Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Synthesis and In vitro and In silico Anti-inflammatory Activity of New Thiazolidinedione-quinoline Derivatives

Author(s): Sandra Elizabeth Barbosa da Silva*, José Arion da Silva Moura, Jeann Fabiann Branco Júnior, Paulo André Teixeira de Moraes Gomes, Simão Kalebe Silva de Paula, Douglas Carvalho Francisco Viana, Eduardo Augusto Vasconcelos de Freitas Ramalho, João Victor de Melo Gomes, Michelly Cristiny Pereira, Maira Galdino da Rocha Pitta, Ivan da Rocha Pitta and Marina Galdino da Rocha Pitta

Volume 24, Issue 14, 2024

Published on: 21 March, 2024

Page: [1264 - 1277] Pages: 14

DOI: 10.2174/0115680266295582240318060802

Price: $65

Abstract

Background: Inflammation is a series of complex defense-related reactions. The inflammation cascade produces various pro-inflammatory mediators. Unregulated production of these pro-inflammatory mediators can lead to a wide range of diseases, including rheumatoid arthritis, sepsis, and inflammatory bowel disease. In the literature, the anti-inflammatory action of quinoline and thiazolidinedione nuclei are well established, alone, and associated with other nuclei. The synthesis of hybrid molecules is a strategy for obtaining more efficient molecules due to the union of pharmacophoric nuclei known to be related to pharmacological activity.

Objectives: Based on this, this work presents the synthesis of thiazolidinedione-quinoline molecular hybrids and their involvement in the modulation of cytokines involved in the inflammatory reaction cascade.

Methods: After synthesis and characterization, the compounds were submitted to cell viability test (MTT), ELISA IFN-γ and TNF-α, adipogenic differentiation, and molecular docking assay with PPARy and COX-2 targets.

Results: LPSF/ZKD2 and LPSF/ZKD7 showed a significant decrease in the concentration of IFN- γ and TNF-α, with a dose-dependent behavior. LPSF/ZKD4 at a concentration of 50 μM significantly reduced IL-6 expression. LPSF/ZKD4 demonstrates lipid accumulation with significant differences between the untreated and negative control groups, indicating a relevant agonist action on the PPARγ receptor. Molecular docking showed that all synthesized compounds have good affinity with PPARγ e COX-2, with binding energy close to -10,000 Kcal/mol.

Conclusion: These results demonstrate that the synthesis of quinoline-thiazolidinedione hybrids may be a useful strategy for obtaining promising candidates for new anti-inflammatory agents.

« Previous
Graphical Abstract

[1]
Fougère, B.; Boulanger, E.; Nourhashémi, F.; Guyonnet, S.; Cesari, M. Chronic inflammation: Accelerator of biological aging. Journal of gerontologicaly. Med. Sci., 2017, 72(9), 1218-1225.
[http://dx.doi.org/10.1093/gerona/glw240] [PMID: 28003373]
[2]
Soysal, P.; Arik, F.; Smith, L.; Jackson, S.E.; Isik, A.T. Inflammation, frailty and cardiovascular disease. Adv Exp Med Biol, 2020, 1216, 55-64.
[http://dx.doi.org/10.1007/978-3-030-33330-0_7]
[3]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[4]
Corazza, M.; Oton-Gonzalez, L.; Scuderi, V.; Rotondo, J.C.; Lanzillotti, C.; Di Mauro, G.; Tognon, M.; Martini, F.; Borghi, A. Tissue cytokine/chemokine profile in vulvar lichen sclerosus: An observational study on keratinocyte and fibroblast cultures. J. Dermatol. Sci., 2020, 100(3), 223-226.
[http://dx.doi.org/10.1016/j.jdermsci.2020.09.006] [PMID: 32998835]
[5]
Murray, P.J. Macrophage polarization. Annu. Rev. Physiol., 2017, 79(1), 541-566.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034339] [PMID: 27813830]
[6]
Alam, J.; Jantan, I.; Bukhari, S.N.A. Rheumatoid arthrits: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed. Pharmacother., 2017, (92), 613-633.
[7]
Boirivant, M.; Cossu, A. Inflammatory bowel disease. Oral Dis., 2012, 18(1), 1-15.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01811.x] [PMID: 21564424]
[8]
Chen, L.Z.; Wu, J.; Li, K.; Wu, Q.Q.; Chen, R.; Liu, X.H.; Ruan, B.F. Novel phthalide derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur. J. Med. Chem., 2020, 206, 112722.
[http://dx.doi.org/10.1016/j.ejmech.2020.112722] [PMID: 32823004]
[9]
Chang, J.; Tang, N.; Fang, Q.; Zhu, K.; Liu, L.; Xiong, X.; Zhu, Z.; Zhang, B.; Zhang, M.; Tao, J. Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem. Biophys. Res. Commun., 2019, 517(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.061] [PMID: 29339153]
[10]
Qandeel, N.A.; El-Damasy, A.K.; Sharawy, M.H.; Bayomi, S.M.; El-Gohary, N.S. Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg. Chem., 2020, 102, 103890.
[http://dx.doi.org/10.1016/j.bioorg.2020.103890] [PMID: 32801081]
[11]
Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Abdel-Aziz, M.; Dalby, K.N.; Kaoud, T.S. Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: Synthesis, molecular docking, anti-inflammatory, COX inhibition, ulceroginicity and histopathological investigations. Bioorg. Chem., 2017, 75, 242-259.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.018] [PMID: 29032325]
[12]
Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Gouda, A.M.; Gomaa, H.A.M.; Youssif, B.G.M.; Radwan, M.O.; Fujita, M.; Otsuka, M.; Abdel-Aziz, M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J. Mol. Struct., 2021, 1244, 130948.
[http://dx.doi.org/10.1016/j.molstruc.2021.130948]
[13]
Kashef, E.H.; Badr, G.; Maali, A.E.N.; Sayed, D.; Melnyk, P.; Lebegue, N.; Khalek, A.E.R. Synthesis of a novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones as promising anti-breast cancer agents. Bioorg. Chem., 2020, 96, 103569.
[http://dx.doi.org/10.1016/j.bioorg.2020.103569] [PMID: 31978680]
[14]
Mahapatra, M.K.; Kumar, R.; Kumar, M. Exploring sulfonate esters of 5-arylidene thiazolidine-2,4-diones as PTP1B inhibitors with anti-hyperglycemic activity. Med. Chem. Res., 2018, 27(2), 476-487.
[http://dx.doi.org/10.1007/s00044-017-2074-8]
[15]
Khan, I.H.; Patel, N.B.; Patel, V.M. Synthesis, in silico molecular docking and pharmacokinetic studies, in vitro antimycobacterial and antimicrobial studies of new imidozolones clubbed with thiazolidinedione. Curr. Computeraided Drug Des., 2018, 14(4), 269-283.
[http://dx.doi.org/10.2174/1573409914666180516113552] [PMID: 29766819]
[16]
Elzahhar, P.A.; Alaaeddine, R.; Ibrahim, T.M.; Nassra, R.; Ismail, A.; Chua, B.S.K.; Frkic, R.L.; Bruning, J.B.; Wallner, N.; Knape, T.; von Knethen, A.; Labib, H.; El-Yazbi, A.F.; Belal, A.S.F. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur. J. Med. Chem., 2019, 167, 562-582.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.034] [PMID: 30818268]
[17]
Garcia, G.M.; Roy, J.; Pitta, I.R.; Abdalla, D.S.P.; Guimarães, GG.A.; Mosqueira, V.C.F.; Richard, S. Polylactide nanocapsules attenuate adverse cardiac cellular effects of Lyso-7, a Pan-PPAR agonist/anti-inflammatory new thiazolidinedione. Pharmaceutics, 2021, 13(9), 1521.
[http://dx.doi.org/10.3390/pharmaceutics13091521] [PMID: 34575597]
[18]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem., 2014, 87(87), 814-833.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.025] [PMID: 25440883]
[19]
Chinetti, G.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res., 2000, 49(10), 497-505.
[http://dx.doi.org/10.1007/s000110050622] [PMID: 11089900]
[20]
Glass, C.k.; Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol, 2010, 10(5), 365-376.
[21]
Huang, S.; Zhu, B.; Cheon, I.S.; Goplen, N.P.; Jiang, L.; Zhang, R.; Peebles, R.S.; Mack, M.; Kaplan, M.H.; Limper, A.H.; Sun, J. PPAR-γ in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J. Virol., 2019, 93(9), e00030-19.
[http://dx.doi.org/10.1128/JVI.00030-19] [PMID: 30787149]
[22]
Aneja, D.K.; Kaushik, D. Anti-inflammatory evaluations and docking studies of some derivatives of pyrazolyl-2, 4-thiazolidinediones. Indian J. Heterocycl. Chem., 2020, 30(02), 143-163.
[23]
Chaaban, I.; Rizk, O.H.; Ibrahim, T.M.; Henen, S.S.; El-Khawass, E.S.M.; Bayad, A.E.; El-Ashmawy, I. M.; Nematalla, H. A. Bioorganic chemistry synthesis, anti-inflammatory screening, molecular docking, and COX-1,-2/-5-LOX inhibition profile of some novel quinolone derivatives. Biorganic chemistry, 2018, 78, 220-235.
[24]
Ghanim, A.M.; Rezq, S.; Ibrahim, T.S.; Romero, D.G.; Kothayer, H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem., 2021, 219, 113457.
[http://dx.doi.org/10.1016/j.ejmech.2021.113457] [PMID: 33892270]
[25]
Wang, W.; He, X.; Wan, Y.; Chen, D.; Li, Z.; Feng, Y.; Wen, Q. Discovery of bi-4-methoxycarbonyl-2-quinolone and evaluation of its anti-inflammatory and anti-cancer activity in vitro. Nat. Prod. Res., 2024, 1-6.
[http://dx.doi.org/10.1080/14786419.2024.2303606] [PMID: 38217490]
[26]
da Silva, S.E.B.; da Moura, S.J.A.; de Nunes, S.T.R.; da Pitta, R.I.; da Pitta, R.M.G. New trends in biological activities and clinical studies of quinolinic analogues: A Review. Curr. Drug Targets, 2022, 23(5), 441-457.
[http://dx.doi.org/10.2174/1389450122666210415100151] [PMID: 33858312]
[27]
Huang, Z.H.; Yin, L.Q.; Guan, L.P.; Li, Z.H.; Tan, C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett., 2020, 30(11), 127173.
[http://dx.doi.org/10.1016/j.bmcl.2020.127173] [PMID: 32278513]
[28]
Mroueh, M.; Faour, W.H.; Shebaby, W.N.; Daher, C.F.; Ibrahim, T.M.; Ragab, H.M. Synthesis, biological evaluation and modeling of hybrids from tetrahydro-1H-pyrazolo[3,4-b]quinolines as dual cholinestrase and COX-2 inhibitors. Bioorg. Chem., 2020, 100, 103895.
[http://dx.doi.org/10.1016/j.bioorg.2020.103895] [PMID: 32413626]
[29]
Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; Ibrahim, T.S.; Panda, S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem., 2022, 119, 105557.
[http://dx.doi.org/10.1016/j.bioorg.2021.105557] [PMID: 34952242]
[30]
Abdelrahman, M.H.; Youssif, B.G.M.; abdelgawad, M.A.; Abdelazeem, A.H.; Ibrahim, H.M.; Moustafa, A.E.G.A.; Treamblu, L.; Bukhari, S.N.A. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2017, 127, 972-985.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[31]
Tseng, C.H.; Tung, C.W.; Peng, S.I.; Chen, Y.L.; Tzeng, C.C.; Cheng, C.M. Discovery of pyrazolo[4,3-c]quinolines derivativesas potential anti-inflammatory agents through inhibiting of NO production. Molecules, 2018, 23(5), 1036.
[http://dx.doi.org/10.3390/molecules23051036] [PMID: 29710774]
[32]
Debnath, U.; Mukherjee, S.; Joardar, N.; Babu, S.S.P.; Jana, K.; Misra, A.K. Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur. J. Pharm. Sci., 2019, 134, 102-115.
[http://dx.doi.org/10.1016/j.ejps.2019.04.016] [PMID: 31002986]
[33]
Deaton, D.N.; Do, Y.; Holt, J.; Jeune, M.R.; Kramer, H.F.; Larkin, A.L.; Orband-Miller, L.A.; Peckham, G.E.; Poole, C.; Price, D.J.; Schaller, L.T.; Shen, Y.; Shewchuk, L.M.; Stewart, E.L.; Stuart, J.D.; Thomson, S.A.; Ward, P.; Wilson, J.W.; Xu, T.; Guss, J.H.; Musetti, C.; Rendina, A.R.; Affleck, K.; Anders, D.; Hancock, A.P.; Hobbs, H.; Hodgson, S.T.; Hutchinson, J.; Leveridge, M.V.; Nicholls, H.; Smith, I.E.D.; Somers, D.O.; Sneddon, H.F.; Uddin, S.; Cleasby, A.; Mortenson, P.N.; Richardson, C.; Saxty, G. The discovery of quinoline-3-carboxamides as hematopoietic prostaglandin D synthase (H-PGDS) inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1456-1478.
[http://dx.doi.org/10.1016/j.bmc.2019.02.017] [PMID: 30858025]
[34]
Mohsin, N.A.; Ahmad, M. Hybrid organic molecules as antiinflammatory agents; a review of structural features and biological activity. Turk. J. Chem., 2018, 42(42), 1-20.
[http://dx.doi.org/10.3906/kim-1706-58]
[35]
de Oliveira, M.C.V.A.; Viana, D.C.F.; Silva, A.A.; Pereira, M.C.; Duarte, F.S.; Pitta, M.G.R.; Pitta, I.R.; Pitta, M.G.R. Synthesis of novel thiazolidinic-phthalimide derivatives evaluated as new multi-target antiepileptic agents. Bioorg. Chem., 2022, 119, 105548.
[http://dx.doi.org/10.1016/j.bioorg.2021.105548] [PMID: 34959174]
[36]
Bozdag, O.; Kilcigil, A.G.; Tunçbilek, M.; Ertan, R. Studies on the synthesis of some substituted flavonyl thiazolidinedione derivatives-I. Turk. J. Chem., 1999, (23), 163-169.
[37]
Kanase, M.S.; Salunkhe, D.S.; Zambare, D.N.; Piste, P.B. Novel synthesis of some thiazolidinone derivatives. Int. J. Curr. Sci., 2014, (13), 104-108.
[38]
Santos, F.A.; Almeida, M.L.; Silva, V.A.S.; Viana, D.C.F.; Pereira, M.C.; Lucena, A.S.L.; Pitta, M.G.R.; Pitta, G.M.R.; de Rêgo, M.M.J.B.; da Pitta, R.I. Synthesis and biological activities of new phthalimide and thiazolidine derivatives. Med. Chem. Res., 2022, 31(1), 108-119.
[http://dx.doi.org/10.1007/s00044-021-02821-7]
[39]
Guarda, V.L.M.; Pereira, M.A.; De Simone, C.A.; Albuquerque, J.F.C.; Galdino, S.L.; Chantegrel, J.; Perrissin, M.; Beney, C.; Thomasson, F.; Pitta, I.R.; Luu-Duc, C. Synthesis and structural study of arylidene thiazolidine and benzothiazine compounds. Sulfur Letters, 2003, 26(1), 17-27.
[http://dx.doi.org/10.1080/0278611021000048712]
[40]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[41]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays; Assay Guidance Manual, 2016.
[42]
Bøyum, A. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol., 1976, 5(S5), 9-15.
[http://dx.doi.org/10.1111/j.1365-3083.1976.tb03851.x] [PMID: 1052391]
[43]
Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem., 2005, 51(12), 2415-2418.
[http://dx.doi.org/10.1373/clinchem.2005.051532] [PMID: 16179424]
[44]
Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol., 2013, 133(9), 1-3.
[http://dx.doi.org/10.1038/jid.2013.287] [PMID: 23949770]
[45]
Hornbeck, P.V. Enzyme-linked immunosorbent assays. Curr. Protoc. Immunol., 2015, 110(1), 1.1-, 23.
[http://dx.doi.org/10.1002/0471142735.im0201s110] [PMID: 26237010]
[46]
Guedes, I.A.; Barreto, A.M.S.; Marinho, D.; Krempser, E.; Kuenemann, M.A.; Sperandio, O.; Dardenne, L.E.; Miteva, M.A. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep., 2021, 11(1), 3198.
[http://dx.doi.org/10.1038/s41598-021-82410-1] [PMID: 33542326]
[47]
Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly flexible ligand docking: Benchmarking of the dockthor program on the LEADS-PEP protein–peptide data set. J. Chem. Inf. Model., 2020, 60(2), 667-683.
[http://dx.doi.org/10.1021/acs.jcim.9b00905] [PMID: 31922754]
[48]
de Magalhães, C.S.; Almeida, D.M.; Barbosa, H.J.C.; Dardenne, L.E. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci., 2014, 289, 206-224.
[http://dx.doi.org/10.1016/j.ins.2014.08.002]
[49]
Jang, J.Y.; Bae, H.; Lee, Y.J.; Choi, Y.I.; Kim, H.J.; Park, S.B.; Suh, S.W.; Kim, S.W.; Han, B.W. Structural basis for the enhanced anti-diabetic efficacy of lobeglitazone on PPARγ. Sci. Rep., 2018, 8(1), 31.
[http://dx.doi.org/10.1038/s41598-017-18274-1] [PMID: 29311579]
[50]
Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J.; Kiefer, J.R.; Carter, J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett., 2010, 20(23), 7159-7163.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.054] [PMID: 20709553]
[51]
Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; Chun, M.; Li, P.; Gohara, D.W.; Dolinsky, T.; Konecny, R.; Koes, D.R.; Nielsen, J.E.; Head-Gordon, T.; Geng, W.; Krasny, R.; Wei, G.W.; Holst, M.J.; McCammon, J.A.; Baker, N.A. Improvements to the APBS biomolecular solvation software suite. Protein Sci., 2018, 27(1), 112-128.
[http://dx.doi.org/10.1002/pro.3280] [PMID: 28836357]
[52]
da Silva, J.C.; Mariz, H.A.; da Júnior, R.L.F.; de Oliveira, S.P.S.; Dantas, A.T.; Duarte, A.L.B.P.; da Pitta, R.I.; Galdino, S.L.; da Pitta, R.M.G. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics, 2013, 68(6), 766-771.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[53]
Jiang, C.; Ting, A.T.; Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662), 82-86.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[54]
Rigamonti, E.; Gbaguidi, C.G.; Staels, B. Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. Arterioscler. Thromb. Vasc. Biol., 2008, 28(6), 1050-1059.
[http://dx.doi.org/10.1161/ATVBAHA.107.158998] [PMID: 18323516]
[55]
Wang, W.; Xu, M.J.; Cai, Y.; Zhou, Z.; Cao, H.; Mukhopadhyay, P.; Pacher, P.; Zheng, S.; Gonzalez, F.J.; Gao, B. Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology, 2017, 66(1), 108-123.
[http://dx.doi.org/10.1002/hep.29129] [PMID: 28220523]
[56]
da Rocha Junior, L.F.; de Melo Rêgo, M.J.B.; Cavalcanti, M.B.; Pereira, M.C.; Pitta, M.G.R.; de Oliveira, P.S.S.; Gonçalves, S.M.C.; Duarte, A.L.B.P.; de Lima, M.C.A.; Pitta, I.R.; Pitta, M.G.R. Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN- γ, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. BioMed Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/926060] [PMID: 24078927]
[57]
Rêgo, M.J.B.M.; Azoubel-Antunes, A.; Bezerra, M.B.C.F.; Pereira, M.C.; Silva, J.C.; Lins, T.U.L.; Sarinho, E.S.C.; Amorim, C.A.C.; Lima, M.C.A.; Galdino-Pitta, M.R.; Pitta, I.R.; Pitta, M.G.R. Ability of two new thiazolidinediones to downregulate proinflammatory cytokines in peripheral blood mononuclear cells from children with asthma. Braz. J. Pharm. Sci., 2018, 54(3), 54.
[http://dx.doi.org/10.1590/s2175-97902018000300049]
[58]
Fox, R.I. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin. Arthritis Rheum., 1993, 23(S2), 82-91.
[http://dx.doi.org/10.1016/S0049-0172(10)80012-5] [PMID: 8278823]
[59]
Liang, Y.B.; Tang, H.; Chen, Z.B.; Zeng, L.J.; Wu, J.G.; Yang, W.; Li, Z.Y.; Ma, Z.F. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol. Med. Rep., 2017, 16(5), 6405-6411.
[http://dx.doi.org/10.3892/mmr.2017.7384] [PMID: 28901399]
[60]
Upadhyay, S. Noval route through O-C bond formation for the synthesis of diastereomeric 2, 4-disubstituted pyrano [2, 3-B] quinolines from 3formyl-2-quinolones via intramolecular electrophilic cyclization. Bullet. Pure Appl. Sci. Chem., 2018, 37c(2), 93-95.
[http://dx.doi.org/10.5958/2320-320X.2018.00035.3]
[61]
Yang, C.Y.; Hung, Y.L.; Tang, K.W.; Wang, S.C.; Tseng, C.H.; Tzeng, C.C.; Liu, P.L.; Li, C.Y.; Chen, Y.L. Discovery of 2-substituted 3-arylquinoline derivatives as potential anti-inflammatory agents through inhibition of LPS-induced inflammatory responses in macrophages. Molecules, 2019, 24(6), 1162.
[http://dx.doi.org/10.3390/molecules24061162] [PMID: 30909606]
[62]
Aguena, M.; Dalto Fanganiello, R.; Tissiani, L.A.L.; Ishiy, F.A.A.; Atique, R.; Alonso, N.; Bueno, P.M.R. Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem Cells Int., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/303610] [PMID: 22550502]
[63]
Gregoire, F.M.; Smas, C.M.; Sul, H.S. Understanding Adipocyte differentiation; The American Physiological Society, 1998, pp. 783-809.
[64]
Villa, D.F.X.; Iturbide, D.N.A.; Zárraga, A.J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem., 2021, 106, 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[65]
Roberts, J.A.; Pea, F.; Lipman, J. The clinical relevance of plasma protein binding changes. Clin. Pharmacokinet., 2013, 52(1), 1-8.
[http://dx.doi.org/10.1007/s40262-012-0018-5] [PMID: 23150213]
[66]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[67]
Jiang, B.; Luo, J.; Guo, S.; Wang, L. Discovery of 5-(3-bromo-2-(2,3-dibromo-4,5-dimethoxybenzyl)-4,5-dimethoxybenzylidene)thiazolidine-2,4-dione as a novel potent protein tyrosine phosphatase 1B inhibitor with antidiabetic properties. Bioorg. Chem., 2021, 108, 104648.
[http://dx.doi.org/10.1016/j.bioorg.2021.104648] [PMID: 33493928]
[68]
Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature, 1998, 395(6698), 137-143.
[69]
Thangavel, N.; Bratty, A.M.; Javed, A.S.; Ahsan, W.; Alhazmi, H.A. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: Strategy for design of novel antidiabetic drugs. Int. J. Med. Chem., 2017, 2017, 1-20.
[http://dx.doi.org/10.1155/2017/1069718] [PMID: 28656106]
[70]
Barros, C.D.; Amato, A.A.; Oliveira, T.B.; Iannini, K.B.R. Synthesis and anti-inflamatory activity of new arylidene-thiazolidine-2,4-diones as PPARγ ligands. Bioorg. Med. Chem., 2010, 18(11), 3805-3811.
[71]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[72]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; iyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[73]
Wang, J.L.; Carter, J.; Kiefer, J.R.; Kurumbail, R.G.; Pawlitz, J.L.; Brown, D.; Hartmann, S.J.; Graneto, M.J.; Seibert, K.; Talley, J.J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors-part I: The first clinical candidate. Bioorg. Med. Chem. Lett., 2010, 20(23), 7155-7158.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.053] [PMID: 21055613]
[74]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[75]
Ghodsi, R.; Zarghi, A.; Daraei, B.; Hedayati, M. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(3), 1029-1033.
[http://dx.doi.org/10.1016/j.bmc.2009.12.060] [PMID: 20061161]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy