Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Histaminergic System and Vestibular Function in Normal and Pathological Conditions

Author(s): Brahim Tighilet*, Jessica Trico, Emna Marouane, Andreas Zwergal and Christian Chabbert

Volume 22, Issue 11, 2024

Published on: 19 March, 2024

Page: [1826 - 1845] Pages: 20

DOI: 10.2174/1570159X22666240319123151

Price: $65

Abstract

Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.

Graphical Abstract

[1]
Kingma, H.; van de Berg, R. Anatomy, physiology, and physics of the peripheral vestibular system. Handb. Clin. Neurol., 2016, 137, 1-16.
[http://dx.doi.org/10.1016/B978-0-444-63437-5.00001-7] [PMID: 27638059]
[2]
Angelaki, D.E.; Cullen, K.E. Vestibular system: The many facets of a multimodal sense. Annu. Rev. Neurosci., 2008, 31(1), 125-150.
[http://dx.doi.org/10.1146/annurev.neuro.31.060407.125555] [PMID: 18338968]
[3]
Azzena, G.B.; Mameli, O.; Tolu, E. Distribution of visual input to the vestibular nuclei. Arch. Ital. Biol., 1980, 118(2), 196-204.
[PMID: 7469664]
[4]
Cullen, K.E. The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends Neurosci., 2012, 35(3), 185-196.
[http://dx.doi.org/10.1016/j.tins.2011.12.001] [PMID: 22245372]
[5]
Gdowski, G.T.; McCrea, R.A. Neck proprioceptive inputs to primate vestibular nucleus neurons. Exp. Brain Res., 2000, 135(4), 511-526.
[http://dx.doi.org/10.1007/s002210000542] [PMID: 11156315]
[6]
MacKinnon, C.D. Sensorimotor anatomy of gait, balance, and falls. Handb. Clin. Neurol., 2018, 159, 3-26.
[http://dx.doi.org/10.1016/B978-0-444-63916-5.00001-X] [PMID: 30482322]
[7]
McCall, A.A.; Miller, D.M.; DeMayo, W.M.; Bourdages, G.H.; Yates, B.J. Vestibular nucleus neurons respond to hindlimb movement in the conscious cat. J. Neurophysiol., 2016, 116(4), 1785-1794.
[http://dx.doi.org/10.1152/jn.00414.2016] [PMID: 27440244]
[8]
Brandt, T.; Dieterich, M. Thalamocortical network: A core structure for integrative multimodal vestibular functions. Curr. Opin. Neurol., 2019, 32(1), 154-164.
[http://dx.doi.org/10.1097/WCO.0000000000000638] [PMID: 30461462]
[9]
Waele, C.; Baudonniere, P.M.; Lepecq, J.C.; Huy, P.T.B.; Vodal, P.P. Vestibular projections in the human cortex. Exp. Brain Res., 2001, 141(4), 541-551.
[http://dx.doi.org/10.1007/s00221-001-0894-7] [PMID: 11810147]
[10]
Dieterich, M.; Brandt, T. The parietal lobe and the vestibular system. Handb. Clin. Neurol., 2018, 151, 119-140.
[http://dx.doi.org/10.1016/B978-0-444-63622-5.00006-1] [PMID: 29519455]
[11]
Lopez, C.; Blanke, O. The thalamocortical vestibular system in animals and humans. Brain Res. Brain Res. Rev., 2011, 67(1-2), 119-146.
[http://dx.doi.org/10.1016/j.brainresrev.2010.12.002] [PMID: 21223979]
[12]
Lopez, C. Making sense of the body: The role of vestibular signals. Multisens. Res., 2015, 28(5-6), 525-557.
[http://dx.doi.org/10.1163/22134808-00002490] [PMID: 26595955]
[13]
Lopez, C. The vestibular system. Curr. Opin. Neurol., 2016, 29(1), 74-83.
[http://dx.doi.org/10.1097/WCO.0000000000000286] [PMID: 26679566]
[14]
Brandt, T.; Schautzer, F.; Hamilton, D.A.; Brüning, R.; Markowitsch, H.J.; Kalla, R.; Darlington, C.; Smith, P.; Strupp, M. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain, 2005, 128(11), 2732-2741.
[http://dx.doi.org/10.1093/brain/awh617] [PMID: 16141283]
[15]
Brandt, T.; Dieterich, M. ‘Excess anxiety’ and ‘less anxiety’: Both depend on vestibular function. Curr. Opin. Neurol., 2020, 33(1), 136-141.
[http://dx.doi.org/10.1097/WCO.0000000000000771] [PMID: 31743237]
[16]
Cullen, K.E. Vestibular processing during natural self-motion: implications for perception and action. Nat. Rev. Neurosci., 2019, 20(6), 346-363.
[http://dx.doi.org/10.1038/s41583-019-0153-1] [PMID: 30914780]
[17]
Jacob, P.Y.; Poucet, B.; Liberge, M.; Save, E.; Sargolini, F. Vestibular control of entorhinal cortex activity in spatial navigation. Front. Integr. Nuerosci., 2014, 8, 38.
[http://dx.doi.org/10.3389/fnint.2014.00038] [PMID: 24926239]
[18]
McKeown, J.; McGeoch, P.D.; Grieve, D.J. The influence of vestibular stimulation on metabolism and body composition. Diabet. Med., 2020, 37(1), 20-28.
[http://dx.doi.org/10.1111/dme.14166] [PMID: 31667892]
[19]
Smith, P.F. Recent developments in the understanding of the interactions between the vestibular system, memory, the hippocampus, and the striatum. Front. Neurol., 2022, 13, 986302.
[http://dx.doi.org/10.3389/fneur.2022.986302] [PMID: 36119673]
[20]
Tighilet, B.; Chabbert, C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog. Neurobiol., 2019, 174, 28-35.
[http://dx.doi.org/10.1016/j.pneurobio.2019.01.001] [PMID: 30658127]
[21]
Curthoys, I.S. Vestibular compensation and substitution. Curr. Opin. Neurol., 2000, 13(1), 27-30.
[http://dx.doi.org/10.1097/00019052-200002000-00006] [PMID: 10719646]
[22]
Curthoys, I.S.; Halmagyi, G.M. Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestib. Res., 1995, 5(2), 67-107.
[http://dx.doi.org/10.3233/VES-1995-5201] [PMID: 7743004]
[23]
Lacour, M.; Helmchen, C.; Vidal, P.P. Vestibular compensation: The neuro-otologist’s best friend. J. Neurol., 2016, 263(S1), 54-64.
[http://dx.doi.org/10.1007/s00415-015-7903-4] [PMID: 27083885]
[24]
Smith, P.F.; Curthoys, I.S. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res., 1988, 444(2), 308-319.
[http://dx.doi.org/10.1016/0006-8993(88)90939-0] [PMID: 3359298]
[25]
Smith, P.F.; Curthoys, I.S. Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res., 1988, 444(2), 295-307.
[http://dx.doi.org/10.1016/0006-8993(88)90938-9] [PMID: 3359297]
[26]
Zennou-Azogui, Y.; Borel, L.; Lacour, M.; Ez-Zaher, L.; Ouaknine, M. Recovery of head postural control following unilateral vestibular neurectomy in the cat. Neck muscle activity and neuronal correlates in Deiters’ nuclei. Acta Otolaryngol., 1993, 113(sup509), 5-19.
[http://dx.doi.org/10.3109/00016489309130556] [PMID: 8285044]
[27]
Antons, M.; Lindner, M.; Eilles, E.; Günther, L.; Delker, A.; Branner, C.; Krämer, A.; Beck, R.; Oos, R.; Wuehr, M.; Ziegler, S.; Strupp, M.; Zwergal, A. Dose- and application route-dependent effects of betahistine on behavioral recovery and neuroplasticity after acute unilateral labyrinthectomy in rats. Front. Neurol., 2023, 14, 1175481.
[http://dx.doi.org/10.3389/fneur.2023.1175481] [PMID: 37538257]
[28]
Darlington, C.L.; Smith, P.F. Molecular mechanisms of recovery from vestibular damage in mammals: Recent advances. Prog. Neurobiol., 2000, 62(3), 313-325.
[http://dx.doi.org/10.1016/S0301-0082(00)00002-2] [PMID: 10840152]
[29]
Dieringer, N. ‘Vestibular compensation’: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog. Neurobiol., 1995, 46(2-3), 97-129.
[PMID: 7568917]
[30]
Dutia, M.B. Mechanisms of vestibular compensation: Recent advances. Curr. Opin. Otolaryngol. Head Neck Surg., 2010, 18(5), 420-424.
[http://dx.doi.org/10.1097/MOO.0b013e32833de71f] [PMID: 20693901]
[31]
Grosch, M.; Lindner, M.; Bartenstein, P.; Brandt, T.; Dieterich, M.; Ziegler, S.; Zwergal, A. Dynamic whole-brain metabolic connectivity during vestibular compensation in the rat. Neuroimage, 2021, 226, 117588.
[http://dx.doi.org/10.1016/j.neuroimage.2020.117588] [PMID: 33249212]
[32]
Lacour, M. Restoration of vestibular function: Basic aspects and practical advances for rehabilitation. Curr. Med. Res. Opin., 2006, 22(9), 1651-1659.
[http://dx.doi.org/10.1185/030079906X115694] [PMID: 16968568]
[33]
Lacour, M.; Tighilet, B. Plastic events in the vestibular nuclei during vestibular compensation: The brain orchestration of a “deafferentation” code. Restor. Neurol. Neurosci., 2010, 28(1), 19-35.
[http://dx.doi.org/10.3233/RNN-2010-0509] [PMID: 20086280]
[34]
Paterson, J.M.; Short, D.; Flatman, P.W.; Seckl, J.R.; Aitken, A.; Dutia, M.B. Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation. J. Physiol., 2006, 575(3), 777-788.
[http://dx.doi.org/10.1113/jphysiol.2006.112409] [PMID: 16825307]
[35]
Smith, P.F.; Curthoys, I.S. Mechanisms of recovery following unilateral labyrinthectomy: A review. Brain Res. Brain Res. Rev., 1989, 14(2), 155-180.
[http://dx.doi.org/10.1016/0165-0173(89)90013-1] [PMID: 2665890]
[36]
Chen, Z.P.; Zhang, X.Y.; Peng, S.Y.; Yang, Z.Q.; Wang, Y.B.; Zhang, Y.X.; Chen, X.; Wang, J.J.; Zhu, J.N. Histamine H1 receptor contributes to vestibular compensation. J. Neurosci., 2019, 39(3), 420-433.
[http://dx.doi.org/10.1523/JNEUROSCI.1350-18.2018] [PMID: 30413645]
[37]
Tighilet, B.; Mourre, C.; Trottier, S.; Lacour, M. Histaminergic ligands improve vestibular compensation in the cat: Behavioural, neurochemical and molecular evidence. Eur. J. Pharmacol., 2007, 568(1-3), 149-163.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.052] [PMID: 17573072]
[38]
Tighilet, B.; Léonard, J.; Watabe, I.; Bernard-Demanze, L.; Lacour, M. Betahistine treatment in a cat model of vestibular pathology: Pharmacokinetic and pharmacodynamic approaches. Front. Neurol., 2018, 9, 431.
[http://dx.doi.org/10.3389/fneur.2018.00431] [PMID: 29942281]
[39]
Redon, C.; Lopez, C.; Bernard-Demanze, L.; Dumitrescu, M.; Magnan, J.; Lacour, M.; Borel, L. Betahistine treatment improves the recovery of static symptoms in patients with unilateral vestibular loss. J. Clin. Pharmacol., 2011, 51(4), 538-548.
[http://dx.doi.org/10.1177/0091270010369241] [PMID: 20940335]
[40]
Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol., 2001, 63(6), 637-672.
[http://dx.doi.org/10.1016/S0301-0082(00)00039-3] [PMID: 11164999]
[41]
Katoh, Y.; Niimi, M.; Yamamoto, Y.; Kawamura, T.; Morimoto-Ishizuka, T.; Sawada, M.; Takemori, H.; Yamatodani, A. Histamine production by cultured microglial cells of the mouse. Neurosci. Lett., 2001, 305(3), 181-184.
[http://dx.doi.org/10.1016/S0304-3940(01)01835-3] [PMID: 11403935]
[42]
Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic transmission in the mammalian brain. Physiol. Rev., 1991, 71(1), 1-51.
[http://dx.doi.org/10.1152/physrev.1991.71.1.1] [PMID: 1846044]
[43]
Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130.
[http://dx.doi.org/10.1038/nrn1034] [PMID: 12563283]
[44]
Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576.
[http://dx.doi.org/10.1073/pnas.81.8.2572] [PMID: 6371818]
[45]
Panula, P.; Pirvola, U.; Auvinen, S.; Airaksinen, M.S. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience, 1989, 28(3), 585-610.
[http://dx.doi.org/10.1016/0306-4522(89)90007-9] [PMID: 2710333]
[46]
Tighilet, B.; Lacour, M. Distribution of histaminergic axonal fibres in the vestibular nuclei of the cat. Neuroreport, 1996, 7(4), 873-878.
[http://dx.doi.org/10.1097/00001756-199603220-00008] [PMID: 8724664]
[47]
Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther., 2017, 175, 116-132.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.039] [PMID: 28223162]
[48]
Chang, R.S.L.; Tran, V.T.; Snyder, S.H. Heterogeneity of histamine H1-receptors: species variations in [3H]mepyramine binding of brain membranes. J. Neurochem., 1979, 32(6), 1653-1663.
[http://dx.doi.org/10.1111/j.1471-4159.1979.tb02276.x] [PMID: 448359]
[49]
Bárbara, A.; Aceves, J.; Arias-Montaño, J.A. Histamine H1 receptors in rat dorsal raphe nucleus: Pharmacological characterisation and linking to increased neuronal activity. Brain Res., 2002, 954(2), 247-255.
[http://dx.doi.org/10.1016/S0006-8993(02)03352-8] [PMID: 12414108]
[50]
Korotkova, T.M.; Sergeeva, O.A.; Ponomarenko, A.A.; Haas, H.L. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology, 2005, 49(1), 129-134.
[http://dx.doi.org/10.1016/j.neuropharm.2005.03.001] [PMID: 15992588]
[51]
Bouthenet, M.L.; Ruat, M.; Sales, N.; Garbarg, M.; Schwartz, J.C. A detailed mapping of hist amine H1-receptors in guinea-pig central nervous system established by autoradiography with [125I]iodobolpyramine. Neuroscience, 1988, 26(2), 553-600.
[http://dx.doi.org/10.1016/0306-4522(88)90167-4] [PMID: 3173689]
[52]
Jin, C.Y.; Panula, P. The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience, 2005, 132(1), 137-149.
[http://dx.doi.org/10.1016/j.neuroscience.2004.12.017] [PMID: 15780473]
[53]
Yanai, K.; Tashiro, M. The physiological and pathophysiological roles of neuronal histamine: An insight from human positron emission tomography studies. Pharmacol. Ther., 2007, 113(1), 1-15.
[http://dx.doi.org/10.1016/j.pharmthera.2006.06.008] [PMID: 16890992]
[54]
Kanba, S.; Richelson, E. Histamine H1 receptors in human brain labelled with [3H]Doxepin. Brain Res., 1984, 304(1), 1-7.
[http://dx.doi.org/10.1016/0006-8993(84)90856-4] [PMID: 6146381]
[55]
Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.M.; Ruat, M.; Traiffort, E.; Schwartz, J.C.; Palacios, J.M. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res., 1990, 526(2), 322-327.
[http://dx.doi.org/10.1016/0006-8993(90)91240-H] [PMID: 1979518]
[56]
Schneider, E.H.; Neumann, D.; Seifert, R. Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neurosci. Biobehav. Rev., 2014, 42, 252-266.
[http://dx.doi.org/10.1016/j.neubiorev.2014.03.009] [PMID: 24661982]
[57]
Karlstedt, K.; Senkas, A.; Åhman, M.; Panula, P. Regional expression of the histamine H2 receptor in adult and developing rat brain. Neuroscience, 2001, 102(1), 201-208.
[http://dx.doi.org/10.1016/S0306-4522(00)00464-4] [PMID: 11226684]
[58]
Vizuete, M.L.; Traiffort, E.; Bouthenet, M.L.; Ruat, M.; Souil, E.; Tardivel-Lacombe, J.; Schwartz, J.C. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience, 1997, 80(2), 321-343.
[http://dx.doi.org/10.1016/S0306-4522(97)00010-9] [PMID: 9284338]
[59]
Traiffort, E.; Pollard, H.; Moreau, J.; Ruat, M.; Schwartz, J.C.; Martinez-Mir, M.I.; Palacios, J.M. Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with [125I]iodoaminopotentidine. J. Neurochem., 1992, 59(1), 290-299.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb08903.x] [PMID: 1351926]
[60]
Yoshikawa, T.; Nakamura, T.; Yanai, K. Histaminergic neurons in the tuberomammillary nucleus as a control center for wakefulness. Br. J. Pharmacol., 2021, 178(4), 750-769.
[http://dx.doi.org/10.1111/bph.15220] [PMID: 32744724]
[61]
Chazot, P.L.; Hann, V.; Wilson, C.; Lees, G.; Thompson, C.L. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport, 2001, 12(2), 259-262.
[http://dx.doi.org/10.1097/00001756-200102120-00016] [PMID: 11209931]
[62]
Pollard, H.; Moreau, J.; Arrang, J.M.; Schwartz, J.C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience, 1993, 52(1), 169-189.
[http://dx.doi.org/10.1016/0306-4522(93)90191-H] [PMID: 8381924]
[63]
Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience, 2002, 114(1), 173-193.
[http://dx.doi.org/10.1016/S0306-4522(02)00135-5] [PMID: 12207964]
[64]
Anichtchik, O.V.; Peitsaro, N.; Rinne, J.O.; Kalimo, H.; Panula, P. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson’s disease. Neurobiol. Dis., 2001, 8(4), 707-716.
[http://dx.doi.org/10.1006/nbdi.2001.0413] [PMID: 11493035]
[65]
Strakhova, M.I.; Nikkel, A.L.; Manelli, A.M.; Hsieh, G.C.; Esbenshade, T.A.; Brioni, J.D.; Bitner, R.S. Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res., 2009, 1250, 41-48.
[http://dx.doi.org/10.1016/j.brainres.2008.11.018] [PMID: 19046950]
[66]
Shan, L.; Bossers, K.; Luchetti, S.; Balesar, R.; Lethbridge, N.; Chazot, P.L.; Bao, A.M.; Swaab, D.F. Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson’s patients: a postmortem study. Neurobiol. Aging, 2012, 33(7), 1488.e1-1488.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.016] [PMID: 22118942]
[67]
Schneider, E.H.; Seifert, R. The histamine H4-receptor and the central and peripheral nervous system: A critical analysis of the literature. Neuropharmacology, 2016, 106, 116-128.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.004] [PMID: 25986697]
[68]
Tighilet, B.; Trottier, S.; Mourre, C.; Chotard, C.; Lacour, M. Betahistine dihydrochloride interaction with the histaminergic system in the cat: Neurochemical and molecular mechanisms. Eur. J. Pharmacol., 2002, 446(1-3), 63-73.
[http://dx.doi.org/10.1016/S0014-2999(02)01795-8] [PMID: 12098586]
[69]
Tighilet, B.; Trottier, S.; Mourre, C.; Lacour, M. Changes in the histaminergic system during vestibular compensation in the cat. J. Physiol., 2006, 573(3), 723-739.
[http://dx.doi.org/10.1113/jphysiol.2006.107805] [PMID: 16613878]
[70]
Ruat, M.; Traiffort, E.; Arrang, J.M.; Leurs, R.; Schwartz, J.C. Cloning and tissue expression of a rat histamine H2-receptor gene. Biochem. Biophys. Res. Commun., 1991, 179(3), 1470-1478.
[http://dx.doi.org/10.1016/0006-291X(91)91738-X] [PMID: 1930188]
[71]
Desmadryl, G.; Gaboyard-Niay, S.; Brugeaud, A.; Travo, C.; Broussy, A.; Saleur, A.; Dyhrfjeld-Johnsen, J.; Wersinger, E.; Chabbert, C. Histamine H 4 receptor antagonists as potent modulators of mammalian vestibular primary neuron excitability. Br. J. Pharmacol., 2012, 167(4), 905-916.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02049.x] [PMID: 22624822]
[72]
Soto, E.; Vega, R. Neuropharmacology of vestibular system disorders. Curr. Neuropharmacol., 2010, 8(1), 26-40.
[http://dx.doi.org/10.2174/157015910790909511] [PMID: 20808544]
[73]
Takumida, M.; Takumida, H.; Anniko, M. Localization of histamine (H1, H2, H3 and H4) receptors in mouse inner ear. Acta Otolaryngol., 2016, 136(6), 537-544.
[http://dx.doi.org/10.3109/00016489.2015.1136433] [PMID: 26854127]
[74]
Wersinger, E.; Gaboyard-Niay, S.; Travo, C.; Soto, E.; Baez, A.; Vega, R.; Brugeaud, A.; Chabbert, C. Symptomatic treatment of vestibular deficits: Therapeutic potential of histamine H4 receptors. J. Vestib. Res., 2013, 23(3), 153-159.
[http://dx.doi.org/10.3233/VES-130493] [PMID: 24177347]
[75]
Eatock, R.A.; Songer, J.E. Vestibular hair cells and afferents: Two channels for head motion signals. Annu. Rev. Neurosci., 2011, 34(1), 501-534.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113710] [PMID: 21469959]
[76]
Møller, M.N.; Kirkeby, S.; Vikeså, J.; Nielsen, F.C.; Caye-Thomasen, P. Expression of histamine receptors in the human endolymphatic sac: The molecular rationale for betahistine use in Menieres disease. Eur. Arch. Otorhinolaryngol., 2016, 273(7), 1705-1710.
[http://dx.doi.org/10.1007/s00405-015-3731-5] [PMID: 26208913]
[77]
Housley, G.D.; Norris, C.H.; Guth, P.S. Histamine and related substances influence neurotransmission in the semicircular canal. Hear. Res., 1988, 35(1), 87-97.
[http://dx.doi.org/10.1016/0378-5955(88)90043-3] [PMID: 3263349]
[78]
Chávez, H.; Vega, R.; Soto, E. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferents. Brain Res., 2005, 1064(1-2), 1-9.
[http://dx.doi.org/10.1016/j.brainres.2005.10.027] [PMID: 16310756]
[79]
Botta, L.; Mira, E.; Valli, S.; Perin, P.; Zucca, G.; Valli, P. Effects of betahistine on vestibular receptors of the frog. Acta Otolaryngol., 1998, 118(4), 519-523.
[http://dx.doi.org/10.1080/00016489850154658] [PMID: 9726676]
[80]
Li, B.; Zhang, X-Y.; Yang, A-H.; Peng, X.C.; Chen, Z.P.; Zhou, J.Y.; Chan, Y.S.; Wang, J.J.; Zhu, J.N. Histamine increases neuronal excitability and sensitivity of the lateral vestibular nucleus and promotes motor behaviors via hcn channel coupled to H2 receptor. Front. Cell. Neurosci., 2017, 10, 300.
[http://dx.doi.org/10.3389/fnagi.2017.00300] [PMID: 28119568]
[81]
Peng, S.Y.; Zhuang, Q.X.; He, Y.C.; Zhu, J.N.; Wang, J.J. Histamine excites neurons of the inferior vestibular nucleus in rats by activation of H1 and H2 receptors. Neurosci. Lett., 2013, 541, 87-92.
[http://dx.doi.org/10.1016/j.neulet.2013.02.040] [PMID: 23466693]
[82]
Phelan, K.D.; Nakamura, J.; Gallagher, J.P. Histamine depolarizes rat medial vestibular nucleus neurons recorded intracellularly in vitro. Neurosci. Lett., 1990, 109(3), 287-292.
[http://dx.doi.org/10.1016/0304-3940(90)90009-X] [PMID: 2139500]
[83]
Serafin, M.; Khateb, A.; Vibert, N.; Vidal, P.P.; Mühlethaler, M. Medial vestibular nucleus in the guinea-pig: Histaminergic receptors. I. An in vitro study. Exp. Brain Res., 1993, 93(2), 242-248.
[http://dx.doi.org/10.1007/BF00228391] [PMID: 8387929]
[84]
Wang, J.J.; Dutia, M.B. Effects of histamine and betahistine on rat medial vestibular nucleus neurones: Possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. Exp. Brain Res., 1995, 105(1), 18-24.
[http://dx.doi.org/10.1007/BF00242178] [PMID: 7589314]
[85]
Zhang, J.; Han, X.H.; Li, H.Z.; Zhu, J.N.; Wang, J.J. Histamine excites rat lateral vestibular nuclear neurons through activation of post-synaptic H2 receptors. Neurosci. Lett., 2008, 448(1), 15-19.
[http://dx.doi.org/10.1016/j.neulet.2008.10.027] [PMID: 18938221]
[86]
Zhuang, Q.X.; Wu, Y.H.; Wu, G.Y.; Zhu, J.N.; Wang, J.J. Histamine excites rat superior vestibular nuclear neurons via postsynaptic H1 and H2 receptors in vitro. Neurosignals, 2013, 21(3-4), 174-183.
[http://dx.doi.org/10.1159/000341980] [PMID: 23006827]
[87]
Takeda, N.; Morita, M.; Kubo, T.; Yamatodani, A.; Watanabe, T.; Wada, H.; Matsunaga, T. Histaminergic mechanism of motion sickness. Neurochemical and neuropharmacological studies in rats. Acta Otolaryngol., 1986, 101(5-6), 416-421.
[http://dx.doi.org/10.3109/00016488609108626] [PMID: 3727976]
[88]
Horii, A.; Takeda, N.; Matsunaga, T.; Yamatodani, A.; Mochizuki, T.; Okakura-Mochizuki, K.; Wada, H. Effect of unilateral vestibular stimulation on histamine release from the hypothalamus of rats in vivo. J. Neurophysiol., 1993, 70(5), 1822-1826.
[http://dx.doi.org/10.1152/jn.1993.70.5.1822] [PMID: 8294957]
[89]
Uno, A.; Takeda, N.; Horii, A.; Morita, M.; Yamamoto, Y.; Yamatodani, A.; Kubo, T. Histamine release from the hypothalamus induced by gravity change in rats and space motion sickness. Physiol. Behav., 1997, 61(6), 883-887.
[http://dx.doi.org/10.1016/S0031-9384(96)00613-0] [PMID: 9177562]
[90]
Yabe, T.; de Waele, C.; Serafin, M.; Vibert, N.; Arrang, J.M.; Mühlethaler, M.; Vidal, P.P. Medial vestibular nucleus in the guinea-pig: Histaminergic receptors. Exp. Brain Res., 1993, 93(2), 249-258.
[http://dx.doi.org/10.1007/BF00228392] [PMID: 8491265]
[91]
Tighilet, B.; Mourre, C.; Lacour, M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front. Integr. Nuerosci., 2014, 7, 87.
[http://dx.doi.org/10.3389/fnint.2013.00087] [PMID: 24427120]
[92]
Tighilet, B.; Lacour, M. Histamine immunoreactivity changes in vestibular-lesioned and histaminergic-treated cats. Eur. J. Pharmacol., 1997, 330(1), 65-77.
[http://dx.doi.org/10.1016/S0014-2999(97)10124-8] [PMID: 9228415]
[93]
Matsuyama, T.; Kayahara, T.; Nomura, J.; Nakano, K. Direct projections from the medial vestibular nucleus to the posterior hypothalamic area in the monkey (Macaca fuscata). Neurosci. Lett., 1996, 219(3), 199-202.
[http://dx.doi.org/10.1016/S0304-3940(96)13206-7] [PMID: 8971814]
[94]
Kassner, S.S.; Schöttler, S.; Bonaterra, G.A.; Stern-Straeter, J.; Hormann, K.; Kinscherf, R.; Gössler, U.R. Proinflammatory activation of peripheral blood mononuclear cells in patients with vestibular neuritis. Audiol. Neurotol., 2011, 16(4), 242-247.
[http://dx.doi.org/10.1159/000320839] [PMID: 20980744]
[95]
Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. J. Vestib. Res., 2022, 32(5), 389-406.
[http://dx.doi.org/10.3233/VES-220201] [PMID: 35723133]
[96]
Le, T.N.; Westerberg, B.D.; Lea, J. Vestibular neuritis: Recent advances in etiology, diagnostic evaluation, and treatment. Adv. Otorhinolaryngol., 2019, 82, 87-92.
[http://dx.doi.org/10.1159/000490275] [PMID: 30947184]
[97]
Goudakos, J.K.; Markou, K.D.; Franco-Vidal, V.; Vital, V.; Tsaligopoulos, M.; Darrouzet, V. Corticosteroids in the treatment of vestibular neuritis: A systematic review and meta-analysis. Otol. Neurotol., 2010, 31(2), 183-189.
[http://dx.doi.org/10.1097/MAO.0b013e3181ca843d] [PMID: 20009780]
[98]
Strupp, M.; Zingler, V.C.; Arbusow, V.; Niklas, D.; Maag, K.P.; Dieterich, M.; Bense, S.; Theil, D.; Jahn, K.; Brandt, T. Methylprednisolone, valacyclovir, or the combination for vestibular neuritis. N. Engl. J. Med., 2004, 351(4), 354-361.
[http://dx.doi.org/10.1056/NEJMoa033280] [PMID: 15269315]
[99]
Fishman, J.M.; Burgess, C.; Waddell, A. Corticosteroids for the treatment of idiopathic acute vestibular dysfunction (vestibular neuritis). Cochrane Libr., 2011, (5), CD008607.
[http://dx.doi.org/10.1002/14651858.CD008607.pub2] [PMID: 21563170]
[100]
Kim, G.; Seo, J.H.; Lee, S.J.; Lee, D.H. Therapeutic effect of steroids on vestibular neuritis: Systematic review and meta‐analysis. Clin. Otolaryngol., 2022, 47(1), 34-43.
[http://dx.doi.org/10.1111/coa.13880] [PMID: 34687143]
[101]
Leong, K.J.; Lau, T.; Stewart, V.; Canetti, E.F.D. Systematic review and meta‐analysis: Effectiveness of corticosteroids in treating adults with acute vestibular neuritis. Otolaryngol. Head Neck Surg., 2021, 165(2), 255-266.
[http://dx.doi.org/10.1177/0194599820982910] [PMID: 33525978]
[102]
Dutheil, S.; Brezun, J.M.; Leonard, J.; Lacour, M.; Tighilet, B. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience, 2009, 164(4), 1444-1456.
[http://dx.doi.org/10.1016/j.neuroscience.2009.09.048] [PMID: 19782724]
[103]
Dutheil, S.; Lacour, M.; Tighilet, B. Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage. PLoS One, 2011, 6(8), e22262.
[http://dx.doi.org/10.1371/journal.pone.0022262] [PMID: 21853029]
[104]
Dutheil, S.; Watabe, I.; Sadlaoud, K.; Tonetto, A.; Tighilet, B. BDNF signaling promotes vestibular compensation by increasing neurogenesis and remodeling the expression of potassium-chloride cotransporter KCC2 and GABAA receptor in the vestibular Nuclei. J. Neurosci., 2016, 36(23), 6199-6212.
[http://dx.doi.org/10.1523/JNEUROSCI.0945-16.2016] [PMID: 27277799]
[105]
Rastoldo, G.; El Mahmoudi, N.; Marouane, E.; Pericat, D.; Watabe, I.; Toneto, A.; López-Juárez, A.; Chabbert, C.; Tighilet, B. Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy. Prog. Neurobiol., 2021, 196, 101899.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101899] [PMID: 32858093]
[106]
Campos, T.A.; Vidal, P.P.; de Waele, C. Evidence for a microglial reaction within the vestibular and cochlear nuclei following inner ear lesion in the rat. Neuroscience, 1999, 92(4), 1475-1490.
[http://dx.doi.org/10.1016/S0306-4522(99)00078-0] [PMID: 10426501]
[107]
Campos-Torres, A.; Touret, M.; Vidal, P.P.; Barnum, S.; de Waele, C. The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat. Neuroscience, 2005, 130(4), 853-865.
[http://dx.doi.org/10.1016/j.neuroscience.2004.08.052] [PMID: 15652984]
[108]
Waele, C.; Torres, A.C.; Josset, P.; Vidal, P.P. Evidence for reactive astrocytes in rat vestibular and cochlear nuclei following unilateral inner ear lesion. Eur. J. Neurosci., 1996, 8(9), 2006-2018.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01344.x] [PMID: 8921291]
[109]
Liberge, M.; Manrique, C.; Bernard-Demanze, L.; Lacour, M. Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation. J. Neuroinflammation, 2010, 7(1), 91.
[http://dx.doi.org/10.1186/1742-2094-7-91] [PMID: 21143912]
[110]
Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol. Appl. Pharmacol., 2012, 258(1), 61-71.
[http://dx.doi.org/10.1016/j.taap.2011.10.008] [PMID: 22023963]
[111]
Zwergal, A.; Günther, L.; Brendel, M. 2017.https://www.frontiersin.org/article/10.3389/fneur.2017.00665
[112]
Flook, M.; Frejo, L.; Gallego-Martinez, A.; Martin-Sanz, E.; Rossi-Izquierdo, M.; Amor-Dorado, J.C.; Soto-Varela, A.; Santos-Perez, S.; Batuecas-Caletrio, A.; Espinosa-Sanchez, J.M.; Pérez-Carpena, P.; Martinez-Martinez, M.; Aran, I.; Lopez-Escamez, J.A. Differential proinflammatory signature in vestibular migraine and meniere disease. Front. Immunol., 2019, 10, 1229.
[http://dx.doi.org/10.3389/fimmu.2019.01229] [PMID: 31214186]
[113]
Karve, I.P.; Taylor, J.M.; Crack, P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 2016, 173(4), 692-702.
[http://dx.doi.org/10.1111/bph.13125] [PMID: 25752446]
[114]
Dong, H.; Zhang, W.; Zeng, X.; Hu, G.; Zhang, H.; He, S.; Zhang, S. Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol. Neurobiol., 2014, 49(3), 1487-1500.
[http://dx.doi.org/10.1007/s12035-014-8697-6] [PMID: 24752587]
[115]
Xu, J.; Zhang, X.; Qian, Q.; Wang, Y.; Dong, H.; Li, N.; Qian, Y.; Jin, W. Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J. Neuroinflammation, 2018, 15(1), 41.
[http://dx.doi.org/10.1186/s12974-018-1068-x] [PMID: 29433511]
[116]
Frick, L.; Rapanelli, M.; Abbasi, E.; Ohtsu, H.; Pittenger, C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav. Immun., 2016, 57, 326-337.
[http://dx.doi.org/10.1016/j.bbi.2016.07.002] [PMID: 27381299]
[117]
Barata-Antunes, S.; Cristóvão, A.C.; Pires, J.; Rocha, S.M.; Bernardino, L. Dual role of histamine on microglia-induced neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(3), 764-769.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.016] [PMID: 28057587]
[118]
Ferreira, R.; Santos, T.; Gonçalves, J.; Baltazar, G.; Ferreira, L.; Agasse, F.; Bernardino, L. Histamine modulates microglia function. J. Neuroinflammation, 2012, 9(1), 90.
[http://dx.doi.org/10.1186/1742-2094-9-90] [PMID: 22569158]
[119]
Lenz, K.M.; Pickett, L.A.; Wright, C.L.; Davis, K.T.; Joshi, A.; McCarthy, M.M. Mast cells in the developing brain determine adult sexual behavior. J. Neurosci., 2018, 38(37), 8044-8059.
[http://dx.doi.org/10.1523/JNEUROSCI.1176-18.2018] [PMID: 30093566]
[120]
Rocha, S.M.; Saraiva, T.; Cristóvão, A.C.; Ferreira, R.; Santos, T.; Esteves, M.; Saraiva, C.; Je, G.; Cortes, L.; Valero, J.; Alves, G.; Klibanov, A.; Kim, Y.S.; Bernardino, L. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J. Neuroinflammation, 2016, 13(1), 137.
[http://dx.doi.org/10.1186/s12974-016-0600-0] [PMID: 27260166]
[121]
Zhang, W.; Zhang, X.; Zhang, Y.; Qu, C.; Zhou, X.; Zhang, S. Histamine induces microglia activation and the release of proinflammatory mediators in rat brain via H1R or H4R. J. Neuroimmune Pharmacol., 2020, 15(2), 280-291.
[http://dx.doi.org/10.1007/s11481-019-09887-6] [PMID: 31863333]
[122]
Zhu, J.; Qu, C.; Lu, X.; Zhang, S. Activation of microglia by histamine and substance P. Cell. Physiol. Biochem., 2014, 34(3), 768-780.
[http://dx.doi.org/10.1159/000363041] [PMID: 25170632]
[123]
Rocha, S.M.; Pires, J.; Esteves, M. Histamine: A new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci., 2014, 8, 120. Available from: https://www.frontiersin.org/article/10.3389/fncel.2014.00120 (2014, accessed 17 January 2022).
[http://dx.doi.org/10.3389/fncel.2014.00120]
[124]
Elenkov, I.J.; Webster, E.; Papanicolaou, D.A.; Fleisher, T.A.; Chrousos, G.P.; Wilder, R.L. Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J. Immunol., 1998, 161(5), 2586-2593.
[http://dx.doi.org/10.4049/jimmunol.161.5.2586] [PMID: 9725260]
[125]
Mazzoni, A.; Young, H.A.; Spitzer, J.H.; Visintin, A.; Segal, D.M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest., 2001, 108(12), 1865-1873.
[http://dx.doi.org/10.1172/JCI200113930] [PMID: 11748270]
[126]
Morichika, T.; Takahashi, H.K.; Iwagaki, H.; Yoshino, T.; Tamura, R.; Yokoyama, M.; Mori, S.; Akagi, T.; Nishibori, M.; Tanaka, N. Histamine inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production in an intercellular adhesion molecule-1- and B7.1-dependent manner. J. Pharmacol. Exp. Ther., 2003, 304(2), 624-633.
[http://dx.doi.org/10.1124/jpet.102.042515] [PMID: 12538815]
[127]
Takahashi, H.K.; Morichika, T.; Iwagaki, H.; Tamura, R.; Kubo, S.; Yoshino, T.; Mori, S.; Akagi, T.; Tanaka, N.; Nishibori, M. Histamine downregulates CD14 expression via H2 receptorson human monocytes. Clin. Immunol., 2003, 108(3), 274-281.
[http://dx.doi.org/10.1016/S1521-6616(03)00140-2] [PMID: 14499251]
[128]
Aldinucci, A.; Bonechi, E.; Manuelli, C.; Nosi, D.; Masini, E.; Passani, M.B.; Ballerini, C. Histamine regulates actin cytoskeleton in human toll-like receptor 4-activated monocyte-derived dendritic cells tuning CD4+ T lymphocyte response. J. Biol. Chem., 2016, 291(28), 14803-14814.
[http://dx.doi.org/10.1074/jbc.M116.720680] [PMID: 27226579]
[129]
Iida, T.; Yoshikawa, T.; Matsuzawa, T.; Naganuma, F.; Nakamura, T.; Miura, Y.; Mohsen, A.S.; Harada, R.; Iwata, R.; Yanai, K. Histamine H 3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia, 2015, 63(7), 1213-1225.
[http://dx.doi.org/10.1002/glia.22812] [PMID: 25754956]
[130]
Li, H.; Godfrey, D.A.; Rubin, A.M. Astrocyte reaction in the rat vestibular nuclei after unilateral removal of Scarpa’s ganglion. Ann. Otol. Rhinol. Laryngol., 1999, 108(2), 181-188.
[http://dx.doi.org/10.1177/000348949910800214] [PMID: 10030238]
[131]
El Mahmoudi, N.; Rastoldo, G.; Marouane, E.; Péricat, D.; Watabe, I.; Tonetto, A.; Hautefort, C.; Chabbert, C.; Sargolini, F.; Tighilet, B. Breaking a dogma: acute anti-inflammatory treatment alters both post-lesional functional recovery and endogenous adaptive plasticity mechanisms in a rodent model of acute peripheral vestibulopathy. J. Neuroinflammation, 2021, 18(1), 183.
[http://dx.doi.org/10.1186/s12974-021-02222-y] [PMID: 34419105]
[132]
Marouane, E.; El Mahmoudi, N.; Rastoldo, G.; Péricat, D.; Watabe, I.; Lapôtre, A.; Tonetto, A.; Xavier, F.; Dumas, O.; Chabbert, C.; Artzner, V.; Tighilet, B. Sensorimotor rehabilitation promotes vestibular compensation in a rodent model of acute peripheral vestibulopathy by promoting microgliogenesis in the deafferented vestibular nuclei. Cells, 2021, 10(12), 3377.
[http://dx.doi.org/10.3390/cells10123377] [PMID: 34943885]
[133]
Rastoldo, G.; Marouane, E.; El-Mahmoudi, N.; Péricat, D.; Watabe, I.; Lapotre, A.; Tonetto, A.; López-Juárez, A.; El-Ahmadi, A.; Caron, P.; Fraysse, M.J.E.; Chabbert, C.; Zwergal, A.; Tighilet, B. L-Thyroxine improves vestibular compensation in a rat model of acute peripheral vestibulopathy: Cellular and behavioral aspects. Cells, 2022, 11(4), 684.
[http://dx.doi.org/10.3390/cells11040684] [PMID: 35203333]
[134]
El Mahmoudi, N.; Marouane, E.; Rastoldo, G.; Pericat, D.; Watabe, I.; Lapotre, A.; Tonetto, A.; Chabbert, C.; Tighilet, B. Microglial dynamics modulate vestibular compensation in a rodent model of vestibulopathy and condition the expression of plasticity mechanisms in the deafferented vestibular nuclei. Cells, 2022, 11(17), 2693.
[http://dx.doi.org/10.3390/cells11172693] [PMID: 36078101]
[135]
Wang, J.; Liu, B.; Sun, F.; Xu, Y.; Luan, H.; Yang, M.; Wang, C.; Zhang, T.; Zhou, Z.; Yan, H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int. Immunopharmacol., 2022, 110, 109045.
[http://dx.doi.org/10.1016/j.intimp.2022.109045] [PMID: 35978505]
[136]
Saraiva, C.; Barata-Antunes, S.; Santos, T.; Ferreiro, E.; Cristóvão, A.C.; Serra-Almeida, C.; Ferreira, R.; Bernardino, L. Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci. Rep., 2019, 9(1), 8384.
[http://dx.doi.org/10.1038/s41598-019-44816-w] [PMID: 31182747]
[137]
Frejo, L.; Lopez-Escamez, J.A. Cytokines and inflammation in meniere disease. Clin. Exp. Otorhinolaryngol., 2022, 15(1), 49-59.
[http://dx.doi.org/10.21053/ceo.2021.00920] [PMID: 35124944]
[138]
Chabbert, C. Principles of vestibular pharmacotherapy. Handb. Clin. Neurol., 2016, 137, 207-218.
[139]
Zwergal, A.; Strupp, M.; Brandt, T. Advances in pharmacotherapy of vestibular and ocular motor disorders. Expert Opin. Pharmacother., 2019, 20(10), 1267-1276.
[http://dx.doi.org/10.1080/14656566.2019.1610386] [PMID: 31030580]
[140]
Lacour, M.; Sterkers, O. Histamine and betahistine in the treatment of vertigo: Elucidation of mechanisms of action. CNS Drugs, 2001, 15(11), 853-870.
[http://dx.doi.org/10.2165/00023210-200115110-00004] [PMID: 11700150]
[141]
Lin, E.; Aligene, K. Pharmacology of balance and dizziness. NeuroRehabilitation, 2013, 32(3), 529-542.
[http://dx.doi.org/10.3233/NRE-130875] [PMID: 23648607]
[142]
Soto, E.; Vega, R.; Seseña, E. Neuropharmacological basis of vestibular system disorder treatment. J. Vestib. Res., 2013, 23(3), 119-137.
[http://dx.doi.org/10.3233/VES-130494] [PMID: 24177345]
[143]
Venail, F.; Attali, P.; Wersinger, E.; Gomeni, R.; Poli, S.; Schmerber, S. Safety, tolerability, pharmacokinetics and pharmacokinetic‐pharmacodynamic modelling of the novel H 4 receptor inhibitor SENS‐111 using a modified caloric test in healthy subjects. Br. J. Clin. Pharmacol., 2018, 84(12), 2836-2848.
[http://dx.doi.org/10.1111/bcp.13744] [PMID: 30152527]
[144]
Fermin, H.; Van Deinse, J.B.; Hammelburg, E. The effect of dimenhydrinate upon the labyrinth; (an experimental study). Acta Otolaryngol., 1950, 38(6), 543-549.
[http://dx.doi.org/10.3109/00016485009118417] [PMID: 14856685]
[145]
Halpert, A.; Olmstead, M.C.; Beninger, R.J. Mechanisms and abuse liability of the anti-histamine dimenhydrinate. Neurosci. Biobehav. Rev., 2002, 26(1), 61-67.
[http://dx.doi.org/10.1016/S0149-7634(01)00038-0] [PMID: 11835984]
[146]
Jaju, B.P.; Wang, S.C. Effects of diphenhydramine and dimenhydrinate on vestibular neuronal activity of cat: A search for the locus of their antimotion sickness action. J. Pharmacol. Exp. Ther., 1971, 176(3), 718-724.
[PMID: 4329456]
[147]
Kirtane, M.V.; Bhandari, A.; Narang, P.; Santani, R. Cinnarizine: A contemporary review. Indian J. Otolaryngol. Head Neck Surg., 2019, 71(S2), 1060-1068.
[http://dx.doi.org/10.1007/s12070-017-1120-7] [PMID: 31750127]
[148]
Mangabeira-Albernaz, P.L.; Ganança, M.M.; Novo, N.F.; de Paiva, E.R. Flunarizine and cinnarizine as vestibular depressants. A statistical study. ORL J. Otorhinolaryngol. Relat. Spec., 1978, 40(2), 92-100.
[http://dx.doi.org/10.1159/000275391] [PMID: 311458]
[149]
Haasler, T.; Homann, G.; Duong, D.T.A.; Jüngling, E.; Westhofen, M.; Lückhoff, A. Pharmacological modulation of transmitter release by inhibition of pressure-dependent potassium currents in vestibular hair cells. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(6), 531-538.
[http://dx.doi.org/10.1007/s00210-009-0463-3] [PMID: 19830405]
[150]
Overstall, P.W.; Hazell, J.W.P.; Johnson, A.L. Vertigo in the elderly. Age Ageing, 1981, 10(2), 105-109.
[http://dx.doi.org/10.1093/ageing/10.2.105] [PMID: 7246334]
[151]
Ehlert, F.J.; Yamamura, H.I. A comparison of the effects of cinnarizine and related compounds on [3H]nitrendipine binding in the brain, heart and ileum. Life Sci., 1984, 34(24), 2347-2355.
[http://dx.doi.org/10.1016/0024-3205(84)90421-1] [PMID: 6328164]
[152]
Fujimoto, S.; Sasa, M.; Takaori, S.; Matsuoka, I. Selective effect of cinnarizine on the vestibular nucleus neurons. Arch. Otorhinolaryngol., 1978, 221(1), 37-45.
[http://dx.doi.org/10.1007/BF00456382] [PMID: 697647]
[153]
Hahn, A.; Novotný, M.; Shotekov, P.M.; Cirek, Z.; Bognar-Steinberg, I.; Baumann, W. Comparison of cinnarizine/dimenhy-drinate fixed combination with the respective monotherapies for vertigo of various origins: A randomized, double-blind, active-controlled, multicentre study. Clin. Drug Investig., 2011, 31(6), 371-383.
[http://dx.doi.org/10.2165/11588920-000000000-00000] [PMID: 21401214]
[154]
Scholtz, A.W.; Ilgner, J.; Loader, B.; Pritschow, B.W.; Weisshaar, G. Cinnarizine and dimenhydrinate in the treatment of vertigo in medical practice. Wien. Klin. Wochenschr., 2016, 128(9-10), 341-347.
[http://dx.doi.org/10.1007/s00508-015-0905-5] [PMID: 26659910]
[155]
Plescia, F.; Salvago, P.; Dispenza, F.; Messina, G.; Cannizzaro, E.; Martines, F. Efficacy and pharmacological appropriateness of cinnarizine and dimenhydrinate in the treatment of vertigo and related symptoms. Int. J. Environ. Res. Public Health, 2021, 18(9), 4787.
[http://dx.doi.org/10.3390/ijerph18094787] [PMID: 33946152]
[156]
Scholtz, A.W.; Hahn, A.; Stefflova, B.; Medzhidieva, D.; Ryazantsev, S.V.; Paschinin, A.; Kunelskaya, N.; Schumacher, K.; Weisshaar, G. Efficacy and safety of a fixed combination of cinnarizine 20 mg and dimenhydrinate 40 mg vs betahistine dihydrochloride 16 mg in patients with peripheral vestibular vertigo: A prospective, multinational, multicenter, double-blind, randomized, non-inferiority clinical trial. Clin. Drug Investig., 2019, 39(11), 1045-1056.
[http://dx.doi.org/10.1007/s40261-019-00858-6] [PMID: 31571128]
[157]
Scholtz, A.W.; Waldfahrer, F.; Hampel, R.; Weisshaar, G. Efficacy and safety of a fixed-dose combination of cinnarizine 20 mg and dimenhydrinate 40 mg in the treatment of patients with vestibular vertigo: An individual patient data meta-analysis of randomised, double-blind, controlled clinical trials. Clin. Drug Investig., 2022, 42(9), 705-720.
[http://dx.doi.org/10.1007/s40261-022-01184-0] [PMID: 35864302]
[158]
Taghdiri, F.; Togha, M.; Razeghi, J.S.; Refaeian, F. Cinnarizine for the prophylaxis of migraine associated vertigo: A retrospective study. Springerplus, 2014, 3(1), 231.
[http://dx.doi.org/10.1186/2193-1801-3-231] [PMID: 24834377]
[159]
Teggi, R.; Colombo, B.; Gatti, O.; Comi, G.; Bussi, M. Fixed combination of cinnarizine and dimenhydrinate in the prophylactic therapy of vestibular migraine: An observational study. Neurol. Sci., 2015, 36(10), 1869-1873.
[http://dx.doi.org/10.1007/s10072-015-2270-6] [PMID: 26037548]
[160]
Corvera, J.; Corvera-Behar, G.; Lapilover, V.; Ysunza, A. Objective evaluation of the effect of flunarizine on vestibular neuritis. Otol. Neurotol., 2002, 23(6), 933-937.
[http://dx.doi.org/10.1097/00129492-200211000-00020] [PMID: 12438858]
[161]
Rashid, S.M.U.; Sumaria, S.; Koohi, N.; Arshad, Q.; Kaski, D. Patient experience of flunarizine for vestibular migraine: Single centre observational study. Brain Sci., 2022, 12(4), 415.
[http://dx.doi.org/10.3390/brainsci12040415] [PMID: 35447947]
[162]
Yiannakis, C.; Hamilton, L.; Slim, M.; Kontorinis, G. A systematic review and meta-analysis of prophylactic medication of vestibular migraine. J. Laryngol. Otol., 2023, 137(9), 953-961.
[http://dx.doi.org/10.1017/S0022215122001979] [PMID: 36200521]
[163]
Jeck-Thole, S.; Wagner, W. Betahistine. Drug Saf., 2006, 29(11), 1049-1059.
[http://dx.doi.org/10.2165/00002018-200629110-00004] [PMID: 17061910]
[164]
Murdin, L.; Hussain, K.; Schilder, A.G. Betahistine for symptoms of vertigo. Cochrane Database Syst. Rev., 2016, 2016(6), CD010696.
[http://dx.doi.org/10.1002/14651858.CD010696] [PMID: 27327415]
[165]
Bertlich, M.; Ihler, F.; Sharaf, K.; Weiss, B.G.; Strupp, M.; Canis, M. Betahistine metabolites, aminoethylpyridine, and hydroxyethylpyridine increase cochlear blood flow in guinea pigs in vivo. Int. J. Audiol., 2014, 53(10), 753-759.
[http://dx.doi.org/10.3109/14992027.2014.917208] [PMID: 25014609]
[166]
Ihler, F.; Bertlich, M.; Sharaf, K.; Strieth, S.; Strupp, M.; Canis, M. Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in guinea pigs in vivo. PLoS One, 2012, 7(6), e39086.
[http://dx.doi.org/10.1371/journal.pone.0039086] [PMID: 22745706]
[167]
Laurikainen, E.A.; Miller, J.M.; Quirk, W.S.; Kallinen, J.; Ren, T.; Nuttall, A.L.; Grénman, R.; Virolainen, E. Betahistine-induced vascular effects in the rat cochlea. Am. J. Otol., 1993, 14(1), 24-30.
[PMID: 8424471]
[168]
Martinez, D.M. The effect of Serc (betahistine hydrochloride) on the circulation of the inner ear in experimental animals. Acta Otolaryngol., 1972, 74(sup305), 29-47.
[http://dx.doi.org/10.3109/00016487209122697] [PMID: 4353749]
[169]
Bertlich, M.; Ihler, F.; Freytag, S.; Weiss, B.G.; Strupp, M.; Canis, M. Histaminergic H-3-heteroreceptors as a potential mediator of betahistine-induced increase in cochlear blood flow. Audiol. Neurotol., 2015, 20(5), 283-293.
[http://dx.doi.org/10.1159/000368293] [PMID: 26139562]
[170]
Bertlich, M.; Ihler, F.; Weiss, B.G.; Freytag, S.; Strupp, M.; Jakob, M.; Canis, M. Role of capillary pericytes and precapillary arterioles in the vascular mechanism of betahistine in a guinea pig inner ear model. Life Sci., 2017, 187, 17-21.
[http://dx.doi.org/10.1016/j.lfs.2017.08.015] [PMID: 28818391]
[171]
Dziadziola, J.K.; Laurikainen, E.L.; Rachel, J.D.; Quirk, W.S. Betahistine increases vestibular blood flow. Otolaryngol. Head Neck Surg., 1999, 120(3), 400-405.
[http://dx.doi.org/10.1016/S0194-5998(99)70283-4] [PMID: 10064646]
[172]
Laurikainen, E.; Miller, J.M.; Quirk, W.S.; Nuttall, A.L. The vascular mechanism of action of betahistine in the inner ear of the guinea pig. Eur. Arch. Otorhinolaryngol., 1998, 255(3), 119-123.
[http://dx.doi.org/10.1007/s004050050025] [PMID: 9561856]
[173]
Dyhrfjeld-Johnsen, J.; Attali, P. Management of peripheral vertigo with antihistamines: New options on the horizon. Br. J. Clin. Pharmacol., 2019, 85(10), 2255-2263.
[http://dx.doi.org/10.1111/bcp.14046] [PMID: 31269270]
[174]
Adrion, C.; Fischer, C.S.; Wagner, J.; Gürkov, R.; Mansmann, U.; Strupp, M. Efficacy and safety of betahistine treatment in patients with Meniere’s disease: Primary results of a long term, multicentre, double blind, randomised, placebo controlled, dose defining trial (BEMED trial). BMJ, 2016, 352, h6816.
[http://dx.doi.org/10.1136/bmj.h6816] [PMID: 26797774]
[175]
Lezius, F.; Adrion, C.; Mansmann, U.; Jahn, K.; Strupp, M. High-dosage betahistine dihydrochloride between 288 and 480 mg/day in patients with severe Menière’s disease: a case series. Eur. Arch. Otorhinolaryngol., 2011, 268(8), 1237-1240.
[http://dx.doi.org/10.1007/s00405-011-1647-2] [PMID: 21626121]
[176]
Liu, J.L.; Liu, J.G.; Chen, X.B.; Liu, Y.H. The benefits of betahistine or vestibular rehabilitation (Tetrax biofeedback) on the quality of life and fall risk in patients with Ménière’s disease. J. Laryngol. Otol., 2020, 134(12), 1073-1076.
[http://dx.doi.org/10.1017/S0022215120002509] [PMID: 33280619]
[177]
Nauta, J.J.P. Meta-analysis of clinical studies with betahistine in Ménière’s disease and vestibular vertigo. Eur. Arch. Otorhinolaryngol., 2014, 271(5), 887-897.
[http://dx.doi.org/10.1007/s00405-013-2596-8] [PMID: 23778722]
[178]
Ramos, A.R.; Ledezma, R.J.G.; Navas, R. A.; Cardenas Nuñez, J.L.; Rodríguez, M.V.; Deschamps, J.J.; Liviac, T.J.A. Use of betahistine in the treatment of peripheral vertigo. Acta Otolaryngol., 2015, 135(12), 1205-1211.
[http://dx.doi.org/10.3109/00016489.2015.1072873] [PMID: 26245698]
[179]
Sanchez-Vanegas, G.; Castro-Moreno, C.; Buitrago, D. Betahistine in the treatment of peripheral vestibular vertigo: Results of a real-life study in primary care. Ear Nose Throat J., 2020, 99(6), 356-360.
[http://dx.doi.org/10.1177/0145561319849946] [PMID: 31111729]
[180]
Van Esch, B.; van der Zaag-Loonen, H.; Bruintjes, T.; van Benthem, P.P. Betahistine in ménière’s disease or syndrome: A systematic review. Audiol. Neurotol., 2022, 27(1), 1-33.
[http://dx.doi.org/10.1159/000515821] [PMID: 34233329]
[181]
Tighilet, B.; Leonard, J.; Lacour, M. Betahistine dihydrochloride treatment facilitates vestibular compensation in the cat. J. Vestib. Res., 1995, 5(1), 53-66.
[http://dx.doi.org/10.3233/VES-1995-5106] [PMID: 7711948]
[182]
Fukuda, J.; Matsuda, K.; Sato, G.; Kitahara, T.; Matsuoka, M.; Azuma, T.; Kitamura, Y.; Tomita, K.; Takeda, N. Effects of betahistine on the development of vestibular compensation after unilateral labyrinthectomy in rats. Brain Sci., 2021, 11(3), 360.
[http://dx.doi.org/10.3390/brainsci11030360] [PMID: 33799856]
[183]
Zhang, Y.X.; Wang, H.X.; Li, Q.X.; Chen, A.X.; Wang, X.X.; Zhou, S.; Xie, S.T.; Li, H.Z.; Wang, J.J.; Zhang, Q.; Zhang, X.Y.; Zhu, J.N. A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomed. Pharmacother., 2022, 153, 113344.
[http://dx.doi.org/10.1016/j.biopha.2022.113344] [PMID: 35780620]
[184]
Tian, C.J.; Kim, S.W.; Kim, Y.J.; Lim, H.J.; Park, R.; So, H.S.; Choung, Y.H. Red ginseng protects against gentamicin-induced balance dysfunction and hearing loss in rats through antiapoptotic functions of ginsenoside Rb1. Food Chem. Toxicol., 2013, 60, 369-376.
[http://dx.doi.org/10.1016/j.fct.2013.07.069] [PMID: 23933362]
[185]
Tighilet, B.; Trico, J.; Xavier, F.; Chabbert, C. What predictability for animal models of peripheral vestibular disorders? Biomedicines, 2022, 10(12), 3097.
[http://dx.doi.org/10.3390/biomedicines10123097] [PMID: 36551852]
[186]
Eisenman, D.J.; Speers, R.; Telian, S.A. Labyrinthectomy versus vestibular neurectomy: Long-term physiologic and clinical outcomes. Otol. Neurotol., 2001, 22(4), 539-548.
[http://dx.doi.org/10.1097/00129492-200107000-00022] [PMID: 11449114]
[187]
Hoffmann, K.K.; Silverstein, H. Inner ear perfusion: Indications and applications. Curr. Opin. Otolaryngol. Head Neck Surg., 2003, 11(5), 334-339.
[http://dx.doi.org/10.1097/00020840-200310000-00005] [PMID: 14502063]
[188]
Sargent, E.W.; Liao, E.; Gonda, R.L., Jr Cochlear patency after transmastoid labyrinthectomy for ménière’s syndrome. Otol. Neurotol., 2016, 37(7), 937-939.
[http://dx.doi.org/10.1097/MAO.0000000000001105] [PMID: 27300724]
[189]
Van de Heyning, P.; Betka, J.; Chovanec, M.; Devèze, A.; Giannuzzi, A.L.; Krempaská, S.; Przewoźny, T.; Scheich, M.; Strupp, M.; Van Rompaey, V.; Meyer, T. Efficacy and safety of intranasal betahistine in the treatment of surgery-induced acute vestibular syndrome: a double-blind, randomized, placebo-controlled phase 2 Study. Otol. Neurotol., 2023, 44(5), 493-501.
[http://dx.doi.org/10.1097/MAO.0000000000003856] [PMID: 37026797]
[190]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837.
[http://dx.doi.org/10.1038/302832a0] [PMID: 6188956]
[191]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience, 1985, 15(2), 553-562.
[http://dx.doi.org/10.1016/0306-4522(85)90233-7] [PMID: 4022339]
[192]
Arrang, J-M.; Garbarg, M.; Schwartz, J-C. Autoinhibition of histamine synthesis mediated by presynaptic H3-receptors. Neuroscience, 1987, 23(1), 149-157.
[http://dx.doi.org/10.1016/0306-4522(87)90279-X] [PMID: 2446202]
[193]
Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Gulat-Marnay, C.; Pollard, H. Modulation of histamine synthesis and release in brain via presynaptic autoreceptors and heteroreceptors. Ann. N. Y. Acad. Sci., 1990, 604(1), 40-54.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb31981.x] [PMID: 1699464]
[194]
Bergquist, F.; Ruthven, A.; Ludwig, M.; Dutia, M.B. Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats. J. Physiol., 2006, 577(3), 857-868.
[http://dx.doi.org/10.1113/jphysiol.2006.120493] [PMID: 17038426]
[195]
Bergquist, F.; Dutia, M.B. Central histaminergic modulation of vestibular function - a review. Sheng Li Xue Bao, 2006, 58(4), 293-304.
[PMID: 16906328]
[196]
Tighilet, B.; Trottier, S.; Lacour, M. Dose- and duration-dependent effects of betahistine dihydrochloride treatment on histamine turnover in the cat. Eur. J. Pharmacol., 2005, 523(1-3), 54-63.
[http://dx.doi.org/10.1016/j.ejphar.2005.09.017] [PMID: 16226741]
[197]
Chávez, H.; Vega, R.; Valli, P.; Mira, E.; Benvenuti, C.; Guth, P.S.; Soto, E. Action mechanism of betahistine in the vestibular end organs. Acta Otorhinolaryngol. Ital., 2001, 21(3)(Suppl. 66), 8-15.
[PMID: 11677837]
[198]
Soto, E.; Chávez, H.; Valli, P.; Benvenuti, C.; Vega, R. Betahistine produces post-synaptic inhibition of the excitability of the primary afferent neurons in the vestibular endorgans. Acta Otolaryngol. Suppl., 2001, 545, 19-24.
[PMID: 11677735]
[199]
Bellot-Saez, A.; Kékesi, O.; Morley, J.W.; Buskila, Y. Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci. Biobehav. Rev., 2017, 77, 87-97.
[http://dx.doi.org/10.1016/j.neubiorev.2017.03.002] [PMID: 28279812]
[200]
Losi, G.; Mariotti, L.; Sessolo, M.; Carmignoto, G. New tools to study astrocyte ca2+ signal dynamics in brain networks in vivo. Front. Cell. Neurosci., 2017, 11, 134.
[http://dx.doi.org/10.3389/fncel.2017.00134] [PMID: 28536505]
[201]
Jurič, D.M.; Kržan, M.; Lipnik-Stangelj, M. Histamine and astrocyte function. Pharmacol. Res., 2016, 111, 774-783.
[http://dx.doi.org/10.1016/j.phrs.2016.07.035] [PMID: 27475882]
[202]
Kárpáti, A.; Yoshikawa, T.; Nakamura, T.; Iida, T.; Matsuzawa, T.; Kitano, H.; Harada, R.; Yanai, K. Histamine elicits glutamate release from cultured astrocytes. J. Pharmacol. Sci., 2018, 137(2), 122-128.
[http://dx.doi.org/10.1016/j.jphs.2018.05.002] [PMID: 29858014]
[203]
Fang, Q.; Hu, W.W.; Wang, X.F.; Yang, Y.; Lou, G.D.; Jin, M.M.; Yan, H.J.; Zeng, W.Z.; Shen, Y.; Zhang, S.H.; Xu, T.L.; Chen, Z. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology, 2014, 77, 156-166.
[http://dx.doi.org/10.1016/j.neuropharm.2013.06.012] [PMID: 23791559]
[204]
Ferrini, F.; De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/429815] [PMID: 24089642]
[205]
Hagemeyer, N.; Hanft, K.M.; Akriditou, M.A.; Unger, N.; Park, E.S.; Stanley, E.R.; Staszewski, O.; Dimou, L.; Prinz, M. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol., 2017, 134(3), 441-458.
[http://dx.doi.org/10.1007/s00401-017-1747-1] [PMID: 28685323]
[206]
Botta, L.; Mira, E.; Valli, S.; Zucca, G.; Perin, P.; Benvenuti, C.; Fossati, A.; Valli, P. Effects of betahistine metabolites on frog ampullar receptors. Acta Otolaryngol., 2000, 120(1), 25-27.
[http://dx.doi.org/10.1080/000164800760370783] [PMID: 10779181]
[207]
Qin, D.; Zhang, H.; Wang, J.; Hong, Z. Histamine H4 receptor gene polymorphisms: a potential contributor to Meniere disease. BMC Med. Genomics, 2019, 12(1), 71.
[http://dx.doi.org/10.1186/s12920-019-0533-4] [PMID: 31133025]
[208]
Zampeli, E.; Tiligada, E. The role of histamine H 4 receptor in immune and inflammatory disorders. Br. J. Pharmacol., 2009, 157(1), 24-33.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00151.x] [PMID: 19309354]
[209]
Gazquez, I.; Soto-Varela, A.; Aran, I.; Santos, S.; Batuecas, A.; Trinidad, G.; Perez-Garrigues, H.; Gonzalez-Oller, C.; Acosta, L.; Lopez-Escamez, J.A. High prevalence of systemic autoimmune diseases in patients with Menière’s disease. PLoS One, 2011, 6(10), e26759.
[http://dx.doi.org/10.1371/journal.pone.0026759] [PMID: 22053211]
[210]
Zhou, P.; Homberg, J.R.; Fang, Q.; Wang, J.; Li, W.; Meng, X.; Shen, J.; Luan, Y.; Liao, P.; Swaab, D.F.; Shan, L.; Liu, C. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav. Immun., 2019, 76, 61-73.
[http://dx.doi.org/10.1016/j.bbi.2018.11.006] [PMID: 30408497]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy