Tetrahedron Lett., 2011, 52(47), 6223-6227.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.085]
[91]
D'Errico, S.; Oliviero, G.; Borbone, N.; Piccialli, V.; Piccialli, G. Synthesis of 5-Aminoimidazole-4-Carboxamide Riboside (AICAR) and its derivatives using inosine as starting material. Curr. Protoc. Nucleic Acid. Chem., 2015, 63, 1.35.1-1.35.24.
[http://dx.doi.org/10.1002/0471142700.nc0135s63]
[92]
Haq, M.; Adnan, G. Ruxolitinib; StatPearls Publishing: Treasure Island, FL, 2023.
[93]
Parlakpinar, H.; Gunata, M. Transplantation and immunosuppression: A review of novel transplant-related immunosuppressant drugs. Immunopharmacol. Immunotoxicol., 2021, 43(6), 651-665.
[http://dx.doi.org/10.1080/08923973.2021.1966033] [PMID: 34415233]
[94]
Kocienski, P. Synthesis of (R)-Ruxolitinib. Synfacts, 2015, 11(9), 0907.
[http://dx.doi.org/10.1055/s-0034-1378766]
[95]
Alamri, R.D.; Elmeligy, M.A.; Albalawi, G.A.; Alquayr, S.M.; Alsubhi, S.S.; El-Ghaiesh, S.H. Leflunomide an immunomodulator with antineoplastic and antiviral potentials but drug-induced liver injury: A comprehensive review. Int. Immunopharmacol., 2021, 93, 107398.
[http://dx.doi.org/10.1016/j.intimp.2021.107398] [PMID: 33571819]
[96]
Ramakrishnan, A.; Gobind, K. Unichem Laboratories Limited, applicant. An improved process for preparation of leflunomide. W.O. Patent 2007086076A2, 2007.
[97]
Strasser, D.S.; Froidevaux, S.; Sippel, V.; Gerossier, E.; Grieder, U.; Pierlot, G.M.; Kieninger-Graefitsch, A.; Vezzali, E.; Stalder, A.K.; Renault, B.; Ryge, J.; Hart, A.; Mentzel, U.; Groenen, P.M.A.; Keller, M.P.; Trendelenburg, M.; Martinic, M.M.; Murphy, M.J. Preclinical to clinical translation of cenerimod, a novel S1P 1 receptor modulator, in systemic lupus erythematosus. RMD Open, 2020, 6(2), e001261.
[http://dx.doi.org/10.1136/rmdopen-2020-001261] [PMID: 32917831]
[98]
Idorsia initiates OPUS a phase 3 program to investigate cenerimod for the treatment of patients with systemic lupus erythematosus Allschwil (CH): Idorsia Pharmaceuticals 2022. Available from: https://www.idorsia.com/media/news-details?newsId=2895813
[99]
Schmidt, G.; Bolli, M.H.; Lescop, C.; Abele, S. Practical synthesis of a S1P receptor 1 agonist via a guareschi–thorpe reaction. Org. Process Res. Dev., 2016, 20(9), 1637-1646.
[http://dx.doi.org/10.1021/acs.oprd.6b00210]
[100]
Kim, Y.R.; Kim, J.S.; Gu, S.J.; Jo, S.; Kim, S.; Young Kim, S.; Lee, D.; Jang, K.; Choo, H.; Kim, T.H.; Jung, J.U.; Min, S.J.; Yang, C.S. Identification of highly potent and selective inhibitor, TIPTP, of the p22phox-Rubicon axis as a therapeutic agent for rheumatoid arthritis. Sci. Rep., 2020, 10(1), 4570.
[http://dx.doi.org/10.1038/s41598-020-61630-x] [PMID: 32165681]
[101]
Gartlan, K.H.; Jaiswal, J.K.; Bull, M.R.; Akhlaghi, H.; Sutton, V.R.; Alexander, K.A.; Chang, K.; Hill, G.R.; Miller, C.K.; O’Connor, P.D.; Jose, J.; Trapani, J.A.; Charman, S.A.; Spicer, J.A.; Jamieson, S.M.F. Preclinical activity and pharmacokinetic/pharmacodynamic relationship for a series of novel benzenesulfonamide perforin inhibitors. ACS Pharmacol. Transl. Sci., 2022, 5(6), 429-439.
[http://dx.doi.org/10.1021/acsptsci.2c00009] [PMID: 35711815]
[102]
Spicer, J.A.; Miller, C.K.; O’Connor, P.D.; Jose, J.; Huttunen, K.M.; Jaiswal, J.K.; Denny, W.A.; Akhlaghi, H.; Browne, K.A.; Trapani, J.A. Benzenesulphonamide inhibitors of the cytolytic protein perforin. Bioorg. Med. Chem. Lett., 2017, 27(4), 1050-1054.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.057] [PMID: 28110869]
[103]
Hauser, S.L.; Cree, B.A.C. Treatment of multiple sclerosis: A review. Am. J. Med., 2020, 133(12), 1380-1390.e2.
[http://dx.doi.org/10.1016/j.amjmed.2020.05.049] [PMID: 32682869]
[104]
Montalban, X.; Wallace, D.; Genovese, M.C.; Tomic, D.; Parsons-Rich, D.; Le Bolay, C.; Kao, A.H.; Guehring, H. Characterisation of the safety profile of evobrutinib in over 1000 patients from phase II clinical trials in multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus: An integrated safety analysis. J. Neurol. Neurosurg. Psychiatry, 2023, 94(1), 1-9.
[http://dx.doi.org/10.1136/jnnp-2022-328799] [PMID: 36418156]
[105]
Caldwell, R.D.; Qiu, H.; Askew, B.C.; Bender, A.T.; Brugger, N.; Camps, M.; Dhanabal, M.; Dutt, V.; Eichhorn, T.; Gardberg, A.S.; Goutopoulos, A.; Grenningloh, R.; Head, J.; Healey, B.; Hodous, B.L.; Huck, B.R.; Johnson, T.L.; Jones, C.; Jones, R.C.; Mochalkin, I.; Morandi, F.; Nguyen, N.; Meyring, M.; Potnick, J.R.; Santos, D.C.; Schmidt, R.; Sherer, B.; Shutes, A.; Urbahns, K.; Follis, A.V.; Wegener, A.A.; Zimmerli, S.C.; Liu-Bujalski, L. Discovery of evobrutinib: An oral, potent, and highly selective, covalent bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem., 2019, 62(17), 7643-7655.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00794] [PMID: 31368705]
[106]
Russomanno, P.; Assoni, G.; Amato, J.; D’Amore, V.M.; Scaglia, R.; Brancaccio, D.; Pedrini, M.; Polcaro, G.; La Pietra, V.; Orlando, P.; Falzoni, M.; Cerofolini, L.; Giuntini, S.; Fragai, M.; Pagano, B.; Donati, G.; Novellino, E.; Quintavalle, C.; Condorelli, G.; Sabbatino, F.; Seneci, P.; Arosio, D.; Pepe, S.; Marinelli, L. Interfering with the tumor–immune interface: Making way for triazine-based small molecules as novel PD-L1 inhibitors. J. Med. Chem., 2021, 64(21), 16020-16045.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01409] [PMID: 34670084]
[107]
Pope, J.E.; Denton, C.P.; Johnson, S.R.; Fernandez-Codina, A.; Hudson, M.; Nevskaya, T. State-of-the-art evidence in the treatment of systemic sclerosis. Nat. Rev. Rheumatol., 2023, 19(4), 212-226.
[http://dx.doi.org/10.1038/s41584-023-00909-5] [PMID: 36849541]
[108]
Aung, W.W.; Wang, C.; Xibei, J.; Horii, M.; Mizumaki, K.; Kano, M.; Okamura, A.; Kobayashi, T.; Matsushita, T. Immunomodulating role of the JAKs inhibitor tofacitinib in a mouse model of bleomycin-induced scleroderma. J. Dermatol. Sci., 2021, 101(3), 174-184.
[http://dx.doi.org/10.1016/j.jdermsci.2020.12.007] [PMID: 33451905]
[109]
Cole, M.A.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Extracellular matrix regulation of fibroblast function: Redefining our perspective on skin aging. J. Cell Commun. Signal., 2018, 12(1), 35-43.
[http://dx.doi.org/10.1007/s12079-018-0459-1] [PMID: 29455303]
[110]
Mane, K.D.; Kamble, R.B.; Suryavanshi, G. Short enantioselective total synthesis of (+)-tofacitinib. Tetrahedron Lett., 2021, 67, 152838.
[http://dx.doi.org/10.1016/j.tetlet.2021.152838]
[111]
Pohlmeyer, C.W.; Shang, C.; Han, P.; Cui, Z.H.; Jones, R.M.; Clarke, A.S.; Murray, B.P.; Lopez, D.A.; Newstrom, D.W.; Inzunza, M.D.; Matzkies, F.G.; Currie, K.S.; Di Paolo, J.A. Characterization of the mechanism of action of lanraplenib, a novel spleen tyrosine kinase inhibitor, in models of lupus nephritis. BMC Rheumatol., 2021, 5(1), 15.
[http://dx.doi.org/10.1186/s41927-021-00178-3] [PMID: 33781343]
[112]
Kocienski, P. Synthesis of Lanraplenib. Synfacts, 2020, 16(7), 0764.
[http://dx.doi.org/10.1055/s-0040-1707018]
[113]
Lai, Y.; Luo, X.Y.; Guo, H.J.; Wang, S.Y.; Xiong, J.; Yang, S.X.; Li, L.M.; Zou, Q.; Mo, C.F.; Wang, Y.T.; Liu, Y. PO‐322 exerts potent immunosuppressive effects in vitro and in vivo by selectively inhibiting SGK1 activity. Br. J. Pharmacol., 2020, 177(7), 1666-1676.
[http://dx.doi.org/10.1111/bph.14926] [PMID: 31724152]
[114]
Lang, F.; Shumilina, E. Regulation of ion channels by the serum‐ and glucocorticoid‐inducible kinase SGK1. FASEB J., 2013, 27(1), 3-12.
[http://dx.doi.org/10.1096/fj.12-218230] [PMID: 23012321]
[115]
Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218.
[http://dx.doi.org/10.1016/j.ejmech.2021.113218] [PMID: 33540357]
[116]
Thomas, S.M.; Grandis, J.R. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat. Rev., 2004, 30(3), 255-268.
[http://dx.doi.org/10.1016/j.ctrv.2003.10.003] [PMID: 15059649]
[117]
EGFR gene - Epidermal growth factor receptor. In: Rehovot (IL): GeneCards; The Human Gene Database., 2023.
[118]
Zhao, Y.; Qian, Y.; Sun, Z.; Shen, X.; Cai, Y.; Li, L.; Wang, Z. Role of PI3K in the progression and regression of atherosclerosis. Front. Pharmacol., 2021, 12, 632378.
[http://dx.doi.org/10.3389/fphar.2021.632378] [PMID: 33767629]
[119]
PIK3CA gene - Phosphatidylinositol-4,5-Bisphosphate 3-Kinase catalytic subunit alpha. In: Rehovot (IL): GeneCards; The Human Gene Database, 2023.
[120]
Nemat, A.; Iqbal, M.; Mehmood, T. A comprehensive review of synthesized derivatives of methotrexate in relation to their anticancer potential. J. Med. Oncl. Ther., 2020, 5(1), 4-20.
[http://dx.doi.org/10.35841/medical-oncology.5.1.4-20]
[121]
Fernández-Villa, D.; Ramírez-Jiménez, R.A.; Aranaz, I.; Acosta, N.; Vázquez-Lasa, B.; Rojo, L. Development of methotrexate complexes endowed with new biological properties envisioned for musculoskeletal regeneration in rheumatoid arthritis environments. Int. J. Mol. Sci., 2022, 23(17), 10054.
[http://dx.doi.org/10.3390/ijms231710054] [PMID: 36077450]
[122]
Conneely, S.E.; Cooper, S.L.; Rau, R.E. Use of allopurinol to mitigate 6-mercaptopurine associated gastrointestinal toxicity in acute lymphoblastic leukemia. Front. Oncol., 2020, 10, 1129.
[http://dx.doi.org/10.3389/fonc.2020.01129] [PMID: 32766146]
[123]
Toksvang, L.N.; Lee, S.H.R.; Yang, J.J.; Schmiegelow, K. Maintenance therapy for acute lymphoblastic leukemia: Basic science and clinical translations. Leukemia, 2022, 36(7), 1749-1758.
[http://dx.doi.org/10.1038/s41375-022-01591-4] [PMID: 35654820]
[124]
Aseman, M.D.; Aryamanesh, S.; Shojaeifard, Z.; Hemmateenejad, B.; Nabavizadeh, S.M. Cycloplatinated(II) derivatives of mercaptopurine capable of binding interactions with HSA/DNA. Inorg. Chem., 2019, 58(23), 16154-16170.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02696] [PMID: 31721562]
[125]
Siwach, A.; Verma, P.K. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem., 2021, 15(1), 12.
[http://dx.doi.org/10.1186/s13065-020-00730-1] [PMID: 33602331]
[126]
Lazarević, S.; Đanic, M.; Al-Salami, H.; Mooranian, A.; Mikov, M. Gut microbiota metabolism of azathioprine: A new hallmark for personalized drug-targeted therapy of chronic inflammatory bowel disease. Front. Pharmacol., 2022, 13, 879170.
[http://dx.doi.org/10.3389/fphar.2022.879170] [PMID: 35450035]
[127]
Bunea, M.C.; Diculescu, V.C.; Enculescu, M.; Iovu, H.; Enache, T.A. Redox mechanism of azathioprine and its interaction with DNA. Int. J. Mol. Sci., 2021, 22(13), 6805.
[http://dx.doi.org/10.3390/ijms22136805] [PMID: 34202734]
[128]
Kennedy, N.A.; Rhatigan, E.; Arnott, I.D.R.; Noble, C.L.; Shand, A.G.; Satsangi, J.; Lees, C.W. A trial of mercaptopurine is a safe strategy in patients with inflammatory bowel disease intolerant to azathioprine: An observational study, systematic review and meta‐analysis. Aliment. Pharmacol. Ther., 2013, 38(10), 1255-1266.
[http://dx.doi.org/10.1111/apt.12511] [PMID: 24117596]
[129]
Falcón, C.R.; Hurst, N.F.; Vivinetto, A.L.; López, P.H.H.; Zurita, A.; Gatti, G.; Cervi, L.; Monferran, C.G.; Roth, G.A. Diazepam impairs innate and adaptive immune responses and ameliorates experimental autoimmune encephalomyelitis. Front. Immunol., 2021, 12, 682612.
[http://dx.doi.org/10.3389/fimmu.2021.682612] [PMID: 34354703]
[130]
Daugherty, D.J.; Selvaraj, V.; Chechneva, O.V.; Liu, X.B.; Pleasure, D.E.; Deng, W. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol. Med., 2013, 5(6), 891-903.
[http://dx.doi.org/10.1002/emmm.201202124] [PMID: 23681668]
[131]
Zhao, Y.Y.; Yu, J.Z.; Li, Q.Y.; Ma, C.G.; Lu, C.Z.; Xiao, B.G. TSPO-specific ligand Vinpocetine exerts a neuroprotective effect by suppressing microglial inflammation. Neuron Glia Biol., 2011, 7(2-4), 187-197.
[http://dx.doi.org/10.1017/S1740925X12000129] [PMID: 22874716]
[132]
Nicholas, R.J.; McGuire, M.A.; Hyun, S.H.; Cullison, M.N.; Thompson, D.H. Development of an efficient, high purity continuous flow synthesis of diazepam. Front. Chem. Eng., 2022, 4, 877498.
[http://dx.doi.org/10.3389/fceng.2022.877498]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy