Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Magnetite Reduced Graphene Oxide/Ordered Mesoporous Carbon Nanocomposite as Effective Adsorbent for Removal of 2-Naphthol in Wastewater

Author(s): Fatemeh Chaltash, Fereshteh Chekin* and Seyed Mohammad Vahdat

Volume 20, Issue 6, 2024

Published on: 22 February, 2024

Page: [410 - 417] Pages: 8

DOI: 10.2174/0115734110287444240215071527

Price: $65

Abstract

Background: The wastewater released from various industries contains substantial amounts of organic compounds such as dyes and naphthols. However, naphthols are toxic to the environment and human health. So, it is essential to eliminate them, which will contribute to manufacturing and environmental management.

Methods: In the work, an eco-friendly method is adapted to synthesize reduced graphene oxide (rGO) using Equisetum arvense plant extract as a strong reducing and stabilizing agent. Then, a hybrid nano adsorbent based on rGO and ordered mesoporous carbon (CMK-3) decorated with iron oxide nanoparticles (Fe3O4@rGO/CMK-3) was prepared as an adsorbent. We investigate the performance of Fe3O4@rGO/CMK-3 to remove 2-naphthol (2-NP).

Results: The FE-SEM images exhibited spherical magnetite nanoparticles with sizes ranging from 31 to 47 nm on composite. Efficient removal (90%) of 2-NP from aqueous solution is demonstrated using high surface area Fe3O4@rGO/CMK-3 (initial concentration of 2-NP: 10 mg mL-1, pH: 5.0, time: 30 min, and amount of adsorbent dosage: 3 mg mL-1). The high surface area of Fe3O4@rGO/CMK-3, hydrogen binding, π-π stacking interaction between the benzene rings of 2-NP and graphitic skeleton of hybrid adsorbent facilitate the adsorption of 2-NP on the Fe3O4@rGO/CMK-3. The 2NP removal capacity by (Fe3O4@rGO/CMK-3) showed a significant decrease during five successive cycles.

Conclusion: These results promise the potential of high surface area (Fe3O4@rGO/CMK-3) for efficient removal of 2-NP for wastewater treatment.

Graphical Abstract

[1]
Aravind kumar, J.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ., 2022, 831, 154808.
[http://dx.doi.org/10.1016/j.scitotenv.2022.154808] [PMID: 35341870]
[2]
Li, L.; Liu, E.; Wang, X.; Chen, J.; Zhang, X. Simultaneous determination of naphthol isomers at poly(3-methylthiophene)-nano-Au modified electrode with the enhancement of surfactant. Mater. Sci. Eng. C, 2015, 53, 36-42.
[http://dx.doi.org/10.1016/j.msec.2015.04.008] [PMID: 26042688]
[3]
Rajakumar, P.; Selvam, S.; Shanmugaiah, V.; Mathivanan, N. Synthesis and antibacterial activity of some novel chiral fluorophoric biscyclic macrocycles. Bioorg. Med. Chem. Lett., 2007, 17(18), 5270-5273.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.071] [PMID: 17689076]
[4]
Gallo, A.; Passaro, G.; Gasbarrini, A.; Landolfi, R.; Montalto, M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J. Gastroenterol., 2016, 22(32), 7186-7202.
[http://dx.doi.org/10.3748/wjg.v22.i32.7186] [PMID: 27621567]
[5]
Panizza, M.; Cerisola, G. Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim. Acta, 2003, 48(11), 1515-1519.
[http://dx.doi.org/10.1016/S0013-4686(03)00028-8]
[6]
Tsai, M.C.; Chen, P.Y. Electrochemical detection of 2-naphthol at a glassy carbon electrode modified with tosflex film. Electroanalysis, 2007, 19(12), 1315-1321.
[http://dx.doi.org/10.1002/elan.200703857]
[7]
Ani, I.J.; Akpan, U.G.; Olutoye, M.A.; Hameed, B.H. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. J. Clean. Prod., 2018, 205, 930-954.
[http://dx.doi.org/10.1016/j.jclepro.2018.08.189]
[8]
Hanafi, M.F.; Sapawe, N. A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Mater. Today, 2020, 31, A158-A165.
[9]
Javanshir Khoei, A.; Jafarzadeh Ghaleh Joogh, N.; Darvishi, P.; Rezaei, K. Application of physical and biological methods to remove heavy metal, arsenic and pesticides, malathion and diazinon from water. Turk. J. Fish. Aquat. Sci., 2018, 19, 21-28.
[10]
Chaturvedi, N.K. Comparison of available treatment techniques for hazardous aniline-based organic contaminants. Appl. Water Sci., 2022, 12(7), 173-187.
[http://dx.doi.org/10.1007/s13201-022-01695-3]
[11]
Sukmana, H.; Bellahsen, N.; Pantoja, F.; Hodur, C. Adsorption and coagulation in wastewater treatment – Review. Prog. Agric. Eng. Sci., 2021, 17(1), 49-68.
[http://dx.doi.org/10.1556/446.2021.00029]
[12]
Ighalo, J.O.; Yap, P.S.; Iwuozor, K.O.; Aniagor, C.O.; Liu, T.; Dulta, K.; Iwuchukwu, F.U.; Rangabhashiyam, S. Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. Environ. Res, 2022, 212((Pt A)), 113123.
[http://dx.doi.org/10.1016/j.envres.2022.113123] [PMID: 35339467]
[13]
Cai, J.; Niu, B.; Xie, Q.; Lu, N.; Huang, S.; Zhao, G.; Zhao, J. Accurate removal of toxic organic pollutants from complex water matrices. Environ. Sci. Technol., 2022, 56(5), 2917-2935.
[http://dx.doi.org/10.1021/acs.est.1c07824] [PMID: 35148082]
[14]
Jagadeesh, N.; Sundaram, B. Adsorption of pollutants from wastewater by biochar. J. Hazard. Mater. Adv., 2023, 9, 100226.
[http://dx.doi.org/10.1016/j.hazadv.2022.100226]
[15]
Khan, M.; Ali, S.W.; Shahadat, M.; Sagadevan, S. Applications of polyaniline-impregnated silica gel-based nanocomposites in wastewater treatment as an efficient adsorbent of some important organic dyes. Green Process. Synth., 2022, 11(1), 617-630.
[http://dx.doi.org/10.1515/gps-2022-0063]
[16]
Rezakazemi, M.; Khajeh, A.; Mesbah, M. Membrane filtration of wastewater from gas and oil production. Environ. Chem. Lett., 2018, 16(2), 367-388.
[http://dx.doi.org/10.1007/s10311-017-0693-4]
[17]
Ratnam Kesamseetty, V.; Singampalli, R.; Babu Tadiboyina, A.; Krishna Prasad Narasipuram, V.; Prasad, V.; Hanumanthrayappa, M.; Nadh Ratnakaram, V.; Sannapaneni, J.; Naidu Kadiyala, Ch. B. Role of carbon materials in the removal of organic pollutants. Biointerf. Res. Apl. Chem, 2022, 12, 1974-1997.
[18]
Sharma, G.; Sharma, S.; Kumar, A.; Lai, C.W.; Naushad, M. Shehnaz; Iqbal, J.; Stadler, F.J. Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorpt. Sci. Technol., 2022, 2022, 1-21.
[http://dx.doi.org/10.1155/2022/4184809]
[19]
The Vinh, L.; Ngoc Khiem, T.; Dang Chinh, H.; Tuan, P.V.; Tan, V.T. Adsorption capacities of reduced graphene oxide: Effect of reductants. Mater. Res. Express, 2019, 6(7), 075615.
[http://dx.doi.org/10.1088/2053-1591/ab1862]
[20]
Bakhiia, T.; Romanchuk, A.Y.; Maslakov, K.I.; Averin, A.A.; Kalmykov, S.N. Use of reduced graphene oxide to modify melamine and polyurethane for the removal of organic and oil wastes. Energies, 2022, 15(19), 7371.
[http://dx.doi.org/10.3390/en15197371]
[21]
Singh, R.; Ullah, S.; Rao, N.; Singh, M.; Patra, I.; Darko, D.A.; Issac, C.P.J.; Esmaeilzadeh-Salestani, K.; Kanaoujiya, R.; Vijayan, V. Synthesis of three-dimensional reduced-graphene oxide from graphene oxide. J. Nanomater., 2022, 2022, 1-18.
[http://dx.doi.org/10.1155/2022/8731429]
[22]
Bhattacharya, G.; Sas, S.; Wadhwa, S.; Mathur, A.; McLaughlin, J.; Roy, S.S. Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. RSC Advances, 2017, 7(43), 26680-26688.
[http://dx.doi.org/10.1039/C7RA02828H]
[23]
Joseph, S.; Kempaiah, D.M.; Benzigar, M.R.; Ilbeygi, H.; Singh, G.; Talapaneni, S.N.; Park, D.H.; Vinu, A. Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application. Microporous Mesoporous Mater., 2019, 280, 337-346.
[http://dx.doi.org/10.1016/j.micromeso.2019.02.020]
[24]
Zhang, P.; Wang, L.; Yang, S.; Schott, J.A.; Liu, X.; Mahurin, S.M.; Huang, C.; Zhang, Y.; Fulvio, P.F.; Chisholm, M.F.; Dai, S. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. Nat. Commun., 2017, 8(1), 15020-15028.
[http://dx.doi.org/10.1038/ncomms15020] [PMID: 28452357]
[25]
Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 2019, 9(8), 1180.
[http://dx.doi.org/10.3390/nano9081180] [PMID: 31426617]
[26]
Feicht, P.; Eigler, S. Defects in graphene oxide as structural motifs. ChemNanoMat, 2018, 4(3), 244-252.
[http://dx.doi.org/10.1002/cnma.201700357]
[27]
Shen, L.; Li, B.; Qiao, Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 2018, 11(2), 324-352.
[http://dx.doi.org/10.3390/ma11020324] [PMID: 29473914]
[28]
Gonzalez-Rodriguez, R.; Campbell, E.; Naumov, A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One, 2019, 14(6), e0217072.
[http://dx.doi.org/10.1371/journal.pone.0217072] [PMID: 31170197]
[29]
Vatandost, E. Ghorbani-HasanSaraei, A.; Chekin, F.; Naghizadeh Raeisi, detection.; Shahidi, S.A. Green tea extract assisted green synthesis of reduced graphene oxide: application for gighly sensitive electrochemical of sunset yellow in food products. Food Chem. X, 2020, 6, 100085-100090.
[http://dx.doi.org/10.1016/j.fochx.2020.100085] [PMID: 32577617]
[30]
Vatandost, E. Ghorbani-HasanSaraei, A.; Chekin, F.; Naghizadeh Raeisi, detection.; Shahidi, S.A. Antioxidant, antibacterial and anticancer performance of reduced graphene oxide prepared via green tea extract assisted biosynthesis. Chem. Select, 2020, 5, 10401-10406.
[31]
Nikkhah, S.; Tahermansouri, H.; Chekin, F. Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,4′-methylenedianiline. Mater. Lett., 2018, 211, 323-327.
[http://dx.doi.org/10.1016/j.matlet.2017.10.037]
[32]
Zareyy, B.; Chekin, F.; Fathi, S. NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction. Russ. J. Electrochem., 2019, 55(4), 333-338.
[http://dx.doi.org/10.1134/S102319351903011X]
[33]
Seyedi, S.H.; Shahidi, S.A.; Chekin, F.; Ghorbani-HasanSaraei, A.; Limooei, M.B. Magnetite nanoparticles decorated porous reduced graphene oxide for bio- and medical application. Russ. Chem. Bull., 2023, 72(9), 2060-2069.
[http://dx.doi.org/10.1007/s11172-023-4000-1]
[34]
Shahidi, S-A.; Chekin, F. Ghorbani-HasanSaraei, A.; Limooei, M.B. Simultaneous determination of 1-naphthol and 2-naphthol in waters by electrochemical sensor based on magnetite porous reduced graphene oxide/carbon nanotube hybrid. Russ. J. Electrochem., 2023, 59(12), 1138-1150.
[http://dx.doi.org/10.1134/S1023193523220056]
[35]
Shen, L.; Dong, J.; Wen, B.; Wen, X.; Li, J. Facile synthesis of hollow Fe3O4-rGO nanocomposites for the electrochemical detection of acetaminophen. Nanomaterials, 2023, 13(4), 707.
[http://dx.doi.org/10.3390/nano13040707]
[36]
Ladmakhi, H.B.; Chekin, F.; Fathi, S.; Raoof, J.B. Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta, 2020, 211, 120759.
[http://dx.doi.org/10.1016/j.talanta.2020.120759] [PMID: 32070564]
[37]
Kuo, C.Y. Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A. Desalination, 2009, 249(3), 976-982.
[http://dx.doi.org/10.1016/j.desal.2009.06.058]
[38]
Luz-Asunción, M.; Sánchez-Mendieta, V.; Martínez-Hernández, A.L.; Castaño, V.M.; Velasco-Santos, C. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. J. Nanomater., 2015, 2015, 405036.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy