Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Application of a Green Deep Eutectic Solvent for Preconcentration and Determination of Copper and Cadmium in Food, Cosmetic, and Water Samples

Author(s): Hamidreza Haghgoo Qezelje, Maryam Rajabi*, Erfan Parsa, Sayeh Ghanbari Adivi, Mehrnaz Shahi, Alireza Asghari, Mohammad Bazregar and Ahmad Hosseini-Bandegharaei

Volume 20, Issue 6, 2024

Published on: 26 March, 2024

Page: [418 - 428] Pages: 11

DOI: 10.2174/0115734110288767240318063641

Price: $65

conference banner
Abstract

Background: Determination of environmental pollutants is important due to their harmful effects on the health of living organisms. However, direct measurement of many of these pollutants is not possible due to their low concentrations, which necessitates the need for sample preparation methods. One of the rapid and simple sample preparation methods is the Air-Agitated Liquid-Liquid Microextraction (AALLME) method, which requires toxic organic solvents that can lead to environmental pollution. Therefore, finding green solvents like Deep Eutectic Solvents (DESs) to replace them can be investigated.

Methods: A novel Deep Eutectic Solvent (DES) was synthesized from a combination of choline chloride and 2-phenylethanol with a molar ratio of 1:4, and it was examined using FT-IR analysis. This solvent was used in an AALLME method for measuring copper and cadmium heavy metal ions in complex real samples with Flame Atomic Absorption Spectroscopy (FAAS).

Results: The influential parameters of this method, such as solution pH (5.4), extraction cycles (12), and extraction solvent volume (440 μL), were optimized utilizing central composite design (CCD). Underneath the optimized circumstances, the detection limits for Cu2+ and Cd2+ were 0.14 and 0.09 ng mL-1, and the linear dynamic range was 0.47-50.0 and 0.32-22.5 ng mL-1, respectively. The preconcentration factors for these cations were 139.7 and 133.4, respectively.

Conclusion: Combining this novel green solvent and rapid sample preparation method for the preconcentration and determination of the studied heavy metal ions has shown promising results in terms of enrichment factors and detection limit values.

Graphical Abstract

[1]
Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci., 2022, 34(1), 101653.
[http://dx.doi.org/10.1016/j.jksus.2021.101653]
[2]
Ullah, N.; Noureen, B.; Zahra, Q.U.A.; Aziz, T.; Shehzadi, S.; Alfaifif, M.Y.; Elbehairif, S.E.I.; Thebo, K.H.; Ullah, A.; Iqbal, H. A novel fluorescent aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of saxitoxin in shellfish. Curr. Anal. Chem., 2023, 19(9), 677-684.
[http://dx.doi.org/10.2174/0115734110269897231020065609]
[3]
Shehzadi, S.; Javed, M.; Ullah, A.; Bilal Waqar, A.; Iftikhar Shah, F.; Ullah, S. In-vitro augmentation of mesenchymal stem cells by using adult bovine serum. Curr. Stem Cell Res. Ther., 2023, 19.
[http://dx.doi.org/10.2174/011574888X260118230927050143] [PMID: 37861050]
[4]
Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Aspects Med., 2005, 26(4-5), 235-244.
[http://dx.doi.org/10.1016/j.mam.2005.07.013] [PMID: 16125765]
[5]
Mozrzymas, R. Trace elements in human health; Recent Advances in Trace Elements, 2018, pp. 373-402.
[6]
Satarug, S.; Vesey, D.A.; Gobe, G.C. Health risk assessment of dietary cadmium intake: do current guidelines indicate how much is safe? Environ. Health Perspect., 2017, 125(3), 284-288.
[http://dx.doi.org/10.1289/EHP108] [PMID: 28248635]
[7]
Satarug, S.; Gobe, G.C.; Vesey, D.A. Multiple targets of toxicity in environmental exposure to low-dose cadmium. Toxics, 2022, 10(8), 472.
[http://dx.doi.org/10.3390/toxics10080472] [PMID: 36006151]
[8]
Chaikhan, P.; Udnan, Y.; Ampiah-Bonney, R.J.; Chaiyasith, W.C. Air-assisted solvent terminated dispersive liquid–liquid microextraction (AA-ST-DLLME) for the determination of lead in water and beverage samples by graphite furnace atomic absorption spectrometry. Microchem. J., 2021, 162, 105828.
[http://dx.doi.org/10.1016/j.microc.2020.105828]
[9]
Galuch, M.B.; Magon, T.F.S.; Silveira, R. Nicácio, A.E.; Pizzo, J.S.; Bonafe, E.G.; Maldaner, L.; Santos, O.O.; Visentainer, J.V. Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chem., 2019, 282, 120-126.
[http://dx.doi.org/10.1016/j.foodchem.2018.12.114] [PMID: 30711095]
[10]
Jalili, V.; Barkhordari, A.; Ghiasvand, A. A comprehensive look at solid-phase microextraction technique: A review of reviews. Microchem. J., 2020, 152, 104319.
[http://dx.doi.org/10.1016/j.microc.2019.104319]
[11]
Azorín, C.; Benedé, J.; Chisvert, A. Ionic liquid-based liquid-phase microextraction techniques. In: Ionic Liquids in Analytical Chemistry.Elsevier; , 2022; pp. 73-102.
[http://dx.doi.org/10.1016/B978-0-12-823334-4.00006-0]
[12]
Herce-Sesa, B. López-López, J.A.; Moreno, C. Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. Trends Analyt. Chem., 2021, 143, 116398.
[http://dx.doi.org/10.1016/j.trac.2021.116398]
[13]
Moyo, B.; Tavengwa, N.T. Modern extraction and cleanup methods of veterinary drug residues in food samples of animal Origin. Recent Adv. Anal. Chem., 2019, 1, 21.
[14]
Li, G.; Row, K.H. Air assisted dispersive liquid–liquid microextraction (AA-DLLME) using hydrophilic–hydrophobic deep eutectic solvents for the isolation of monosaccharides and amino acids from kelp. Anal. Lett., 2020, 53(2), 188-202.
[http://dx.doi.org/10.1080/00032719.2019.1643358]
[15]
Li, G.; Row, K.H. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. Trends Analyt. Chem., 2019, 120, 115651.
[http://dx.doi.org/10.1016/j.trac.2019.115651]
[16]
Anastas, P.T.; Warner, J.C. Principles of green chemistry. Green Chem. Theory Pract., 1998, 29, 14821-14842.
[17]
Chromá, R.; Vilková, M.; Shepa, I.; Makoś-Chełstowska, P.; Andruch, V. Investigation of tetrabutylammonium bromide-glycerol-based deep eutectic solvents and their mixtures with water by spectroscopic techniques. J. Mol. Liq., 2021, 330, 115617.
[http://dx.doi.org/10.1016/j.molliq.2021.115617]
[18]
Seetha, B.S.; Ganneru, S.; Thati, R.; Mudiam, M.K.R. Experimental design of non-ionic hydrophobic DES-DLLME coupled with injector port silylation-GC–MS/MS for the quantitative determination of 13 bisphenols in food samples. Food Chem., 2023, 405(Pt A), 134778.
[http://dx.doi.org/10.1016/j.foodchem.2022.134778] [PMID: 36334458]
[19]
Nahar, Y.; Thickett, S.C. Greener, faster, stronger: The benefits of deep eutectic solvents in polymer and materials science. Polymers, 2021, 13(3), 447.
[http://dx.doi.org/10.3390/polym13030447] [PMID: 33573280]
[20]
Gutiérrez, A.; Rozas, S.; Hernando, P.; Alcalde, R.; Atilhan, M.; Aparicio, S. A theoretical study of CO2 capture by highly hydrophobic type III deep eutectic solvents. J. Mol. Liq., 2022, 366, 120285.
[http://dx.doi.org/10.1016/j.molliq.2022.120285]
[21]
Elik, A. Bingöl, D.; Altunay, N. Ionic hydrophobic deep eutectic solvents in developing air-assisted liquid-phase microextraction based on experimental design: Application to flame atomic absorption spectrometry determination of cobalt in liquid and solid samples. Food Chem., 2021, 350, 129237.
[http://dx.doi.org/10.1016/j.foodchem.2021.129237] [PMID: 33618090]
[22]
Sorouraddin, S.M.; Farajzadeh, M.A.; Dastoori, H. Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of heavy metals from milk samples. Talanta, 2020, 208, 120485.
[http://dx.doi.org/10.1016/j.talanta.2019.120485] [PMID: 31816735]
[23]
Seidi, S.; Alavi, L. Novel and rapid deep eutectic solvent (DES) homogeneous liquid–liquid microextraction (HLLME) with flame atomic absorption spectrometry (FAAS) detection for the determination of copper in vegetables. Anal. Lett., 2019, 52(13), 2092-2106.
[http://dx.doi.org/10.1080/00032719.2019.1598425]
[24]
Elik, A. Demirbaş A.; Altunay, N. Experimental design of ligandless sonication-assisted liquid- phases microextraction based on hydrophobic deep eutectic solvents for accurate determination of Pb(II) and Cd(II) from waters and food samples at trace levels. Food Chem., 2022, 371, 131138.
[http://dx.doi.org/10.1016/j.foodchem.2021.131138] [PMID: 34555705]
[25]
Farisi, P.; Afshar Mogaddam, M.R.; Farajzadeh, M.A.; Nemati, M. Development of salt-induced homogenous liquid-liquid extraction based on ternary deep eutectic solvent coupled with dispersive liquid-liquid microextraction for the determination of heavy metals in honey. J. Food Compos. Anal., 2023, 117, 105107.
[http://dx.doi.org/10.1016/j.jfca.2022.105107]
[26]
Mester, Z.; Sturgeon, R.E. Sample preparation for trace element analysis; Elsevier, 2003.
[27]
Altunay, N.; Gürkan, R. A simple and efficient approach for preconcentration of some heavy metals in cosmetic products before their determinations by flame atomic absorption spectrometry. Turk. J. Chem., 2016, 40(6), 988-1001.
[http://dx.doi.org/10.3906/kim-1604-76]
[28]
Haghgoo Qezelje, H.; Rajabi, M.; Shirmahi, A.; Ghanbari-Adivi, S.; Hosseini-Bandegharaei, A.; Asghari, A.; Sedaghat, Y.; Bazregar, M.; Memarian, F. One-pot/one-step synthesis of Bi2O3/ZnO/Pd nanocomposite for preconcentration and determination of some heavy metal ions in different samples. Int. J. Environ. Anal. Chem., 2023, 1-24.
[http://dx.doi.org/10.1080/03067319.2023.2262393]
[29]
Seenivasan, S.; Manikandan, N.; Muraleedharan, N.N.; Selvasundaram, R. Heavy metal content of black teas from south India. Food Control, 2008, 19(8), 746-749.
[http://dx.doi.org/10.1016/j.foodcont.2007.07.012]
[30]
Payehghadr, M.; Qezelje, H.; Nourifard, F.; Attaran, A.; Kalhor, M. Preconcentration of ultra-traces of Cu(II) in water samples using SBA-15 sorbent modified with a thiocarbohydrazide ligand prior to determination by flame atomic absorption spectrometry. J. Serb. Chem. Soc., 2019, 84(5), 489-501.
[http://dx.doi.org/10.2298/JSC180606093P]
[31]
Rajabi, M.; Rahimi, M.; Hemmati, M.; Najafi, F. Chemically functionalized silica nanoparticles‐based solid‐phase extraction for effective pre‐concentration of highly toxic metal ions from food and water samples. Appl. Organomet. Chem., 2018, 32(2), e4012.
[http://dx.doi.org/10.1002/aoc.4012]
[32]
Duran, C.; Ozdes, D.; Mentese, E.; & Bektas, H. Development of a new and facile carrier element-free coprecipitation procedure for separation, preconcentration and sensitive determination of Cu (II) and Cd (II) ions in water and vegetable samples. Anal. Lett., 2024, 57(2), 225-236.
[33]
Ozdes, D.; Duran, C. Preparation of melon peel biochar/CoFe2O4 as a new adsorbent for the separation and preconcentration of Cu(II), Cd(II), and Pb(II) ions by solid-phase extraction in water and vegetable samples. Environ. Monit. Assess., 2021, 193(10), 642.
[http://dx.doi.org/10.1007/s10661-021-09389-0] [PMID: 34508274]
[34]
Evgenakis, E.; Christophoridis, C.; Fytianos, K. Method optimization for heavy metal determination in milk powder: Application to milk samples from Greece. Environ. Sci. Pollut. Res. Int., 2018, 25(27), 26766-26779.
[http://dx.doi.org/10.1007/s11356-017-9863-y] [PMID: 28875392]
[35]
Hanifar, K.; Almajidi, Y.Q.; Sanaan Jabbar, H. Alexis Ramírez-Coronel, A.; Altalbawy, F.M.A.; Almulla, A.F.; Turki Jalil, A.; Awad, S.A.; Andres Barboza-Arenas, L. An environmental-friendly procedure based on deep eutectic solvent for extraction and determination of toxic elements in fish species from different regions of Iraq. J. Food Prot., 2023, 86(7), 100102.
[http://dx.doi.org/10.1016/j.jfp.2023.100102] [PMID: 37172905]
[36]
Bişgin, A.T. The novel extraordinary separation and preconcentration approach for Cd2+: Hydrophobic immiscible chelating fluid based micro-extraction. J. Mol. Liq., 2023, 384, 122207.
[http://dx.doi.org/10.1016/j.molliq.2023.122207]
[37]
Ali Mohammadzadeh Baghaei, P.; Afshar Mogaddam, M.R.; Farajzadeh, M.A.; Mohebbi, A.; Sorouraddin, S.M. Application of deep eutectic solvent functionalized cobalt ferrite nanoparticles in dispersive micro solid phase extraction of some heavy metals from aqueous samples prior to ICP-OES. J. Food Compos. Anal., 2023, 117, 105125.
[http://dx.doi.org/10.1016/j.jfca.2022.105125]
[38]
Ji, Y.; Zhao, M.; Li, A.; Zhao, L. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem. J., 2021, 164, 105974.
[http://dx.doi.org/10.1016/j.microc.2021.105974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy