Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Systematic Review Article

Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017-2022)

Author(s): Aditya Narayan, Shivkant Patel, Sunil B. Baile, Surabhi Jain* and Smriti Sharma

Volume 24, Issue 8, 2024

Published on: 20 March, 2024

Article ID: e200324228067 Pages: 26

DOI: 10.2174/0118715265274067240223040333

Price: $65

Abstract

Background: Regarding scientific research, Imidazo[1,2-a] pyridine derivatives are constantly being developed due to the scaffold’s intriguing chemical structure and varied biological activity. They are distinctive organic nitrogen-bridged heterocyclic compounds that have several uses in medicines, organometallics and natural products. It has become a vital tool for medicinal chemists.

Methods: In order to gather scientific information on Imidazo[1,2-a] pyridines derivative, Google, PubMed, Scopus, Google Scholar, and other databases were searched. In the current study, the medicinal value and therapeutic effect of Imidazo[1,2-a] pyridines were investigated using above mentioned databases. The current study analyzed the detailed pharmacological activities of Imidazo[1,2-a] pyridine analogs through literature from diverse scientific research works.

Results: Due to its wide range of biological activities, including antiulcer, anticonvulsant, antiprotozoal, anthelmintic, antiepileptic, antifungal, antibacterial, analgesic, antiviral, anticancer, anti-inflammatory, antituberculosis, and antitumor properties, imidazopyridine is one of the most significant structural skeletons in the field of natural and pharmaceutical products. An imidazopyridine scaffold serves as the basis for a number of therapeutically utilized medications, including zolpidem, alpidem, olprinone, zolimidine, and necopidem.

Conclusion: This comprehensive study covers the period of the last five years, and it sheds light on the developments and emerging pharmacological actions of Imidazo[1,2-a] pyridines. Additionally, the structure-activity relationship and molecular docking studies are carefully documented throughout the paper, providing medicinal chemists with a clear picture for developing new drugs.

Graphical Abstract

[1]
Bagdi AK, Mitra S, Ghosh M, Hajra A. Iodine-catalyzed regioselective thiolation of imidazo[1,2-a]pyridines using sulfonyl hydrazides as a thiol surrogate. Org Biomol Chem 2015; 13(11): 3314-20.
[http://dx.doi.org/10.1039/C5OB00033E] [PMID: 25644749]
[2]
Kang S, Kim YM, Kim RY, et al. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur J Med Chem 2017; 125: 807-15.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.082] [PMID: 27750198]
[3]
Cook GM, Hards K, Dunn E, et al. Oxidative phosphorylation as a target space for tuberculosis: Success, caution, and future directions. Microbiol Spectr 2017; 5(3): 5.3.14.
[http://dx.doi.org/10.1128/microbiolspec.TBTB2-0014-2016] [PMID: 28597820]
[4]
de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a new antituberculosis agent. N Engl J Med 2020; 382(13): 1280-1.
[http://dx.doi.org/10.1056/NEJMc1913327] [PMID: 32212527]
[5]
Lv K, Li L, Wang B, et al. Design, synthesis and antimycobacterial activity of novel imidazo[1,2- a]pyridine-3-carboxamide derivatives. Eur J Med Chem 2017; 137: 117-25.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.044] [PMID: 28577507]
[6]
Tantry SJ, Markad SD, Shinde V, et al. Discovery of imidazo[1,2- a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 2017; 60(4): 1379-99.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01358] [PMID: 28075132]
[7]
a) García-González MC, Hernández-Vázquez E, Gordillo-Cruz RE, Miranda LD. Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles. Chem Commun 2015; 51(58): 11669-72.
[http://dx.doi.org/10.1039/C5CC02927A] [PMID: 26102372];
b) Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020; 25(8): 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131];
c) Mishra S, Monir K, Mitra S, Hajra A. FeCl3/ZnI2-catalyzed synthesis of benzo[d]imidazo[2,1-b]thiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone. Org Lett 2014; 16(23): 6084-7.
[http://dx.doi.org/10.1021/ol5028893] [PMID: 25393913]
[8]
a) Rawat R, Verma SM. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: An update of the decade. Synth Commun 2020; 50(23): 3507-34.
[http://dx.doi.org/10.1080/00397911.2020.1803915];
b) Ghosh P, Samanta S, Ghosh S, Jana S, Hajra A. Aminomethylation of imidazopyridines using N,N-dimethylformamide as an aminomethylating reagent under Cu(II)-catalysis. Tetrahedron Lett 2020; 61(49): 152581.
[http://dx.doi.org/10.1016/j.tetlet.2020.152581];
c) Kundu D, Kundu SK, Majee A, Hajra A. A facile synthesis of 2,2,4‐trisubstituted‐1,2‐dihydroquinolines catalyzed by zinc triflate under solvent‐free conditions. J Chin Chem Soc 2008; 55(5): 1186-90.
[http://dx.doi.org/10.1002/jccs.200800175]
[9]
Reen GK, Kumar A, Sharma P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage. Beilstein J Org Chem 2019; 15: 1612-704.
[http://dx.doi.org/10.3762/bjoc.15.165] [PMID: 31435443]
[10]
Ghosh D, Ghosh S, Hajra A. Electrochemical functionalization of imidazopyridine and indazole: An overview. Adv Synth Catal 2021; 363(22): 5047-71.
[http://dx.doi.org/10.1002/adsc.202100981]
[11]
Kurteva V. Recent progress in metal-free direct synthesis of imidazo[1,2- a]pyridines. ACS Omega 2021; 6(51): 35173-85.
[http://dx.doi.org/10.1021/acsomega.1c03476] [PMID: 34984250]
[12]
National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 78960, Imidazo[1,2-a]pyridine. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Imidazo_1_2-a_pyridine (Retrieved July 30, 2023).
[13]
Ismail MA, Brun R, Wenzler T, Tanious FA, Wilson WD, Boykin DW. Novel dicationic imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines as antiprotozoal agents. J Med Chem 2004; 47(14): 3658-64.
[http://dx.doi.org/10.1021/jm0400092] [PMID: 15214792]
[14]
Almirante L, Polo L, Mugnaini A, et al. Derivatives of imidazole. I. Synthesis and reactions of imidazo[1,2-α]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J Med Chem 1965; 8(3): 305-12.
[http://dx.doi.org/10.1021/jm00327a007] [PMID: 14329509]
[15]
Biftu T, Feng D, Fisher M, et al. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents. Bioorg Med Chem Lett 2006; 16(9): 2479-83.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.092] [PMID: 16464591]
[16]
Zhou S, Chen G, Huang G. Design, synthesis and biological evaluation of imidazo[1,2‐a]pyridine analogues or derivatives as anti‐helmintic drug. Chem Biol Drug Des 2019; 93(4): 503-10.
[http://dx.doi.org/10.1111/cbdd.13441] [PMID: 30427117]
[17]
Ulloora S, Adhikari AV, Shabaraya R. Synthesis and antiepileptic studies of new imidazo[1,2-a]pyridine derivatives. Chin Chem Lett 2013; 24(9): 853-6.
[http://dx.doi.org/10.1016/j.cclet.2013.05.030]
[18]
Kaplancikli ZA, Turan-Zitouni G, Özdemr A, Revial G. Synthesis and anticandidal activity of some imidazopyridine derivatives. J Enzyme Inhib Med Chem 2008; 23(6): 866-70.
[http://dx.doi.org/10.1080/14756360701811114] [PMID: 18608774]
[19]
Srinivas Rao N, Kistareddy C. Synthesis and antibacterial activity of novel imidazo[1,2-a]pyrimidine and imidazo[1,2-a]pyridine chalcones derivatives. Pharma Chem 2012; 4(6): 2408-15.
[20]
Lacerda RB, de Lima CKF, da Silva LL, et al. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg Med Chem 2009; 17(1): 74-84.
[http://dx.doi.org/10.1016/j.bmc.2008.11.018] [PMID: 19059783]
[21]
Gudmundsson KS, Johns BA. Imidazo[1,2-a]pyridines with potent activity against herpesviruses. Bioorg Med Chem Lett 2007; 17(10): 2735-9.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.079] [PMID: 17368024]
[22]
Wang J, Wu H, Song G, et al. A novel imidazopyridine derivative exerts anticancer activity by inducing mitochondrial pathway-mediated apoptosis. BioMed Res Int 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/4929053] [PMID: 32908894]
[23]
Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem Lett 2016; 26(8): 2068-71.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.076] [PMID: 26951749]
[24]
Hranjec M, Kralj M, Piantanida I, et al. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J Med Chem 2007; 50(23): 5696-711.
[http://dx.doi.org/10.1021/jm070876h] [PMID: 17935309]
[25]
Ravi C, Adimurthy S. Synthesis of imidazo[1,2‐a]pyridines: c‐h functionalization in the direction of C‐S bond formation. Chem Rec 2017; 17(10): 1019-38.
[http://dx.doi.org/10.1002/tcr.201600146] [PMID: 28318093]
[26]
Volkova Y, Gevorgyan V. Synthesis of functionalyzed imidazo[1,2-a]pyridines via domino A3-coupling/cycloisomerization approach. Chem Heterocycl Compd 2017; 53(4): 409-12.
[http://dx.doi.org/10.1007/s10593-017-2066-0]
[27]
Rawal T, Butani S. Combating tuberculosis infection: A forbidding challenge. Indian J Pharm Sci 2016; 78(1): 8-16.
[http://dx.doi.org/10.4103/0250-474X.180243] [PMID: 27168676]
[28]
Foley AM. Imidazopyridine derivatives as il-17 modulators. WO Patent 2020261141-A1 2020.
[29]
Foley AM. Imidazopyridine derivatives as il-17 modulators E.P. Patent 3990459-A1 2020.
[30]
Foley AM. Imidazopyridine derivatives as il-17 modulators. US Patent 2022227764-A1 2020.
[31]
Pan J, Roach J. Imidazopyridazine and imidazopyridine compounds and uses thereof. US Patent 2020199131-A1 2020.
[32]
Pan J, Roach J. Imidazopyridazine and imidazopyridine compounds and uses thereof W.O. Patent 2020132197-A1 2020.
[33]
Cheng X, Wolfl S. Application of Imidazopyridine Derivatives in Regenerative Medicine. US Patent 2020062719-A1 2021.
[34]
Saunthararajah Y, Ng KP. Antitumor derivatives for differentiation therapy. US Patent 9926316-B2 2020.
[35]
Kadow JF, Naidu BN. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication. EP PAtent 3334741-A1 2020.
[36]
Kadow JF, Naidu BN. Imidazopyridine macrocycles as inhibitors of human immunodeficiency virus replication U.S. Patent 10138253-B2 2020.
[37]
Sirgel FA, Tait M, Warren RM, et al. Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb Drug Resist 2012; 18(2): 193-7.
[http://dx.doi.org/10.1089/mdr.2011.0063] [PMID: 21732736]
[38]
van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: A review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 2014; 69(9): 2310-8.
[http://dx.doi.org/10.1093/jac/dku171] [PMID: 24860154]
[39]
Jain S, Sharma S, Sen DJ, Pandya SS. Enoyl-Acyl Carrier Protein Reductase (INHA): A remarkable target to exterminate tuberculosis. Antiinfect Agents 2021; 19(3): 252-66.
[http://dx.doi.org/10.2174/2211352518999201201114426]
[40]
Jain A, Mondal R. Extensively drug-resistant tuberculosis: Current challenges and threats. FEMS Immunol Med Microbiol 2008; 53(2): 145-50.
[http://dx.doi.org/10.1111/j.1574-695X.2008.00400.x] [PMID: 18479439]
[41]
Bald D, Villellas C, Lu P, Koul A. Targeting energy metabolism in mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. MBio 2017; 8(2): e00272-17.
[http://dx.doi.org/10.1128/mBio.00272-17] [PMID: 28400527]
[42]
Foo CSY, Pethe K, Lupien A. Oxidative phosphorylation-an update on a new, essential target space for drug discovery in mycobacterium tuberculosis. Appl Sci 2020; 10(7): 2339.
[http://dx.doi.org/10.3390/app10072339]
[43]
Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 2020; 382(24): 2376-7.
[http://dx.doi.org/10.1056/NEJMc2009939]
[44]
Gandhi K, Patel M. Collocating novel targets for Tuberculosis (TB) drug discovery. Curr Drug Discov Technol 2021; 18(2): 307-16.
[http://dx.doi.org/10.2174/1570163817666200121143036] [PMID: 31987022]
[45]
Beites T, O’Brien K, Tiwari D, et al. Plasticity of the mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10(1): 4970.
[http://dx.doi.org/10.1038/s41467-019-12956-2] [PMID: 31672993]
[46]
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic inhibitors: antibiotic efficacy and mechanisms of action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10: 611683.
[http://dx.doi.org/10.3389/fcimb.2020.611683] [PMID: 33505923]
[47]
Lu P, Asseri AH, Kremer M, et al. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci Rep 2018; 8(1): 2625.
[http://dx.doi.org/10.1038/s41598-018-20989-8] [PMID: 29422632]
[48]
A phase 2 study to evaluate early bactericidal activity, safety, tolerability, and pharmacokinetics of multiple oral doses of telacebec (Q203).. NCT03563599, 2019.
[49]
Wang J, Jing W, Shi J, et al. Bipolar distribution of minimum inhibitory concentration of q203 across Mycobacterial species. Microb Drug Resist 2021; 27(8): 1013-7.
[http://dx.doi.org/10.1089/mdr.2020.0239] [PMID: 33646044]
[50]
Exploration of indolo-imidazo[1,2-a]pyridine compounds as anti-tubercular agents through docking, ADMET and drug likeliness studies. Lett Appl NanoBioSci 2021; 11(2): 3350-61.
[http://dx.doi.org/10.33263/LIANBS112.33503361]
[51]
Karale UB, Shinde AU, Babar DA, et al. 3‐Aryl‐substituted imidazo[1,2‐ a]pyridines as antituberculosis agents. Arch Pharm 2021; 354(10): 2000419.
[http://dx.doi.org/10.1002/ardp.202000419] [PMID: 34185337]
[52]
Khetmalis YM, Chitti S, Umarani Wunnava A, et al. Design, synthesis and anti-mycobacterial evaluation of imidazo[1,2- a]pyridine analogues. RSC Med Chem 2022; 13(3): 327-42.
[http://dx.doi.org/10.1039/D1MD00367D] [PMID: 35434623]
[53]
WHO Cancer 2018.
[54]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[55]
Lee H, Kim SJ, Jung KH, et al. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol Rep 2013; 30(2): 863-9.
[http://dx.doi.org/10.3892/or.2013.2499] [PMID: 23708425]
[56]
Yun SM, Jung KH, Lee H, et al. Synergistic anticancer activity of HS-173, a novel PI3K inhibitor in combination with Sorafenib against pancreatic cancer cells. Cancer Lett 2013; 331(2): 250-61.
[http://dx.doi.org/10.1016/j.canlet.2013.01.007] [PMID: 23340175]
[57]
Hieke M, Rödl CB, Wisniewska JM, et al. SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorg Med Chem Lett 2012; 22(5): 1969-75.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.038] [PMID: 22326163]
[58]
Almeida GM, Rafique J, Saba S, et al. Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Biophys Res Commun 2018; 503(3): 1291-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.039] [PMID: 30017191]
[59]
Zheng X, Bauer P, Baumeister T, et al. Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. J Med Chem 2013; 56(16): 6413-33.
[http://dx.doi.org/10.1021/jm4008664] [PMID: 23859118]
[60]
Aliwaini S, Awadallah A, Morjan R, et al. Novel imidazo[1,2 a]pyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol Lett 2019; 18(1): 830-7.
[http://dx.doi.org/10.3892/ol.2019.10341] [PMID: 31289560]
[61]
Li GY, Jung KH, Lee H, et al. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett 2013; 329(1): 59-67.
[http://dx.doi.org/10.1016/j.canlet.2012.10.013] [PMID: 23085493]
[62]
Ducray R, Jones CD, Jung FH, Simpson I, Curwen J, Pass M. Novel imidazo[1,2-a]pyridine based inhibitors of the IGF-1 receptor tyrosine kinase: Optimization of the aniline. Bioorg Med Chem Lett 2011; 21(16): 4702-4.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.090] [PMID: 21764307]
[63]
Altaher MH. Imidazo[1,2-a]pyridine based compounds: The hopeful anti-cancer therapy. Syst Rev Pharma 2021; 12(4): 79-85.
[64]
Neogi S, Kumar Ghosh A, Mandal S, Ghosh D, Ghosh S, Hajra A. Three-component carbosilylation of alkenes by merging iron and visible-light photocatalysis. Org Lett 2021; 23(16): 6510-4.
[http://dx.doi.org/10.1021/acs.orglett.1c02322] [PMID: 34379426]
[65]
Endoori S, Gulipalli KC, Bodige S, Ravula P, Seelam N. Design, synthesis, anticancer activity, and in silico studies of novel imidazo[1,2‐ a]pyridine based 1 H ‐1,2,3‐triazole derivatives. J Heterocycl Chem 2021; 58(6): 1311-20.
[http://dx.doi.org/10.1002/jhet.4259]
[66]
Singh D, Yodun T, Kumar G, et al. Synthesis of 3-N-/O-/S-methyl-imidazo[1,2-a] pyridine derivatives for caspase-3 mediated apoptosis induced anticancer activity. Bioorg Chem 2022; 125: 105882.
[http://dx.doi.org/10.1016/j.bioorg.2022.105882] [PMID: 35660838]
[67]
Ramarao S, Pothireddy M, Venkateshwarlu R, et al. Sonochemical synthesis and in silico evaluation of imidazo[1,2- a]pyridine derivatives as potential inhibitors of sirtuins. Polycycl Aromat Compd 2023; 43(4): 3741-60.
[http://dx.doi.org/10.1080/10406638.2022.2077774]
[68]
Güçlü D, Kuzu B, Tozlu İ, et al. Synthesis of novel imidazopyridines and their biological evaluation as potent anticancer agents: A promising candidate for glioblastoma. Bioorg Med Chem Lett 2018; 28(15): 2647-51.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.033] [PMID: 30042044]
[69]
Olsen RW. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136(Pt A): 10-22.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.036] [PMID: 294072192]
[70]
Volkova YA, Rassokhina IV, Kondrakhin EA, et al. Synthesis and evaluation of avermectin-imidazo[1,2-a]pyridine hybrids as potent GABAA receptor modulators. Bioorg Chem 2022; 127: 105904.
[http://dx.doi.org/10.1016/j.bioorg.2022.105904] [PMID: 35716646]
[71]
Sanapalli BKR, Ashames A, Sigalapalli DK, Shaik AB, Bhandare RR, Yele V. Synthetic imidazopyridine-based derivatives as potential inhibitors against multi-drug resistant bacterial infections: A review. Antibiotics 2022; 11(12): 1680.
[http://dx.doi.org/10.3390/antibiotics11121680] [PMID: 36551338]
[72]
Ablo E, Coulibali S, Touré D, et al. Synthesis and antibacterial activity in vitro of 2-benzylthioimidazo[1,2-a]pyridine derivatives against pathogenic bacterial. Synth Commun 2022; 52(3): 462-9.
[http://dx.doi.org/10.1080/00397911.2022.2032175]
[73]
Mishra NP, Mohapatra S, Sahoo CR, et al. Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo[1,2-a]pyridine derivatives as potent peptide deformylase inhibitors. J Mol Struct 2021; 1246: 131183.
[http://dx.doi.org/10.1016/j.molstruc.2021.131183]
[74]
Althagafi I, Abdel-Latif E. Synthesis and antibacterial activity of new imidazo[1,2- a]pyridines festooned with pyridine, thiazole or pyrazole moiety. Polycycl Aromat Compd 2022; 42(7): 4487-500.
[http://dx.doi.org/10.1080/10406638.2021.1894185]
[75]
Thakur A, Pereira G, Patel C, Chauhan V, Dhaked RK, Sharma A. Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles. J Mol Struct 2020; 1206: 127686.
[http://dx.doi.org/10.1016/j.molstruc.2020.127686]
[76]
Ebenezer O, Awolade P, Koorbanally N, Singh P. New library of pyrazole–imidazo[1,2‐α]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chem Biol Drug Des 2020; 95(1): 162-73.
[http://dx.doi.org/10.1111/cbdd.13632] [PMID: 31580533]
[77]
Salhi L, Achouche-Bouzroura S, Nechak R, et al. Synthesis of functionalized dihydroimidazo[1,2- A]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. Synth Commun 2020; 50(3): 412-22.
[http://dx.doi.org/10.1080/00397911.2019.1699933]
[78]
Devi N, Jana AK, Singh V. Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. Karbala Int J Mod Sci 2018; 4(1): 164-70.
[http://dx.doi.org/10.1016/j.kijoms.2018.01.003]
[79]
Yoshikawa Y, Hirata R, Yasui H, Sakurai H. Alpha-glucosidase inhibitory effect of anti-diabetic metal ions and their complexes. Biochimie 2009; 91(10): 1339-41.
[http://dx.doi.org/10.1016/j.biochi.2009.06.005] [PMID: 19539008]
[80]
Bischoff H. Pharmacology of alpha-glucosidase-inhibitors. Drugs in development: Alpha-glucosidase inhibition: Potential use in diabetes. Neva Press 1993.
[81]
Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293(3): 781-8.
[http://dx.doi.org/10.1042/bj2930781] [PMID: 8352747]
[82]
Padmaja P, Reddy PN, Subba Reddy BV, et al. Design, synthesis, in vitro α-glucosidase inhibitory, antioxidant activity and molecular docking studies of novel pyridine linked imidazo[1,2-a]pyridine derivatives. J Mol Struct 2023; 1273: 134238.
[http://dx.doi.org/10.1016/j.molstruc.2022.134238]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy