Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Targeting Histamine and Histamine Receptors for Memory Regulation: An Emotional Perspective

Author(s): Zhuowen Fang, Jiahui Chen, Yanrong Zheng* and Zhong Chen*

Volume 22, Issue 11, 2024

Published on: 29 January, 2024

Page: [1846 - 1869] Pages: 24

DOI: 10.2174/1570159X22666240128003108

Price: $65

Abstract

Histamine has long been accepted as a pro-cognitive agent. However, lines of evidence have suggested that the roles of histamine in learning and memory processes are much more complex than previously thought. When explained by the spatial perspectives, there are many contradictory results. However, using emotional memory perspectives, we suspect that the histaminergic system may interplay with stress, reward inhibition, and attention to modulate emotional memory formation. The functional diversity of histamine makes it a viable target for clinical management of neuropsychiatric disorders. Here, we update the current knowledge about the functions of histamine in emotional memory and summarize the underlying molecular and neural circuit mechanisms. Finally, we review the main clinical studies about the impacts of histamine-related compounds on memory and discuss insights into future research on the roles of histamine in emotional memory. Despite the recent progress in histamine research, the histaminergic emotional memory circuits are poorly understood, and it is also worth verifying the functions of histamine receptors in a more spatiotemporally specific manner.

Graphical Abstract

[1]
Biderman, N.; Bakkour, A.; Shohamy, D. What are memories for? the hippocampus bridges past experience with future decisions. Trends Cogn. Sci., 2020, 24(7), 542-556.
[http://dx.doi.org/10.1016/j.tics.2020.04.004] [PMID: 32513572]
[2]
Crowley, R.; Bendor, D.; Javadi, A.H. A review of neurobiological factors underlying the selective enhancement of memory at encoding, consolidation, and retrieval. Prog. Neurobiol., 2019, 179, 101615.
[http://dx.doi.org/10.1016/j.pneurobio.2019.04.004] [PMID: 31054931]
[3]
Bowen, H.J.; Kark, S.M.; Kensinger, E.A. Never forget: Negative emotional valence enhances recapitulation. Psychon. Bull. Rev., 2018, 25(3), 870-891.
[http://dx.doi.org/10.3758/s13423-017-1313-9] [PMID: 28695528]
[4]
Bird, C.M.; Burgess, N. The hippocampus and memory: Insights from spatial processing. Nat. Rev. Neurosci., 2008, 9(3), 182-194.
[http://dx.doi.org/10.1038/nrn2335] [PMID: 18270514]
[5]
Leentjens, A.F.G.; Dujardin, K.; Marsh, L.; Martinez-Martin, P.; Richard, I.H.; Starkstein, S.E. Symptomatology and markers of anxiety disorders in Parkinson’s disease: A cross-sectional study. Mov. Disord., 2011, 26(3), 484-492.
[http://dx.doi.org/10.1002/mds.23528] [PMID: 21312281]
[6]
James, W. The Principles of Psychology; Henry Holt and Company, 1890.
[7]
McGaugh, J.L. Memory--a century of consolidation. Science, 2000, 287(5451), 248-251.
[http://dx.doi.org/10.1126/science.287.5451.248] [PMID: 10634773]
[8]
Kumfor, F.; Sapey-Triomphe, L.A.; Leyton, C.E.; Burrell, J.R.; Hodges, J.R.; Piguet, O. Degradation of emotion processing ability in corticobasal syndrome and Alzheimer’s disease. Brain, 2014, 137(11), 3061-3072.
[http://dx.doi.org/10.1093/brain/awu246] [PMID: 25227744]
[9]
Stark, E.; Stacey, J.; Mandy, W.; Kringelbach, M.L.; Happé, F. Autistic cognition: Charting routes to anxiety. Trends Cogn. Sci., 2021, 25(7), 571-581.
[http://dx.doi.org/10.1016/j.tics.2021.03.014] [PMID: 33958281]
[10]
van Ast, V.A.; Cornelisse, S.; Meeter, M.; Joëls, M.; Kindt, M. Time-dependent effects of cortisol on the contextualization of emotional memories. Biol. Psychiatry, 2013, 74(11), 809-816.
[http://dx.doi.org/10.1016/j.biopsych.2013.06.022] [PMID: 23972529]
[11]
Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev., 2019, 99(4), 2115-2140.
[http://dx.doi.org/10.1152/physrev.00014.2018] [PMID: 31507244]
[12]
Shalev, A.; Liberzon, I.; Marmar, C. Post-traumatic stress disorder. N. Engl. J. Med., 2017, 376(25), 2459-2469.
[http://dx.doi.org/10.1056/NEJMra1612499] [PMID: 28636846]
[13]
Lane, R.D.; Ryan, L.; Nadel, L.; Greenberg, L. Memory reconsolidation, emotional arousal, and the process of change in psychotherapy: New insights from brain science. Behav. Brain Sci., 2015, 38, e1.
[http://dx.doi.org/10.1017/S0140525X14000041] [PMID: 24827452]
[14]
Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci., 2013, 14(7), 472-487.
[http://dx.doi.org/10.1038/nrn3526] [PMID: 23783198]
[15]
Benetti, F.; Izquierdo, I. Histamine infused into basolateral amygdala enhances memory consolidation of inhibitory avoidance. Int. J. Neuropsychopharmacol., 2013, 16(7), 1539-1545.
[http://dx.doi.org/10.1017/S1461145712001514] [PMID: 23308396]
[16]
Lang, P.J. The emotion probe: Studies of motivation and attention. Am. Psychol., 1995, 50(5), 372-385.
[http://dx.doi.org/10.1037/0003-066X.50.5.372] [PMID: 7762889]
[17]
Zhu, Y.; Nachtrab, G.; Keyes, P.C.; Allen, W.E.; Luo, L.; Chen, X. Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 2018, 362(6413), 423-429.
[http://dx.doi.org/10.1126/science.aat0481] [PMID: 30361366]
[18]
Zhang, X.; Guan, W.; Yang, T.; Furlan, A.; Xiao, X.; Yu, K.; An, X.; Galbavy, W.; Ramakrishnan, C.; Deisseroth, K.; Ritola, K.; Hantman, A.; He, M.; Josh Huang, Z.; Li, B. Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nat. Neurosci., 2021, 24(11), 1586-1600.
[http://dx.doi.org/10.1038/s41593-021-00927-0] [PMID: 34663958]
[19]
Reitich-Stolero, T.; Paz, R. Affective memory rehearsal with temporal sequences in amygdala neurons. Nat. Neurosci., 2019, 22(12), 2050-2059.
[http://dx.doi.org/10.1038/s41593-019-0542-9] [PMID: 31768054]
[20]
Grosso, A.; Cambiaghi, M.; Renna, A.; Milano, L.; Roberto, M.G.; Sacco, T.; Sacchetti, B. The higher order auditory cortex is involved in the assignment of affective value to sensory stimuli. Nat. Commun., 2015, 6(1), 8886.
[http://dx.doi.org/10.1038/ncomms9886] [PMID: 26619940]
[21]
Paquelet, G.E.; Carrion, K.; Lacefield, C.O.; Zhou, P.; Hen, R.; Miller, B.R. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron, 2022, 110(16), 2664-2679.e8.
[http://dx.doi.org/10.1016/j.neuron.2022.05.015] [PMID: 35700737]
[22]
Ghazizadeh, A.; Hikosaka, O. Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia. Nat. Commun., 2022, 13(1), 6338.
[http://dx.doi.org/10.1038/s41467-022-33514-3] [PMID: 36284107]
[23]
Lutas, A.; Kucukdereli, H.; Alturkistani, O.; Carty, C.; Sugden, A.U.; Fernando, K.; Diaz, V.; Flores-Maldonado, V.; Andermann, M.L. State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nat. Neurosci., 2019, 22(11), 1820-1833.
[http://dx.doi.org/10.1038/s41593-019-0506-0] [PMID: 31611706]
[24]
Williams, S.E.; Ford, J.H.; Kensinger, E.A. The power of negative and positive episodic memories. Cogn. Affect. Behav. Neurosci., 2022, 22(5), 869-903.
[http://dx.doi.org/10.3758/s13415-022-01013-z] [PMID: 35701665]
[25]
Mather, M.; Sutherland, M.R. Arousal-biased competition in perception and memory. Perspect. Psychol. Sci., 2011, 6(2), 114-133.
[http://dx.doi.org/10.1177/1745691611400234] [PMID: 21660127]
[26]
Talmi, D. Enhanced emotional memory. Curr. Dir. Psychol. Sci., 2013, 22(6), 430-436.
[http://dx.doi.org/10.1177/0963721413498893]
[27]
McGaugh, J.L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci., 2004, 27(1), 1-28.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144157] [PMID: 15217324]
[28]
Richter-Levin, G.; Akirav, I. Amygdala-hippocampus dynamic interaction in relation to memory. Mol. Neurobiol., 2000, 22(1-3), 011-020.
[http://dx.doi.org/10.1385/MN:22:1-3:011] [PMID: 11414274]
[29]
Yonelinas, A.P.; Ritchey, M. The slow forgetting of emotional episodic memories: An emotional binding account. Trends Cogn. Sci., 2015, 19(5), 259-267.
[http://dx.doi.org/10.1016/j.tics.2015.02.009] [PMID: 25836045]
[30]
Talmi, D.; Lohnas, L.J.; Daw, N.D. A retrieved context model of the emotional modulation of memory. Psychol. Rev., 2019, 126(4), 455-485.
[http://dx.doi.org/10.1037/rev0000132] [PMID: 30973247]
[31]
Kensinger, E.A.; Ford, J.H. Retrieval of emotional events from memory. Annu. Rev. Psychol., 2020, 71(1), 251-272.
[http://dx.doi.org/10.1146/annurev-psych-010419-051123] [PMID: 31283426]
[32]
Arnsten, A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci., 2009, 10(6), 410-422.
[http://dx.doi.org/10.1038/nrn2648] [PMID: 19455173]
[33]
Szpunar, K.K.; Addis, D.R.; Schacter, D.L. Memory for emotional simulations: Remembering a rosy future. Psychol. Sci., 2012, 23(1), 24-29.
[http://dx.doi.org/10.1177/0956797611422237] [PMID: 22138157]
[34]
Clewett, D.; Murty, V.P. Echoes of emotions past: How neuromodulators determine what we recollect. eNeuro, 2019, 6(2), ENEURO.0108-18.2019.
[http://dx.doi.org/10.1523/ENEURO.0108-18.2019] [PMID: 30923742]
[35]
Bisby, J.A.; Burgess, N.; Brewin, C.R. Reduced memory coherence for negative events and its relationship to posttraumatic stress disorder. Curr. Dir. Psychol. Sci., 2020, 29(3), 267-272.
[http://dx.doi.org/10.1177/0963721420917691] [PMID: 33214741]
[36]
Ford, J.H.; Morris, J.A.; Kensinger, E.A. Neural recruitment and connectivity during emotional memory retrieval across the adult life span. Neurobiol. Aging, 2014, 35(12), 2770-2784.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.05.029] [PMID: 24986714]
[37]
Hamann, S. Cognitive and neural mechanisms of emotional memory. Trends Cogn. Sci., 2001, 5(9), 394-400.
[http://dx.doi.org/10.1016/S1364-6613(00)01707-1] [PMID: 11520704]
[38]
Steinberg, E.E.; Gore, F.; Heifets, B.D.; Taylor, M.D.; Norville, Z.C.; Beier, K.T.; Földy, C.; Lerner, T.N.; Luo, L.; Deisseroth, K.; Malenka, R.C. Amygdala-midbrain connections modulate appetitive and aversive learning. Neuron, 2020, 106(6), 1026-1043.e9.
[http://dx.doi.org/10.1016/j.neuron.2020.03.016] [PMID: 32294466]
[39]
Yu, K.; Ahrens, S.; Zhang, X.; Schiff, H.; Ramakrishnan, C.; Fenno, L.; Deisseroth, K.; Zhao, F.; Luo, M.H.; Gong, L.; He, M.; Zhou, P.; Paninski, L.; Li, B. The central amygdala controls learning in the lateral amygdala. Nat. Neurosci., 2017, 20(12), 1680-1685.
[http://dx.doi.org/10.1038/s41593-017-0009-9] [PMID: 29184202]
[40]
Moriwaki, C.; Chiba, S.; Wei, H.; Aosa, T.; Kitamura, H.; Ina, K.; Shibata, H.; Fujikura, Y. Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus. J. Chem. Neuroanat., 2015, 68, 1-13.
[http://dx.doi.org/10.1016/j.jchemneu.2015.07.001] [PMID: 26164497]
[41]
Watanabe, T.; Taguchi, Y.; Hayashi, H.; Tanaka, J.; Shiosaka, S.; Tohyama, M.; Kubota, H.; Terano, Y.; Wada, H. Evidence for the presence of a histaminergic neuron system in the rat brain: An immunohistochemical analysis. Neurosci. Lett., 1983, 39(3), 249-254.
[http://dx.doi.org/10.1016/0304-3940(83)90308-7] [PMID: 6355911]
[42]
Green, J.P.; Prell, G.D.; Khandelwal, J.K.; Blandina, P. Aspects of histamine metabolism. Agents Actions, 1987, 22(1-2), 1-15.
[http://dx.doi.org/10.1007/BF01968810] [PMID: 3318321]
[43]
Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev., 2008, 88(3), 1183-1241.
[http://dx.doi.org/10.1152/physrev.00043.2007] [PMID: 18626069]
[44]
Inagaki, N.; Yamatodani, A.; Shinoda, K.; Shiotani, Y.; Tohyama, M.; Watanabe, T.; Wada, H. The histaminergic innervation of the mesencephalic nucleus of the trigeminal nerve in rat brain: A light and electron microscopical study. Brain Res., 1987, 418(2), 388-391.
[http://dx.doi.org/10.1016/0006-8993(87)90109-0] [PMID: 3315110]
[45]
Michelsen, K.A.; Panula, P. Subcellular distribution of histamine in mouse brain neurons. Inflamm. Res., 2002, 51(S1), 46-48.
[http://dx.doi.org/10.1007/PL00022441] [PMID: 12013405]
[46]
Panula, P.; Pirvola, U.; Auvinen, S.; Airaksinen, M.S. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience, 1989, 28(3), 585-610.
[http://dx.doi.org/10.1016/0306-4522(89)90007-9] [PMID: 2710333]
[47]
Blandina, P.; Munari, L.; Provensi, G.; Passani, M.B. Histamine neurons in the tuberomamillary nucleus: A whole center or distinct subpopulations? Front. Syst. Neurosci., 2012, 6, 33.
[http://dx.doi.org/10.3389/fnsys.2012.00033] [PMID: 22586376]
[48]
Nautiyal, K.M.; McKellar, H.; Silverman, A.J.; Silver, R. Mast cells are necessary for the hypothermic response to LPS-induced sepsis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(3), R595-R602.
[http://dx.doi.org/10.1152/ajpregu.90888.2008] [PMID: 19109365]
[49]
Katoh, Y.; Niimi, M.; Yamamoto, Y.; Kawamura, T.; Morimoto-Ishizuka, T.; Sawada, M.; Takemori, H.; Yamatodani, A. Histamine production by cultured microglial cells of the mouse. Neurosci. Lett., 2001, 305(3), 181-184.
[http://dx.doi.org/10.1016/S0304-3940(01)01835-3] [PMID: 11403935]
[50]
Yamakami, J.; Sakurai, E.; Kuramasu, A.; Sakurai, E.; Yanai, K.; Watanabe, T.; Tanaka, Y. L-Histidine decarboxylase protein and activity in rat brain microvascular endothelial cells. Inflamm. Res., 2000, 49(5), 231-235.
[http://dx.doi.org/10.1007/s000110050584] [PMID: 10893046]
[51]
Ellenbroek, B.A.; Ghiabi, B. The other side of the histamine H3 receptor. Trends Neurosci., 2014, 37(4), 191-199.
[http://dx.doi.org/10.1016/j.tins.2014.02.007] [PMID: 24636456]
[52]
Schaper-Gerhardt, K.; Köther, B.; Wolff, L.; Kabatas, A.; Gehring, M.; Nikolouli, E.; Mommert, S.; Werfel, T.; Gutzmer, R. The H 4 R is highly expressed on eosinophils from AD patients and IL‐4 upregulates expression and function via the JAK/STAT pathway. Allergy, 2021, 76(4), 1261-1264.
[http://dx.doi.org/10.1111/all.14599] [PMID: 32975872]
[53]
de Almeida, M.A.; Izquierdo, I. Memory facilitation by histamine. Arch. Int. Pharmacodyn. Ther., 1986, 283(2), 193-198.
[PMID: 3789882]
[54]
Benetti, F.; Silveira, C.K.B.; Silva, W.C.; Cammarota, M.; Izquierdo, I. Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation. Neurobiol. Learn. Mem., 2012, 97(1), 54-58.
[http://dx.doi.org/10.1016/j.nlm.2011.09.004] [PMID: 21979429]
[55]
de Almeida, M.A.; Izquierdo, I. Intracerebroventricular histamine, but not 48/80, causes posttraining memory facilitation in the rat. Arch. Int. Pharmacodyn. Ther., 1988, 291, 202-207.
[PMID: 3365062]
[56]
Kamei, C.; Okumura, Y.; Tasaka, K. Influence of histamine depletion on learning and memory recollection in rats. Psychopharmacology (Berl.), 1993, 111(3), 376-382.
[http://dx.doi.org/10.1007/BF02244955] [PMID: 7870977]
[57]
Chen, Z.; Sugimoto, Y.; Kamei, C. Effects of intracerebroventricular injection of alpha-fluoromethylhistidine on radial maze performance in rats. Pharmacol. Biochem. Behav., 1999, 64(3), 513-518.
[http://dx.doi.org/10.1016/S0091-3057(99)00128-8] [PMID: 10548264]
[58]
Trofimiuk, E.; Wielgat, P.; Car, H. Selective H3 antagonist (ABT-239) differentially modifies cognitive function under the impact of restraint stress. Front. Syst. Neurosci., 2021, 14, 614810.
[http://dx.doi.org/10.3389/fnsys.2020.614810] [PMID: 33603652]
[59]
Griebel, G.; Pichat, P.; Pruniaux, M.P.; Beeské, S.; Lopez-Grancha, M.; Genet, E.; Terranova, J.P.; Castro, A.; Sánchez, J.A.; Black, M.; Varty, G.B.; Weiner, I.; Arad, M.; Barak, S.; De Levie, A.; Guillot, E. SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents. Pharmacol. Biochem. Behav., 2012, 102(2), 203-214.
[http://dx.doi.org/10.1016/j.pbb.2012.04.004] [PMID: 22542742]
[60]
Komater, V.A.; Buckley, M.J.; Browman, K.E.; Pan, J.B.; Hancock, A.A.; Decker, M.W.; Fox, G.B. Effects of histamine H3 receptor antagonists in two models of spatial learning. Behav. Brain Res., 2005, 159(2), 295-300.
[http://dx.doi.org/10.1016/j.bbr.2004.11.008] [PMID: 15817192]
[61]
Huang, Y.W.; Hu, W.W.; Chen, Z.; Zhang, L.S.; Shen, H.Q.; Timmerman, H.; Leurs, R.; Yanai, K. Effect of the histamine H3-antagonist clobenpropit on spatial memory deficits induced by MK-801 as evaluated by radial maze in Sprague–Dawley rats. Behav. Brain Res., 2004, 151(1-2), 287-293.
[http://dx.doi.org/10.1016/j.bbr.2003.09.002] [PMID: 15084444]
[62]
Kamei, C.; Chen, Z.; Nakamura, S.; Sugimoto, Y. Effects of intracerebroventricular injection of histamine on memory deficits induced by hippocampal lesions in rats. Methods Find. Exp. Clin. Pharmacol., 1997, 19(4), 253-259.
[PMID: 9228651]
[63]
Masuoka, T.; Mikami, A.; Yasuda, M.; Shinomiya, K.; Kamei, C. Effects of histamine H1 receptor antagonists on hippocampal theta rhythm during spatial memory performance in rats. Eur. J. Pharmacol., 2007, 576(1-3), 77-82.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.020] [PMID: 17884040]
[64]
da Silva, W.C.; Bonini, J.S.; Bevilaqua, L.R.M.; Izquierdo, I.; Cammarota, M. Histamine enhances inhibitory avoidance memory consolidation through a H2 receptor-dependent mechanism. Neurobiol. Learn. Mem., 2006, 86(1), 100-106.
[http://dx.doi.org/10.1016/j.nlm.2006.01.001] [PMID: 16488163]
[65]
Álvarez, E.O.; Ruarte, M.B. Glutamic acid and histamine-sensitive neurons in the ventral hippocampus and the basolateral amygdala of the rat: functional interaction on memory and learning processes. Behav. Brain Res., 2004, 152(2), 209-219.
[http://dx.doi.org/10.1016/j.bbr.2003.10.012] [PMID: 15196788]
[66]
Bonini, J.S.; Da Silva, W.C.; Da Silveira, C.K.B.; Köhler, C.A.; Izquierdo, I.; Cammarota, M. Histamine facilitates consolidation of fear extinction. Int. J. Neuropsychopharmacol., 2011, 14(9), 1209-1217.
[http://dx.doi.org/10.1017/S1461145710001501] [PMID: 21211106]
[67]
Dere, E.; De Souza-Silva, M.A.; Topic, B.; Spieler, R.E.; Haas, H.L.; Huston, J.P. Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover. Learn. Mem., 2003, 10(6), 510-519.
[http://dx.doi.org/10.1101/lm.67603] [PMID: 14657262]
[68]
Zlomuzica, A.; Ruocco, L.A.; Sadile, A.G.; Huston, J.P.; Dere, E. Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight‐arm radial maze. Br. J. Pharmacol., 2009, 157(1), 86-91.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00225.x] [PMID: 19413573]
[69]
Nishiga, M.; Sugimoto, Y.; Taga, C.; Fujii, Y.; Kamei, C. Effects of the NMDA antagonist MK-801 on radial maze performance in histidine-deficient rats. Life Sci., 2002, 70(18), 2199-2208.
[http://dx.doi.org/10.1016/S0024-3205(02)01504-7] [PMID: 12002811]
[70]
Zarrindast, M.R.; Ahmadi, R.; Oryan, S.; Parivar, K.; Haeri-Rohani, A. Effects of α-adrenoceptor agonists and antagonists on histamine-induced impairment of memory retention of passive avoidance learning in rats. Eur. J. Pharmacol., 2002, 454(2-3), 193-198.
[http://dx.doi.org/10.1016/S0014-2999(02)02497-4] [PMID: 12421647]
[71]
Cangioli, I.; Baldi, E.; Mannaioni, P.F.; Bucherelli, C.; Blandina, P.; Passani, M.B. Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur. J. Neurosci., 2002, 16(3), 521-528.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02092.x] [PMID: 12193196]
[72]
Giovannini, M.G.; Efoudebe, M.; Passani, M.B.; Baldi, E.; Bucherelli, C.; Giachi, F.; Corradetti, R.; Blandina, P. Improvement in fear memory by histamine-elicited ERK2 activation in hippocampal CA3 cells. J. Neurosci., 2003, 23(27), 9016-9023.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09016.2003] [PMID: 14534235]
[73]
Hasenöhrl, R.U.; Weth, K.; Huston, J.P. Intraventricular infusion of the histamine H1 receptor antagonist chlorpheniramine improves maze performance and has anxiolytic-like effects in aged hybrid Fischer 344×Brown Norway rats. Exp. Brain Res., 1999, 128(4), 435-440.
[http://dx.doi.org/10.1007/s002210050866] [PMID: 10541737]
[74]
Onodera, K.; Miyazaki, S.; Imaizumi, M. Cognitive involvement by negative modulation of histamine H2 receptors in passive avoidance task in mice. Methods Find. Exp. Clin. Pharmacol., 1998, 20(4), 307-310.
[http://dx.doi.org/10.1358/mf.1998.20.4.485684] [PMID: 9658380]
[75]
Liu, L.; Zhang, S.; Zhu, Y.; Fu, Q.; Zhu, Y.; Gong, Y.; Ohtsu, H.; Luo, J.; Wei, E.; Chen, Z. Improved learning and memory of contextual fear conditioning and hippocampal CA1 long-term potentiation in histidine decarboxylase knock-out mice. Hippocampus, 2007, 17(8), 634-641.
[http://dx.doi.org/10.1002/hipo.20305] [PMID: 17534971]
[76]
Dai, H.; Kaneko, K.; Kato, H.; Fujii, S.; Jing, Y.; Xu, A.; Sakurai, E.; Kato, M.; Okamura, N.; Kuramasu, A.; Yanai, K. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci. Res., 2007, 57(2), 306-313.
[http://dx.doi.org/10.1016/j.neures.2006.10.020] [PMID: 17145090]
[77]
Westerink, B.H.C.; Cremers, T.I.F.H.; De Vries, J.B.; Liefers, H.; Tran, N.; De Boer, P. Evidence for activation of histamine H3 autoreceptors during handling stress in the prefrontal cortex of the rat. Synapse, 2002, 43(4), 238-243.
[http://dx.doi.org/10.1002/syn.10043] [PMID: 11835518]
[78]
Miklós, I.H.; Kovács, K.J. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur. J. Neurosci., 2003, 18(11), 3069-3079.
[http://dx.doi.org/10.1111/j.1460-9568.2003.03033.x] [PMID: 14656302]
[79]
Gądek-Michalska, A.; Borycz, J.; Bugajski, J. Effect of social isolation on corticosterone secretion elicited by histaminergic stimulation. Agents Actions, 1994, 41(S1), C77-C79.
[http://dx.doi.org/10.1007/BF02007775] [PMID: 7976811]
[80]
Bugajski, J.; Gadek-Michalska, A.; Borycz, J.; Bugajski, A.J.; Głód, R. Histaminergic components in carbachol-induced pituitary-adrenocortical activity. J. Physiol. Pharmacol., 1994, 45(3), 419-428.
[PMID: 7841454]
[81]
Bugajski, J.; Gadek-Michalska, A.; Bugajski, A.J. Nitric oxide and prostaglandin systems in the stimulation of hypothalamic-pituitary-adrenal axis by neurotransmitters and neurohormones. J. Physiol. Pharmacol., 2004, 55(4), 679-703.
[PMID: 15613736]
[82]
Bugajski, A.J.; Koprowska, B.; Thor, P.; Głod, R.; Bugajski, J. Involvement of nitric oxide in central histaminergic stimulation of the hypothalamic-pituitary-adrenal axis. J. Physiol. Pharmacol., 2000, 51(4 Pt 2), 907-915.
[PMID: 11220498]
[83]
Bugajski, J.; Gadek-Michalska, A.; Borycz, J. Social crowding stress diminishes the pituitary-adrenocortical and hypothalamic histamine response to adrenergic stimulation. J. Physiol. Pharmacol., 1993, 44(4), 447-456.
[PMID: 8123892]
[84]
Kjær, A.; Knigge, U.; Bach, F.W.; Warberg, J. Histamine- and stress-induced secretion of ACTH and beta-endorphin: involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology, 1992, 56(3), 419-428.
[http://dx.doi.org/10.1159/000126258] [PMID: 1331840]
[85]
Esposito, P.; Chandler, N.; Kandere, K.; Basu, S.; Jacobson, S.; Connolly, R.; Tutor, D.; Theoharides, T.C. Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J. Pharmacol. Exp. Ther., 2002, 303(3), 1061-1066.
[http://dx.doi.org/10.1124/jpet.102.038497] [PMID: 12438528]
[86]
Nirogi, R.; Grandhi, V.R.; Medapati, R.B.; Ganuga, N.; Benade, V.; Gandipudi, S.; Manoharan, A.; Abraham, R.; Jayarajan, P.; Bhyrapuneni, G.; Shinde, A.; Badange, R.K.; Subramanian, R.; Petlu, S.; Jasti, V. Histamine 3 receptor inverse agonist Samelisant (SUVN-G3031): Pharmacological characterization of an investigational agent for the treatment of cognitive disorders. J. Psychopharmacol., 2021, 35(6), 713-729.
[http://dx.doi.org/10.1177/0269881120986418] [PMID: 33546570]
[87]
Fukudo, S.; Kano, M.; Sato, Y.; Muratsubaki, T.; Kanazawa, M.; Tashiro, M.; Yanai, K. Histamine neuroimaging in stress-related disorders. Curr. Top. Behav. Neurosci., 2021, 59, 113-129.
[http://dx.doi.org/10.1007/7854_2021_262] [PMID: 35156186]
[88]
Enck, P.; Aziz, Q.; Barbara, G.; Farmer, A.D.; Fukudo, S.; Mayer, E.A.; Niesler, B.; Quigley, E.M.M.; Rajilić-Stojanović, M.; Schemann, M.; Schwille-Kiuntke, J.; Simren, M.; Zipfel, S.; Spiller, R.C. Irritable bowel syndrome. Nat. Rev. Dis. Primers, 2016, 2(1), 16014.
[http://dx.doi.org/10.1038/nrdp.2016.14] [PMID: 27159638]
[89]
Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol., 2001, 63(6), 637-672.
[http://dx.doi.org/10.1016/S0301-0082(00)00039-3] [PMID: 11164999]
[90]
Frisch, C.; Hasenöhrl, R.U.; Krauth, J.; Huston, J.P. Anxiolytic-like behavior after lesion of the tuberomammillary nucleus E2-region. Exp. Brain Res., 1998, 119(2), 260-264.
[http://dx.doi.org/10.1007/s002210050340] [PMID: 9535576]
[91]
Vijaya Kumar, K.; Krishna, D.R.; Palit, G. Histaminergic H1 receptors mediate L-histidine-induced anxiety in elevated plus-maze test in mice. Behav. Pharmacol., 2007, 18(3), 213-217.
[http://dx.doi.org/10.1097/FBP.0b013e328157f450] [PMID: 17426485]
[92]
Bongers, G.; Leurs, R.; Robertson, J.; Raber, J. Role of H3-receptor-mediated signaling in anxiety and cognition in wild-type and Apoe-/- mice. Neuropsychopharmacology, 2004, 29(3), 441-449.
[http://dx.doi.org/10.1038/sj.npp.1300352] [PMID: 14628000]
[93]
Imaizumi, M.; Onodera, K. The behavioral and biochemical effects of thioperamide, a histamine H3-receptor antagonist, in a light/dark test measuring anxiety in mice. Life Sci., 1993, 53(22), 1675-1683.
[http://dx.doi.org/10.1016/0024-3205(93)90204-G] [PMID: 8231648]
[94]
Zhang, X.Y.; Peng, S.Y.; Shen, L.P.; Zhuang, Q.X.; Li, B.; Xie, S.T.; Li, Q.X.; Shi, M.R.; Ma, T.Y.; Zhang, Q.; Wang, J.J.; Zhu, J.N. Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc. Natl. Acad. Sci. USA, 2020, 117(50), 32155-32164.
[http://dx.doi.org/10.1073/pnas.2008456117] [PMID: 33257584]
[95]
Manz, K.M. Accumbal histamine signaling engages discrete interneuron microcircuits. Biol. Psychiatry, 2021, 93(11), 1041-1052.
[PMID: 34953589]
[96]
Manz, K.M. Histamine H3 receptor function biases excitatory gain in the nucleus accumbens. Biol. Psychiatry, 2021, 89(6), 588-599.
[PMID: 33012522]
[97]
Brabant, C.; Quertemont, E.; Anaclet, C.; Lin, J.S.; Ohtsu, H.; Tirelli, E. The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward. Psychopharmacology (Berl.), 2006, 190(2), 251-263.
[http://dx.doi.org/10.1007/s00213-006-0603-0] [PMID: 17072589]
[98]
Alvarez, E.O.; Banzan, A.M. Functional lateralization of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: Role of histamine. Behav. Brain Res., 2011, 218(1), 158-164.
[http://dx.doi.org/10.1016/j.bbr.2010.11.024] [PMID: 21075146]
[99]
Rassnick, S.; Kornetsky, C. L-histidine attenuates the effects of pentazocine on rewarding brain-stimulation. Life Sci., 1991, 48(18), 1729-1736.
[http://dx.doi.org/10.1016/0024-3205(91)90209-T] [PMID: 2020256]
[100]
Henwood, R.W.; Mazurkiewicz-Kwilecki, I.M. Possible role of brain histamine in morphine addiction. Life Sci., 1975, 17(1), 55-56.
[http://dx.doi.org/10.1016/0024-3205(75)90234-9] [PMID: 1170474]
[101]
Wagner, U.; Segura-Torres, P.; Weiler, T.; Huston, J.P. The tuberomammillary nucleus region as a reinforcement inhibiting substrate: facilitation of ipsihypothalamic self-stimulation by unilateral ibotenic acid lesions. Brain Res., 1993, 613(2), 269-274.
[http://dx.doi.org/10.1016/0006-8993(93)90908-6] [PMID: 8186974]
[102]
Zimmermann, P.K.; Privou, C.; Wagner, U.; Huston, J.P. Lateralized attenuation of hypothalamic self-stimulation after injecting histamine synthesis blocker alpha-FMH into the E2 tuberomammillary subnucleus. Brain Res. Bull., 1997, 44(1), 85-90.
[http://dx.doi.org/10.1016/S0361-9230(97)00096-8] [PMID: 9288834]
[103]
Galvis-Alonso, O.Y.; Garcia, A.M.B.; Orejarena, M.J.; Lamprea, M.R.; Botelho, S.; Conde, C.A.; Morato, S.; Garcia-Cairasco, N. A combined study of behavior and Fos expression in limbic structures after re-testing Wistar rats in the elevated plus-maze. Brain Res. Bull., 2010, 81(6), 595-599.
[http://dx.doi.org/10.1016/j.brainresbull.2010.01.007] [PMID: 20100550]
[104]
Gianlorenço, A.C.; Canto-de-Souza, A.; Mattioli, R. l-histidine induces state-dependent memory deficit in mice mediated by H1 receptor. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(1), 91-95.
[http://dx.doi.org/10.1016/j.pnpbp.2010.09.006] [PMID: 20850492]
[105]
Daher, F.; Mattioli, R. Impairment in the aversive memory of mice in the inhibitory avoidance task but not in the elevated plus maze through intra-amygdala injections of histamine. Pharmacol. Biochem. Behav., 2015, 135, 237-245.
[http://dx.doi.org/10.1016/j.pbb.2015.05.023] [PMID: 26079070]
[106]
Canto-de-Souza, L.; Garção, D.C.; Romaguera, F.; Mattioli, R. Dorsal hippocampal microinjection of chlorpheniramine reverses the anxiolytic-like effects of l-histidine and impairs emotional memory in mice. Neurosci. Lett., 2015, 587, 11-16.
[http://dx.doi.org/10.1016/j.neulet.2014.12.020] [PMID: 25524405]
[107]
Schwabe, L.; Hermans, E.J.; Joëls, M.; Roozendaal, B. Mechanisms of memory under stress. Neuron, 2022, 110(9), 1450-1467.
[http://dx.doi.org/10.1016/j.neuron.2022.02.020] [PMID: 35316661]
[108]
Fabbri, R.; Furini, C.R.G.; Passani, M.B.; Provensi, G.; Baldi, E.; Bucherelli, C.; Izquierdo, I.; de Carvalho, M.J.; Blandina, P. Memory retrieval of inhibitory avoidance requires histamine H 1 receptor activation in the hippocampus. Proc. Natl. Acad. Sci. USA, 2016, 113(19), E2714-E2720.
[http://dx.doi.org/10.1073/pnas.1604841113] [PMID: 27118833]
[109]
Benetti, F.; Furini, C.R.G.; de Carvalho Myskiw, J.; Provensi, G.; Passani, M.B.; Baldi, E.; Bucherelli, C.; Munari, L.; Izquierdo, I.; Blandina, P. Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proc. Natl. Acad. Sci. USA, 2015, 112(19), E2536-E2542.
[http://dx.doi.org/10.1073/pnas.1506109112] [PMID: 25918368]
[110]
Yazdi, A.; Doostmohammadi, M.; Pourhossein, M.F.; Beheshti, S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav., 2020, 105, 106956.
[http://dx.doi.org/10.1016/j.yebeh.2020.106956] [PMID: 32062106]
[111]
Sadek, B.; Saad, A.; Subramanian, D.; Shafiullah, M.; Łażewska, D.; Kieć-Kononowiczc, K. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology, 2016, 106, 46-55.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.023] [PMID: 26525191]
[112]
Alachkar, A.; Lotfy, M.; Adeghate, E.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. Ameliorating effects of histamine H3 receptor antagonist E177 on acute pentylenetetrazole-induced memory impairments in rats. Behav. Brain Res., 2021, 405, 113193.
[http://dx.doi.org/10.1016/j.bbr.2021.113193] [PMID: 33626390]
[113]
Blandina, P.; Giorgetti, M.; Bartolini, L.; Cecchi, M.; Timmerman, H.; Leurs, R.; Pepeu, G.; Giovannini, M.G. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br. J. Pharmacol., 1996, 119(8), 1656-1664. a
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16086.x] [PMID: 8982515]
[114]
Luo, T.; Wang, Y.; Qin, J.; Liu, Z.G.; Liu, M. Histamine H3 receptor antagonist prevents memory deficits and synaptic plasticity disruption following isoflurane exposure. CNS Neurosci. Ther., 2017, 23(4), 301-309.
[http://dx.doi.org/10.1111/cns.12675] [PMID: 28168839]
[115]
Eissa, N.; Khan, N.; Ojha, S.K.; Łazewska, D.; Kieć-Kononowicz, K.; Sadek, B. The histamine H3 receptor antagonist DL77 ameliorates MK801-induced memory deficits in rats. Front. Neurosci., 2018, 12, 42.
[http://dx.doi.org/10.3389/fnins.2018.00042] [PMID: 29483860]
[116]
Charlier, Y.; Brabant, C.; Serrano, M.E.; Lamberty, Y.; Tirelli, E. The prototypical histamine H3 receptor inverse agonist thioperamide improves multiple aspects of memory processing in an inhibitory avoidance task. Behav. Brain Res., 2013, 253, 121-127.
[http://dx.doi.org/10.1016/j.bbr.2013.07.016] [PMID: 23867149]
[117]
Brown, J.W.; Whitehead, C.A.; Basso, A.M.; Rueter, L.E.; Zhang, M. Preclinical evaluation of non-imidazole histamine H3 receptor antagonists in comparison to atypical antipsychotics for the treatment of cognitive deficits associated with schizophrenia. Int. J. Neuropsychopharmacol., 2013, 16(4), 889-904.
[http://dx.doi.org/10.1017/S1461145712000739] [PMID: 22906530]
[118]
Trofimiuk, E.; Braszko, J.J. Single dose of H3 receptor antagonist - ciproxifan - abolishes negative effects of chronic stress on cognitive processes in rats. Psychopharmacology (Berl.), 2014, 231(1), 209-219.
[http://dx.doi.org/10.1007/s00213-013-3227-1] [PMID: 23975035]
[119]
Charlier, Y.; Tirelli, E. Differential effects of histamine H3 receptor inverse agonist thioperamide, given alone or in combination with the N-methyl-d-aspartate receptor antagonist dizocilpine, on reconsolidation and consolidation of a contextual fear memory in mice. Neuroscience, 2011, 193, 132-142.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.034] [PMID: 21802497]
[120]
Alvarez, E.; Ruarte, M.B. Histaminergic neurons of the ventral hippocampus and the baso-lateral amygdala of the rat: functional interaction on memory and learning mechanisms. Behav. Brain Res., 2002, 128(1), 81-90.
[http://dx.doi.org/10.1016/S0166-4328(01)00272-8] [PMID: 11755692]
[121]
Gianlorenco, A.C.; Canto-de-Souza, A.; Mattioli, R. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors. Neurosci. Lett., 2013, 557, 159-164.
[http://dx.doi.org/10.1016/j.neulet.2013.10.017]
[122]
Benetti, F.; Baldi, E.; Bucherelli, C.; Blandina, P.; Passani, M.B. Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation. Int. J. Neuropsychopharmacol., 2013, 16(3), 575-582.
[http://dx.doi.org/10.1017/S1461145712000181] [PMID: 22418001]
[123]
Flood, J.F.; Uezu, K.; Morley, J.E. Effect of histamine H 2 and H 3 receptor modulation in the septum on post-training memory processing. Psychopharmacology (Berl.), 1998, 140(3), 279-284.
[http://dx.doi.org/10.1007/s002130050768] [PMID: 9877007]
[124]
Gianlorenço, A.C.L.; Riboldi, A.M.; Silva-Marques, B.; Mattioli, R. Cerebellar vermis H2 receptors mediate fear memory consolidation in mice. Neurosci. Lett., 2015, 587, 57-61.
[http://dx.doi.org/10.1016/j.neulet.2014.12.017] [PMID: 25524412]
[125]
Passani, M.B.; Cangioli, I.; Baldi, E.; Bucherelli, C.; Mannaioni, P.F.; Blandina, P. Histamine H 3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur. J. Neurosci., 2001, 14(9), 1522-1532.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01780.x] [PMID: 11722614]
[126]
Vazdarjanova, A.; McGaugh, J.L. Basolateral amygdala is involved in modulating consolidation of memory for classical fear conditioning. J. Neurosci., 1999, 19(15), 6615-6622.
[http://dx.doi.org/10.1523/JNEUROSCI.19-15-06615.1999] [PMID: 10414989]
[127]
Gallo, M. Aversive taste memory.Encyclopedia of Neuroscience; Binder, M.D.; Hirokawa, N.; Windhorst, U., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009, pp. 296-300.
[http://dx.doi.org/10.1007/978-3-540-29678-2_502]
[128]
Cecchi, M.; Passani, M.B.; Bacciottini, L.; Mannaioni, P.F.; Blandina, P. Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur. J. Neurosci., 2001, 13(1), 68-78.
[http://dx.doi.org/10.1046/j.1460-9568.2001.01361.x] [PMID: 11135005]
[129]
Purón-Sierra, L.; Miranda, M.I. Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation. PLoS One, 2014, 9(3), e91120.
[http://dx.doi.org/10.1371/journal.pone.0091120] [PMID: 24625748]
[130]
Panayi, F.; Sors, A.; Bert, L.; Martin, B.; Rollin-Jego, G.; Billiras, R.; Carrié, I.; Albinet, K.; Danober, L.; Rogez, N.; Thomas, J.Y.; Pira, L.; Bertaina-Anglade, V.; Lestage, P. In vivo pharmacological profile of S 38093, a novel histamine H3 receptor inverse agonist. Eur. J. Pharmacol., 2017, 803, 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.008] [PMID: 28315340]
[131]
Giovannini, M.; Bartolini, L.; Bacciottini, L.; Greco, L.; Blandina, P. Effects of histamine H3 receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia. Behav. Brain Res., 1999, 104(1-2), 147-155.
[http://dx.doi.org/10.1016/S0166-4328(99)00063-7] [PMID: 11125734]
[132]
da Silveira, C.K.B.; Furini, C.R.G.; Benetti, F.; Monteiro, S.C.; Izquierdo, I. The role of histamine receptors in the consolidation of object recognition memory. Neurobiol. Learn. Mem., 2013, 103, 64-71.
[http://dx.doi.org/10.1016/j.nlm.2013.04.001] [PMID: 23583502]
[133]
Nomura, H.; Mizuta, H.; Norimoto, H.; Masuda, F.; Miura, Y.; Kubo, A.; Kojima, H.; Ashizuka, A.; Matsukawa, N.; Baraki, Z.; Hitora-Imamura, N.; Nakayama, D.; Ishikawa, T.; Okada, M.; Orita, K.; Saito, R.; Yamauchi, N.; Sano, Y.; Kusuhara, H.; Minami, M.; Takahashi, H.; Ikegaya, Y. Central histamine boosts perirhinal cortex activity and restores forgotten object memories. Biol. Psychiatry, 2019, 86(3), 230-239.
[http://dx.doi.org/10.1016/j.biopsych.2018.11.009] [PMID: 30635130]
[134]
Suzuki, T.; Mori, T.; Tsuji, M.; Nomura, M.; Misawa, M.; Onodera, K. Evaluation of the histamine H1-antagonist-induced place preference in rats. Jpn. J. Pharmacol., 1999, 81(4), 332-338.
[http://dx.doi.org/10.1016/S0021-5198(19)30743-7] [PMID: 10669037]
[135]
Gong, Y.; Zhang, W.; Shou, W.; Zhong, K.; Chen, Z. Morphine induces conditioned place preference behavior in histidine decarboxylase knockout mice. Neurosci. Lett., 2010, 468(2), 115-119.
[http://dx.doi.org/10.1016/j.neulet.2009.10.079] [PMID: 19879332]
[136]
Nuutinen, S.; Karlstedt, K.; Aitta-aho, T.; Korpi, E.R.; Panula, P. Histamine and H3 receptor-dependent mechanisms regulate ethanol stimulation and conditioned place preference in mice. Psychopharmacology (Berl.), 2010, 208(1), 75-86.
[http://dx.doi.org/10.1007/s00213-009-1710-5] [PMID: 19911169]
[137]
Vanhanen, J.; Nuutinen, S.; Lintunen, M.; Mäki, T.; Rämö, J.; Karlstedt, K.; Panula, P. Histamine is required for H3 receptor‐mediated alcohol reward inhibition, but not for alcohol consumption or stimulation. Br. J. Pharmacol., 2013, 170(1), 177-187.
[http://dx.doi.org/10.1111/bph.12170] [PMID: 23489295]
[138]
Hasenöhrl, R.; Kuhlen, A.; Frisch, C.; Galosi, R.; Brãndao, M.L.; Huston, J.P. Comparison of intra-accumbens injection of histamine with histamine H1-receptor antagonist chlorpheniramine in effects on reinforcement and memory parameters. Behav. Brain Res., 2001, 124(2), 203-211.
[http://dx.doi.org/10.1016/S0166-4328(01)00214-5] [PMID: 11640974]
[139]
Joëls, M.; Karst, H.; Sarabdjitsingh, R.A. The stressed brain of humans and rodents. Acta Physiol. (Oxf.), 2018, 223(2), e13066.
[http://dx.doi.org/10.1111/apha.13066] [PMID: 29575542]
[140]
Mochizuki, T. Histamine as an alert signal in the brain. Curr. Top. Behav. Neurosci., 2021, 59, 413-425.
[http://dx.doi.org/10.1007/7854_2021_249] [PMID: 34448132]
[141]
Cacabelos, R.; Alvarez, X.A. Histidine decarboxylase inhibition induced by α-fluoromethylhistidine provokes learning-related hypokinetic activity. Agents Actions, 1991, 33(1-2), 131-134.
[http://dx.doi.org/10.1007/BF01993147] [PMID: 1897430]
[142]
Bocchio, M.; Nabavi, S.; Capogna, M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 2017, 94(4), 731-743.
[http://dx.doi.org/10.1016/j.neuron.2017.03.022] [PMID: 28521127]
[143]
Jiang, X.; Chen, A.; Li, H. Histaminergic modulation of excitatory synaptic transmission in the rat basolateral amygdala. Neuroscience, 2005, 131(3), 691-703.
[http://dx.doi.org/10.1016/j.neuroscience.2004.11.029] [PMID: 15730874]
[144]
Masuoka, T.; Ikeda, R.; Konishi, S. Persistent activation of histamine H1 receptors in the hippocampal CA1 region enhances NMDA receptor-mediated synaptic excitation and long-term potentiation in astrocyte- and D-serine-dependent manner. Neuropharmacology, 2019, 151, 64-73.
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.036] [PMID: 30943384]
[145]
Taheri, F.; Esmaeilpour, K.; Sepehri, G.; Sheibani, V. ur Rehman, N.; Maneshian, M. Histamine H3 receptor antagonist, ciproxifan, alleviates cognition and synaptic plasticity alterations in a valproic acid-induced animal model of autism. Psychopharmacology (Berl.), 2022, 239(8), 2673-2693.
[http://dx.doi.org/10.1007/s00213-022-06155-z] [PMID: 35538250]
[146]
Andersson, R.; Galter, D.; Papadia, D.; Fisahn, A. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor. Neuropharmacology, 2017, 118, 13-25.
[http://dx.doi.org/10.1016/j.neuropharm.2017.03.003] [PMID: 28274820]
[147]
Masini, D.; Lopes-Aguiar, C.; Bonito-Oliva, A.; Papadia, D.; Andersson, R.; Fisahn, A.; Fisone, G. The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism. Transl. Psychiatry, 2017, 7(4), e1088.
[http://dx.doi.org/10.1038/tp.2017.58] [PMID: 28398338]
[148]
Oh, J.; Eser, R.A.; Ehrenberg, A.J.; Morales, D.; Petersen, C.; Kudlacek, J.; Dunlop, S.R.; Theofilas, P.; Resende, E.D.P.F.; Cosme, C.; Alho, E.J.L.; Spina, S.; Walsh, C.M.; Miller, B.L.; Seeley, W.W.; Bittencourt, J.C.; Neylan, T.C.; Heinsen, H.; Grinberg, L.T. Profound degeneration of wake‐promoting neurons in Alzheimer’s disease. Alzheimers Dement., 2019, 15(10), 1253-1263.
[http://dx.doi.org/10.1016/j.jalz.2019.06.3916] [PMID: 31416793]
[149]
Shan, L.; Bossers, K.; Unmehopa, U.; Bao, A.M.; Swaab, D.F. Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol. Aging, 2012, 33(11), 2585-2598.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.026] [PMID: 22284987]
[150]
Panula, P.; Rinne, J.; Kuokkanen, K.; Eriksson, K.S.; Sallmen, T.; Kalimo, H.; Relja, M. Neuronal histamine deficit in Alzheimer’s disease. Neuroscience, 1997, 82(4), 993-997.
[http://dx.doi.org/10.1016/S0306-4522(97)00353-9] [PMID: 9466423]
[151]
Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.L-H.; Brown, S.H.; Roman, S.; Lai, M.K.P. Characterization of histamine H 3 receptors in Alzheimer’s Disease brain and amyloid over‐expressing TASTPM mice. Br. J. Pharmacol., 2009, 157(1), 130-138.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00075.x] [PMID: 19222483]
[152]
Perry, E.; Court, J.; Goodchild, R.; Griffiths, M.; Jaros, E.; Johnson, M.; Lloyd, S.; Piggott, M.; Spurden, D.; Ballard, C.; McKeith, I.; Perry, R. Clinical neurochemistry: developments in dementia research based on brain bank material. J. Neural Transm. (Vienna), 1998, 105(8-9), 915-933.
[http://dx.doi.org/10.1007/s007020050102] [PMID: 9869326]
[153]
Reményi, Á.; Grósz, A.; Szabó, S.A.; Tótka, Z.; Molnár, D.; Helfferich, F. Comparative study of the effect of bilastine and cetirizine on cognitive functions at ground level and at an altitude of 4,000 m simulated in hypobaric chamber: A randomized, double-blind, placebo-controlled, cross-over study. Expert Opin. Drug Saf., 2018, 17(9), 859-868.
[http://dx.doi.org/10.1080/14740338.2018.1502268] [PMID: 30032673]
[154]
Täubel, J.; Ferber, G.; Fernandes, S.; Lorch, U.; Santamaría, E.; Izquierdo, I. Pharmacokinetics, safety and cognitive function profile of rupatadine 10, 20 and 40 mg in healthy japanese subjects: A randomised placebo-controlled trial. PLoS One, 2016, 11(9), e0163020.
[http://dx.doi.org/10.1371/journal.pone.0163020] [PMID: 27632557]
[155]
Van Ruitenbeek, P.; Vermeeren, A.; Riedel, W.J. Histamine H1 receptor antagonist cetirizine impairs working memory processing speed, but not episodic memory. Br. J. Pharmacol., 2010, 161(2), 456-466.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00907.x] [PMID: 20735428]
[156]
Van Ruitenbeek, P.; Vermeeren, A.; Riedel, W.J. Memory in humans is unaffected by central H1-antagonism, while objectively and subjectively measured sedation is increased. Eur. Neuropsychopharmacol., 2010, 20(4), 226-235.
[http://dx.doi.org/10.1016/j.euroneuro.2009.12.003] [PMID: 20083393]
[157]
Carlson, M.C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.; Martin, B.K.; Breitner, J.C.S. H2 histamine receptor blockade in the treatment of Alzheimer disease: A randomized, double-blind, placebo-controlled trial of nizatidine. Alzheimer Dis. Assoc. Disord., 2002, 16(1), 24-30.
[http://dx.doi.org/10.1097/00002093-200201000-00004] [PMID: 11882746]
[158]
Egan, M.F. Randomized crossover study of the histamine H3 inverse agonist MK-0249 for the treatment of cognitive impairment in patients with schizophrenia. Schizophr. Res., 2013, 146(1-3), 224-230.
[159]
Michael, E.; Roy, Y.; Lian, L.; Michael, R.; Yahong, P.; Christopher, L.; David, M. Pilot randomized controlled study of a histamine receptor inverse agonist in the symptomatic treatment of AD. Curr. Alzheimer Res., 2012, 9(4), 481-490.
[http://dx.doi.org/10.2174/156720512800492530] [PMID: 22272611]
[160]
Baakman, A.C.; Zuiker, R.; van Gerven, J.M.A.; Gross, N.; Yang, R.; Fetell, M.; Gershon, A.; Gilgun-Sherki, Y.; Hellriegel, E.; Spiegelstein, O. Central nervous system effects of the histamine‐3 receptor antagonist CEP‐26401, in comparison with modafinil and donepezil, after a single dose in a cross‐over study in healthy volunteers. Br. J. Clin. Pharmacol., 2019, 85(5), 970-985.
[http://dx.doi.org/10.1111/bcp.13885] [PMID: 30710391]
[161]
van Ruitenbeek, P.; Mehta, M.A. Potential enhancing effects of histamine H1 agonism/H3 antagonism on working memory assessed by performance and bold response in healthy volunteers. Br. J. Pharmacol., 2013, 170(1), 144-155.
[http://dx.doi.org/10.1111/bph.12184] [PMID: 23517178]
[162]
Harmon-Jones, C.; Bastian, B.; Harmon-Jones, E. The discrete emotions questionnaire: A new tool for measuring state self-reported emotions. PLoS One, 2016, 11(8), e0159915.
[http://dx.doi.org/10.1371/journal.pone.0159915] [PMID: 27500829]
[163]
Siuda, E.R.; McCall, J.G.; Al-Hasani, R.; Shin, G.; Il Park, S.; Schmidt, M.J.; Anderson, S.L.; Planer, W.J.; Rogers, J.A.; Bruchas, M.R. Optodynamic simulation of β-adrenergic receptor signalling. Nat. Commun., 2015, 6(1), 8480.
[http://dx.doi.org/10.1038/ncomms9480] [PMID: 26412387]
[164]
Rao, A.; Barkley, D.; França, G.S.; Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature, 2021, 596(7871), 211-220.
[http://dx.doi.org/10.1038/s41586-021-03634-9] [PMID: 34381231]
[165]
Liao, J.; Qian, J.; Fang, Y.; Chen, Z.; Zhuang, X.; Zhang, N.; Shao, X.; Hu, Y.; Yang, P.; Cheng, J.; Hu, Y.; Yu, L.; Yang, H.; Zhang, J.; Lu, X.; Shao, L.; Wu, D.; Gao, Y.; Chen, H.; Fan, X. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun., 2022, 13(1), 6498.
[http://dx.doi.org/10.1038/s41467-022-34271-z] [PMID: 36310179]
[166]
Mickley, K.R.; Kensinger, E.A. Emotional valence influences the neural correlates associated with remembering and knowing. Cogn. Affect. Behav. Neurosci., 2008, 8(2), 143-152.
[http://dx.doi.org/10.3758/CABN.8.2.143] [PMID: 18589505]
[167]
Simola, J.; Torniainen, J.; Moisala, M.; Kivikangas, M.; Krause, C.M. Eye movement related brain responses to emotional scenes during free viewing. Front. Syst. Neurosci., 2013, 7, 41.
[http://dx.doi.org/10.3389/fnsys.2013.00041] [PMID: 23970856]
[168]
Holland, A.C.; Kensinger, E.A. Younger, middle-aged, and older adults’ memories for the 2008 U.S. Presidential Election. J. Appl. Res. Mem. Cogn., 2012, 1(3), 163-170.
[http://dx.doi.org/10.1016/j.jarmac.2012.06.001] [PMID: 23264932]
[169]
Nonaka, A.; Masuda, F.; Nomura, H.; Matsuki, N. Impairment of fear memory consolidation and expression by antihistamines. Brain Res., 2013, 1493, 19-26.
[http://dx.doi.org/10.1016/j.brainres.2012.11.030] [PMID: 23178698]
[170]
Brabant, C.; Charlier, Y.; Tirelli, E. The histamine H3-receptor inverse agonist Pitolisant improves fear memory in mice. Behav. Brain Res., 2013, 243, 199-204.
[http://dx.doi.org/10.1016/j.bbr.2012.12.063] [PMID: 23327739]
[171]
Huston, J.P.; Wagner, U.; Hasenöhrl, R.U. The tuberomammillary nucleus projections in the control of learning, memory and reinforcement processes: Evidence for an inhibitory role. Behav. Brain Res., 1997, 83(1-2), 97-105.
[http://dx.doi.org/10.1016/S0166-4328(97)86052-4] [PMID: 9062667]
[172]
Dai, H.; Okuda, T.; Sakurai, E.; Kuramasu, A.; Kato, M.; Jia, F.; Xu, A.J.; Iinuma, K.; Sato, I.; Yanai, K. Blockage of histamine H1 receptor attenuates social isolation-induced disruption of prepulse inhibition: A study in H1 receptor gene knockout mice. Psychopharmacology (Berl.), 2005, 183(3), 285-293.
[http://dx.doi.org/10.1007/s00213-005-0203-4] [PMID: 16237577]
[173]
Ambrée, O.; Buschert, J.; Zhang, W.; Arolt, V.; Dere, E.; Zlomuzica, A. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice. Eur. Neuropsychopharmacol., 2014, 24(8), 1394-1404.
[http://dx.doi.org/10.1016/j.euroneuro.2014.04.006] [PMID: 24862254]
[174]
Esbenshade, T.A.; Browman, K.E.; Miller, T.R.; Krueger, K.M.; Komater-Roderwald, V.; Zhang, M.; Fox, G.B.; Rueter, L.; Robb, H.M.; Radek, R.J.; Drescher, K.U.; Fey, T.A.; Bitner, R.S.; Marsh, K.; Polakowski, J.S.; Zhao, C.; Cowart, M.D.; Hancock, A.A.; Sullivan, J.P.; Brioni, J.D. Pharmacological properties and procognitive effects of ABT-288, a potent and selective histamine H3 receptor antagonist. J. Pharmacol. Exp. Ther., 2012, 343(1), 233-245.
[http://dx.doi.org/10.1124/jpet.112.194126] [PMID: 22815533]
[175]
Rubio, S.; Begega, A.; Santin, L.J.; Arias, J.L. Improvement of spatial memory by (R)-α-methylhistamine, a histamine H3-receptor agonist, on the Morris water-maze in rat. Behav. Brain Res., 2002, 129(1-2), 77-82.
[http://dx.doi.org/10.1016/S0166-4328(01)00328-X] [PMID: 11809497]
[176]
Trofimiuk, E.; Braszko, J.J. Ciproxifan differentially modifies cognitive impairment evoked by chronic stress and chronic corticosterone administration in rats. Behav. Brain Res., 2015, 283, 145-153.
[http://dx.doi.org/10.1016/j.bbr.2015.01.038] [PMID: 25639546]
[177]
Acevedo, S.F.; Ohtsu, H.; Benice, T.S.; Rizk-Jackson, A.; Raber, J. Age-dependent measures of anxiety and cognition in male histidine decarboxylase knockout (HDC−/−) mice. Brain Res., 2006, 1071(1), 113-123.
[http://dx.doi.org/10.1016/j.brainres.2005.11.067] [PMID: 16412995]
[178]
He, C.; Luo, F.; Chen, X.; Chen, F.; Li, C.; Ren, S.; Qiao, Q.; Zhang, J.; de Lecea, L.; Gao, D.; Hu, Z. Superficial layer-specific histaminergic modulation of medial entorhinal cortex required for spatial learning. Cereb. Cortex, 2016, 26(4), 1590-1608.
[http://dx.doi.org/10.1093/cercor/bhu322] [PMID: 25595181]
[179]
Xu, L.S.; Fan, Y.Y.; He, P.; Zhang, W.P.; Hu, W.W.; Chen, Z. Ameliorative effects of histamine on spatial memory deficits induced by scopolamine infusion into bilateral dorsal or ventral hippocampus as evaluated by the radial arm maze task. Clin. Exp. Pharmacol. Physiol., 2009, 36(8), 816-821.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05157.x] [PMID: 19215234]
[180]
Xu, L.; Yang, L.; Hu, W.; Yu, X.; Ma, L.; Liu, L.; Wei, E.; Chen, Z. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats1. Acta Pharmacol. Sin., 2005, 26(12), 1448-1453.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00229.x] [PMID: 16297342]
[181]
Chen, Z.; Zhao, Q.; Sugimoto, Y.; Fujii, Y.; Kamei, C. Effects of histamine on MK-801-induced memory deficits in radial maze performance in rats. Brain Res., 1999, 839(1), 186-189.
[http://dx.doi.org/10.1016/S0006-8993(99)01739-4] [PMID: 10482812]
[182]
Rizk, A.; Curley, J.; Robertson, J.; Raber, J. Anxiety and cognition in histamine H3 receptor-/- mice. Eur. J. Neurosci., 2004, 19(7), 1992-1996.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03251.x] [PMID: 15078574]
[183]
Pascoli, V.; Boer-Saccomani, C.; Hermant, J.F. H3 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing retrieval. Psychopharmacology (Berl.), 2009, 202(1-3), 141-152.
[http://dx.doi.org/10.1007/s00213-008-1171-2] [PMID: 18493749]
[184]
Gianlorenço, A.C.L.; Serafim, K.R.; Canto-de-Souza, A.; Mattioli, R. Emotional memory consolidation impairment induced by histamine is mediated by H1 but not H2 receptors. Brain Res. Bull., 2012, 89(5-6), 197-202.
[http://dx.doi.org/10.1016/j.brainresbull.2012.09.003] [PMID: 22986235]
[185]
Chen, Q.; Luo, F.; Yue, F.; Xia, J.; Xiao, Q.; Liao, X.; Jiang, J.; Zhang, J.; Hu, B.; Gao, D.; He, C.; Hu, Z. Histamine enhances theta-coupled spiking and gamma oscillations in the medial entorhinal cortex consistent with successful spatial recognition. Cereb. Cortex, 2018, 28(7), 2439-2457.
[http://dx.doi.org/10.1093/cercor/bhx145] [PMID: 28591796]
[186]
Bardgett, M.E.; Points, M.; Roflow, J.; Blankenship, M.; Griffith, M.S. Effects of the H3 antagonist, thioperamide, on behavioral alterations induced by systemic MK-801 administration in rats. Psychopharmacology (Berl.), 2009, 205(4), 589-597.
[http://dx.doi.org/10.1007/s00213-009-1566-8] [PMID: 19466392]
[187]
Ito, T.; Kimura, Y.; Seki, C.; Ichise, M.; Yokokawa, K.; Kawamura, K.; Takahashi, H.; Higuchi, M.; Zhang, M.R.; Suhara, T.; Yamada, M. Histamine H3 receptor density is negatively correlated with neural activity related to working memory in humans. EJNMMI Res., 2018, 8(1), 48.
[http://dx.doi.org/10.1186/s13550-018-0406-4] [PMID: 29900481]
[188]
Grove, R.; Harrington, C.; Mahler, A.; Beresford, I.; Maruff, P.; Lowy, M.; Nicholls, A.; Boardley, R.; Berges, A.; Nathan, P.; Horrigan, J. A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer’s disease. Curr. Alzheimer Res., 2014, 11(1), 47-58.
[http://dx.doi.org/10.2174/1567205010666131212110148] [PMID: 24359500]
[189]
Okamura, N.; Yanai, K.; Higuchi, M.; Sakai, J.; Iwata, R.; Ido, T.; Sasaki, H.; Watanabe, T.; Itoh, M. Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine. Br. J. Pharmacol., 2000, 129(1), 115-123.
[http://dx.doi.org/10.1038/sj.bjp.0702994] [PMID: 10694210]
[190]
Verster, J.C.; Volkerts, E.R.; van Oosterwijck, A.W.A.A.; Aarab, M.; Bijtjes, S.I.R.; De Weert, A.M.; Eijken, E.J.E.; Verbaten, M.N. Acute and subchronic effects of levocetirizine and diphenhydramine on memory functioning, psychomotor performance, and mood. J. Allergy Clin. Immunol., 2003, 111(3), 623-627.
[http://dx.doi.org/10.1067/mai.2003.63] [PMID: 12642847]
[191]
Simons, F.E.R.; Fraser, T.G.; Maher, J.; Pillay, N.; Simons, K.J. Central nervous system effects of H1-receptor antagonists in the elderly. Ann. Allergy Asthma Immunol., 1999, 82(2), 157-160.
[http://dx.doi.org/10.1016/S1081-1206(10)62590-2] [PMID: 10071518]
[192]
Kerr, J.S.; Hindmarch, I.; Dunmore, C. The psychomotor and cognitive effects of a new antihistamine, mizolastine, compared to terfenadine, triprolidine and placebo in healthy volunteers. Eur. J. Clin. Pharmacol., 1994, 47(4), 331-335.
[http://dx.doi.org/10.1007/BF00191164] [PMID: 7875184]
[193]
Gandon, J.M.; Allain, H. Lack of effect of single and repeated doses of levocetirizine, a new antihistamine drug, on cognitive and psychomotor functions in healthy volunteers. Br. J. Clin. Pharmacol., 2002, 54(1), 51-58.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01611.x] [PMID: 12100225]
[194]
Hindmarch, I.; Shamsi, Z. The effects of single and repeated administration of ebastine on cognition and psychomotor performance in comparison to triprolidine and placebo in healthy volunteers. Curr. Med. Res. Opin., 2001, 17(4), 273-281.
[http://dx.doi.org/10.1185/0300799019117014] [PMID: 11922401]
[195]
Turner, C.; Handford, A.D.F.; Nicholson, A.N. Sedation and memory: Studies with a histamine H-1 receptor antagonist. J. Psychopharmacol., 2006, 20(4), 506-517.
[http://dx.doi.org/10.1177/0269881106059804] [PMID: 16401664]
[196]
Tashiro, M.; Mochizuki, H.; Iwabuchi, K.; Sakurada, Y.; Itoh, M.; Watanabe, T.; Yanai, K. Roles of histamine in regulation of arousal and cognition: Functional neuroimaging of histamine H1 receptors in human brain. Life Sci., 2002, 72(4-5), 409-414.
[http://dx.doi.org/10.1016/S0024-3205(02)02276-2] [PMID: 12467881]
[197]
Sadek, B.; Saad, A.; Sadeq, A.; Jalal, F.; Stark, H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav. Brain Res., 2016, 312, 415-430.
[http://dx.doi.org/10.1016/j.bbr.2016.06.051] [PMID: 27363923]
[198]
Provensi, G.; Costa, A.; Izquierdo, I.; Blandina, P.; Passani, M.B. Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br. J. Pharmacol., 2020, 177(3), 539-556.
[http://dx.doi.org/10.1111/bph.14478] [PMID: 30129226]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy