Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Chemistry of Aldehydes and Ketones in the Synthesis of Heterocycles - Historical Reactions with a New and Green Perspective

Author(s): Flavia Martins da Silva, Joel Jones Junior* and July A. Hernández Muñoz

Volume 28, Issue 13, 2024

Published on: 18 March, 2024

Page: [1023 - 1045] Pages: 23

DOI: 10.2174/0113852728295534240223044735

Price: $65

conference banner
Abstract

The reactivity of aldehydes and ketones carries great potential for multicomponent heterocyclizations. These reactions are convergent and highly versatile in the development of synthetic methodologies for compound families, displaying variations in substituents in their structures. Therefore, they have been regarded as an important tool in the field of Green Chemistry. Furthermore, they prove to be very useful in studies of biological activity, where small structural modifications can result in significant differences. Many heterocyclizations date back to the mid-19th and early 20th centuries. In this review, we aim to demonstrate, through some of these reactions, their continuously growing potential and improvements concerning synthetic development. Additionally, we present the original studies as reported, enabling us to appreciate the evolution of chemical representations over the years until reaching the standardization we have today.

Graphical Abstract

[1]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[2]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Great Britain, 2000.
[http://dx.doi.org/10.1093/oso/9780198506980.001.0001]
[4]
Silva, F.M.; Lacerda, P.S.B.; Jones Junior, J. Sustainable development and green chemistry. Quim. Nova, 2005, 28(1), 103-110.
[http://dx.doi.org/10.1590/S0100-40422005000100019]
[5]
Kakabadse, G. Solvent Problems in Industry; Elsevier: London, 1984.
[6]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927-934.
[http://dx.doi.org/10.1039/b617536h]
[7]
Ahluwalia, V.K.; Varma, R.S. Green solvents for organic synthesis; Alpha Science International Ltd.: Oxford, 2009.
[8]
Silva, F.M.; Jones, J., Jr Organic reactions in aqueous media. Quim. Nova, 2001, 24(5), 646-657.
[http://dx.doi.org/10.1590/S0100-40422001000500012]
[9]
Polshettiwar, V.; Varma, R.S. Aqueous Microwave Assisted Chemistry: Synthesis and Catalysis; Royal Society of Chemistry, 2010.
[http://dx.doi.org/10.1039/9781849730990]
[10]
Forero, J.S.B.; Hernández Muñoz, J.A.; Jones Jr, J.; da Silva, F.M. Propylene carbonate in organic synthesis: Exploring its potential as a green solvent. Curr. Org. Synth., 2016, 13(6), 834-846.
[http://dx.doi.org/10.2174/1570179413999160211094705]
[11]
Aparicio, S.; Alcalde, R. Insights into the ethyl lactate + water mixed solvent. J. Phys. Chem. B, 2009, 113(43), 14257-14269.
[http://dx.doi.org/10.1021/jp904668e] [PMID: 19803527]
[12]
Clark, J.; Farmer, T.; Hunt, A.; Sherwood, J. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci., 2015, 16(8), 17101-17159.
[http://dx.doi.org/10.3390/ijms160817101] [PMID: 26225963]
[13]
Vafaeezadeh, M.; Hashemi, M.M. Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions. J. Mol. Liq., 2015, 207, 73-79.
[http://dx.doi.org/10.1016/j.molliq.2015.03.003]
[14]
Hoffmann, M.M. Polyethylene glycol as a green chemical solvent. Curr. Opin. Colloid Interface Sci., 2022, 57, 101537.
[http://dx.doi.org/10.1016/j.cocis.2021.101537]
[15]
Qureshi, Z.S.; Deshmukh, K.M.; Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol. Environ. Policy, 2014, 16(8), 1487-1513.
[http://dx.doi.org/10.1007/s10098-013-0660-0]
[16]
Tanaka, K. Solvent-Free Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2009.
[17]
Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532]
[18]
Martina, K.; Cravotto, G.; Varma, R.S. Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up. J. Org. Chem., 2021, 86(20), 13857-13872.
[http://dx.doi.org/10.1021/acs.joc.1c00865] [PMID: 34125541]
[19]
Sharma, N.; Sharma, U.K.; Van der Eycken, E.V. Microwave-assisted organic synthesis: Overview of recent applications. In: Green Techniques for Organic Synthesis and Medicinal Chemistry; Zhang, W.; Cue, B.W. , Eds.; John Wiley Sons, Ltd, 2018; pp. 441-468.
[http://dx.doi.org/10.1002/9781119288152.ch17]
[20]
de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[21]
Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev., 1997, 26(6), 443-451.
[http://dx.doi.org/10.1039/cs9972600443]
[22]
Boddula, I.R.; Asiri, A.B. Green Sustainable Process for Chemical and Environmental Engineering and Science: Sustainable Organic Synthesis, 1st ed; Elsevier Inc, 2020.
[http://dx.doi.org/10.1016/C2018-0-05312-8]
[23]
Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700.
[http://dx.doi.org/10.1039/c3cs35526h] [PMID: 23660585]
[24]
da Silva Santos, J.; Junior, J.J.; da Silva, F.M. Solvent-free MALI-MGRE procedure for synthesizing 1,4-thiazolidin-4- one MALI (Mercaptoacetic Acid Looking Imine) mgre (mechanical grinding reaction equipment). Curr. Org. Synth., 2023, 20(2), 258-266.
[http://dx.doi.org/10.2174/1570179419666220414112340] [PMID: 35430995]
[25]
Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc., 1932, 54(9), 3570-3582.
[http://dx.doi.org/10.1021/ja01348a011]
[26]
Kekulé, A. Ueber die Constitution und die Metamorphosen der chemischen Verbindungen und über die chemische Natur des Kohlenstoffs. Justus Liebigs Ann. Chem., 1858, 106(2), 129-159.
[http://dx.doi.org/10.1002/jlac.18581060202]
[27]
Archibald Scott Couper (1831-1892) - Couper, A. S. Sur une nouvelle théorie chimique. CR (East Lansing Mich.), 1858, 46, 1157-1160.https://gallica.bnf.fr/ark:/12148/bpt6k3003h/f1157.item.zoom#
[28]
Couper, A.S. XII. On a new chemical theory. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1858, 16(105), 104-116.
[http://dx.doi.org/10.1080/14786445808642541]
[29]
Alexander Mikhailovich Butlerov (1828*-1896†) - Butlerov, A.M. Einiges uber die chemische Structur der Korper. Z. Chem., 1861, 4, 549-560.https://babel.hathitrust.org/cgi/pt?id=umn.31951000637410z&seq=583
[30]
Rocke, A.J. Kekulé, Butlerov, and the historiography of the theory of chemical structure. Br. J. Hist. Sci., 1981, 14(1), 27-57.
[http://dx.doi.org/10.1017/S0007087400018276]
[31]
Debus, H. Ueber die Einwirkung des Ammoniaks auf Glyoxal. Justus Liebigs Ann. Chem., 1858, 107(2), 199-208.
[http://dx.doi.org/10.1002/jlac.18581070209]
[32]
Japp, F.R.; Wilcock, E. LVIII. On the action of benzaldehyde on phenanthraquinone, both alone and in presence of ammonia. J. Chem. Soc. Trans., 1880, 37(0), 661-672.
[http://dx.doi.org/10.1039/CT8803700661]
[33]
Japp, F.R.; Wilcock, E. XXXIV. On the action of aldehydes on phenanthraquinone in presence of ammonia. (Second notice.). J. Chem. Soc. Trans., 1881, 39(0), 225-228.
[http://dx.doi.org/10.1039/CT8813900225]
[34]
Japp, F.R.; Streatfeild, F.W. XXIII. On the action of aldehydes on phenanthraquinone in presence of ammonia. (Third notice.). J. Chem. Soc. Trans., 1882, 41(0), 146-156.
[http://dx.doi.org/10.1039/CT8824100146]
[35]
Radziszewski, B. Ueber die Constitution des Lophins und verwandter Verbindungen. Ber. Dtsch. Chem. Ges., 1882, 15(2), 1493-1496.
[http://dx.doi.org/10.1002/cber.18820150207]
[36]
Radzisewski, B. Ueber Glyoxalin und seine Homologe. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2706-2708.
[http://dx.doi.org/10.1002/cber.188201502245]
[37]
Möhlau, R. Ueber die Einwirkung primärer aromatischer Aminbasen auf Acetophenonbromid. Ber. Dtsch. Chem. Ges., 1881, 14(1), 171-175.
[http://dx.doi.org/10.1002/cber.18810140146]
[38]
Möhlau, R. Ueber diphenyldiisoindol. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2480-2490.
[http://dx.doi.org/10.1002/cber.188201502204]
[39]
Bischler, A. Ueber die Entstehung einiger substituirter Indole. Ber. Dtsch. Chem. Ges., 1892, 25(2), 2860-2879.
[http://dx.doi.org/10.1002/cber.189202502123]
[40]
Hantzsch, A. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Ber. Dtsch. Chem. Ges., 1881, 14(2), 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[41]
Hantzsch, A. On the synthesis of pyridine-like compounds from acetoacetic ether and aldehyde ammonia. Justus Liebigs Ann. Chem., 1882, 215(1), 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[42]
Hantzsch, A. Experiments to determine the constitution of synthetic hydropyridine derivatives. Ber. Dtsch. Chem. Ges., 1885, 18(2), 2579-2586.
[http://dx.doi.org/10.1002/cber.188501802158]
[43]
Biginelli, P. About aldehyde duramides of acetoacetic ether. Ber. Dtsch. Chem. Ges., 1891, 24(1), 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
[44]
Biginelli, P. About aldehyde duramides of acetoacetic ether. II. Ber. Dtsch. Chem. Ges., 1891, 24(2), 2962-2967.
[http://dx.doi.org/10.1002/cber.189102402126]
[45]
Biginelli, P. Aldehyde derivatives of acetyl- and oxal-acetic ethers. Gazz. Chim. Ital., 1893, 23(4), 360-416.http://digitale.bnc.roma.sbn.it/tecadigitale/giornale/LO10010914/1893/V.23. 1?paginateDetail_pageNum=19
[46]
Robinson, R. CCXXXII. A new synthesis of oxazole derivatives. J. Chem. Soc. Trans., 1909, 95(0), 2167-2174.
[http://dx.doi.org/10.1039/CT9099502167]
[47]
Gabriel, S. A synthesis of oxazoles and thiazoles. I. Ber. Dtsch. Chem. Ges., 1910, 43(1), 134-138.
[http://dx.doi.org/10.1002/cber.19100430117]
[48]
Gabriel, S. Synthese von oxazolen und thiazolen II. Ber. Dtsch. Chem. Ges., 1910, 43(2), 1283-1287.
[http://dx.doi.org/10.1002/cber.19100430219]
[49]
Gewald, K. On the reaction of α-oxo-mercaptans with nitriles. Angew. Chem., 1961, 73(3), 114.
[http://dx.doi.org/10.1002/ange.19610730307]
[50]
Gewald, K. Heterocycles from CH-acidic nitriles, VII. 2-amino-thiophenes from α-oxo-mercaptans and methylene-active nitriles. Chem. Ber., 1965, 98(11), 3571-3577.
[http://dx.doi.org/10.1002/cber.19650981120]
[51]
Gewald, K.; Schinke, E.; Böttcher, H. Heterocyclen aus CH-aciden Nitrilen, VIII. 2‐Amino‐thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel. Chem. Ber., 1966, 99(1), 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[52]
Povarov, L.S.; Mikhailov, B.M. A new type of diene condensation reaction. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1963, 12(5), 871.
[http://dx.doi.org/10.1007/BF01134751]
[53]
Povarov, L.S.; Grigos, V.I.; Mikhailov, B.M. Reaction of benzylideneaniline with some unsaturated compounds. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1963, 12(11), 1878-1880.
[http://dx.doi.org/10.1007/BF00843814]
[54]
Povarov, L.S. αβ-Unsaturated ethers and their analogues in reactions of diene synthesis. Russ. Chem. Rev., 1967, 36(9), 656-670.
[http://dx.doi.org/10.1070/RC1967v036n09ABEH001680]
[55]
Kumar, T.; Verma, D.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity. Org. Biomol. Chem., 2015, 13(7), 1996-2000.
[http://dx.doi.org/10.1039/C4OB02561J] [PMID: 25573664]
[56]
Gopi, E.; Kumar, T.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Imidazoles from nitroallylic acetates and α-bromonitroalkenes with amidines: Synthesis and trypanocidal activity studies. Org. Biomol. Chem., 2015, 13(38), 9862-9871.
[http://dx.doi.org/10.1039/C5OB01444A] [PMID: 26288376]
[57]
Lee, H.B.; Balasubramanian, S. Solid-phase synthesis of N-alkyl-N-(β-keto)amides and 1,2,4,5-tetrasubstituted imidazoles using a traceless cleavage strategy. Org. Lett., 2000, 2(3), 323-326.
[http://dx.doi.org/10.1021/ol991271l] [PMID: 10814313]
[58]
Claiborne, C.F.; Liverton, N.J.; Nguyen, K.T. An efficient synthesis of tetrasubstituted imidazoles from N-(2-Oxo)-amides. Tetrahedron Lett., 1998, 39(49), 8939-8942.
[http://dx.doi.org/10.1016/S0040-4039(98)02058-9]
[59]
Bleicher, K.H.; Gerber, F.; Wüthrich, Y.; Alanine, A.; Capretta, A. Parallel synthesis of substituted imidazoles from 1,2-aminoalcohols. Tetrahedron Lett., 2002, 43(43), 7687-7690.
[http://dx.doi.org/10.1016/S0040-4039(02)01839-7]
[60]
Li, W.; Lam, Y. A facile solid-phase synthesis of 1,2,4,5-tetrasubstituted imidazoles using sodium benzenesulfinate as a traceless linker. J. Comb. Chem., 2005, 7(5), 644-647.
[http://dx.doi.org/10.1021/cc049818x] [PMID: 16153057]
[61]
Shilcrat, S.C.; Mokhallalati, M.K.; Fortunak, J.M.D.; Pridgen, L.N. A new regioselective synthesis of 1,2,5-trisubstituted 1H-imidazoles and its application to the development of eprosartan. J. Org. Chem., 1997, 62(24), 8449-8454.
[http://dx.doi.org/10.1021/jo971304f] [PMID: 11671984]
[62]
Grimmet, M.R. 4.08-imidazoles and their benzo derivatives: (iii) Synthesis and applications. In: Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Ed.; Pergamon Press: New York, 1984, Vol. 5, pp. 457-498.
[http://dx.doi.org/10.1016/B978-008096519-2.00076-X]
[63]
Little, T.L.; Webber, S.E. A simple and practical synthesis of 2-aminoimidazoles. J. Org. Chem., 1994, 59(24), 7299-7305.
[http://dx.doi.org/10.1021/jo00103a021]
[64]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles. Structures, Reactions, Synthesis, and Applications; Wiley-VCH: Germany, 2003, pp. 165-174.
[http://dx.doi.org/10.1002/352760183X]
[65]
Kanazawa, C.; Kamijo, S.; Yamamoto, Y. Synthesis of imidazoles through the copper-catalyzed cross-cycloaddition between two different isocyanides. J. Am. Chem. Soc., 2006, 128(33), 10662-10663.
[http://dx.doi.org/10.1021/ja0617439] [PMID: 16910644]
[66]
Rolfs, A.; Liebscher, J. Versatile novel syntheses of imidazoles. J. Org. Chem., 1997, 62(11), 3480-3487.
[http://dx.doi.org/10.1021/jo970072h]
[67]
Zaman, S.; Mitsuru, K.; Abell, A.D. Synthesis of trisubstituted imidazoles by palladium-catalyzed cyclization of O-pentafluorobenzoylamidoximes: Application to amino acid mimetics with a C-terminal imidazole. Org. Lett., 2005, 7(4), 609-611.
[http://dx.doi.org/10.1021/ol047628p] [PMID: 15704906]
[68]
Katritzky, A.R.; Pozharskii, A.F. Handbook of heterocyclic chemistry; Elsevier Science Ltd.: Oxford, 2000, pp. 570-572.
[69]
Lantos, I.; Zhang, W.Y.; Shui, X.; Eggleston, D.S. Synthesis of imidazoles via hetero-Cope rearrangements. J. Org. Chem., 1993, 58(25), 7092-7095.
[http://dx.doi.org/10.1021/jo00077a033]
[70]
Tang, D.; Wu, P.; Liu, X.; Chen, Y.X.; Guo, S.B.; Chen, W.L.; Li, J.G.; Chen, B.H. Synthesis of multisubstituted imidazoles via copper-catalyzed [3 + 2] cycloadditions. J. Org. Chem., 2013, 78(6), 2746-2750.
[http://dx.doi.org/10.1021/jo302555z] [PMID: 23409756]
[71]
Hofmann, K. Imidazole and its Derivatives part I; Interscience Publishers, INC: New York, 1953, p. 447.
[72]
Plater, M.J. The crucial early contributions of R. Japp to a general synthesis of imidazole derivatives. Bull. Hist. Chem., 2008, 33(2), 76-81.http://acshist.scs.illinois.edu/bulletin_open_access/v33-2/v33-2%20p76- 81.pdf
[73]
Bamberger, E.; Berlé, B. The α-positioned methyl group of the benzimidazoles and the behavior of the latter during oxidation. Justus Liebigs Ann. Chem., 1893, 273(2-3), 303-342.
[http://dx.doi.org/10.1002/jlac.18932730215]
[74]
Parveen, A.; Ahmed, M.R.S.; Shaikh, K.A.; Deshmukh, S.P.; Pawar, R.P. Efficient synthesis of 2,4,5-triaryl substituted imidazoles under solvent free conditions at room temperature. ARKIVOC, 2007, 2007(16), 12-18.
[http://dx.doi.org/10.3998/ark.5550190.0008.g02]
[75]
Mohammadi Ziarani, G.; Badiei, A.; Lashgari, N.; Farahani, Z. Efficient one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using SBA-Pr-SO3H as a green nano catalyst. J. Saudi Chem. Soc., 2016, 20(4), 419-427.
[http://dx.doi.org/10.1016/j.jscs.2013.01.005]
[76]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab. J. Chem., 2017, 10(2), S2754-S2761.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.022]
[77]
Chettri, S.; Tamang, S.; Pradhan, K.; Sinha, B.; Brahman, D. Copper borate (CuB4O7)-promoted multi-component green synthesis of 2,4,5-triarylimidazole derivatives and evidence of in situ conversion of copper borate (CuB4O7) into Cu(OAc) 2 in the presence of NH4OAc. RSC Advances, 2023, 13(29), 19846-19855.
[http://dx.doi.org/10.1039/D3RA03183G] [PMID: 37409029]
[78]
Bahrami, K.; Khodaei, M.M.; Nejati, A. One-pot synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazoles by zinc oxide as efficient and reusable catalyst. Monatsh. Chem., 2011, 142(2), 159-162.
[http://dx.doi.org/10.1007/s00706-010-0428-8]
[79]
Das Sharma, S.; Hazarika, P.; Konwar, D. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O. Tetrahedron Lett., 2008, 49(14), 2216-2220.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.053]
[80]
Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2·6H2O under heterogeneous system. J. Mol. Catal. Chem., 2007, 263(1-2), 279-281.
[http://dx.doi.org/10.1016/j.molcata.2006.08.070]
[81]
Varzi, Z.; Esmaeili, M.S.; Taheri-Ledari, R.; Maleki, A. Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 2021, 125, 108465.
[http://dx.doi.org/10.1016/j.inoche.2021.108465]
[82]
Oskooie, H.A.; Alimohammadi, Z.; Heravi, M.M. Microwave-assisted solid-phase synthesis of 2,4,5-triaryl imidazoles in solventless system: An improved protocol. Heteroatom Chem., 2006, 17(7), 699-702.
[http://dx.doi.org/10.1002/hc.20237]
[83]
Sonyanaik, B.; Ashok, K.; Rambabu, S.; Ravi, D.; Kurumanna, A.; Madhu, P.; Sakram, B. Facile one pot multi-component solvent-free synthesis of 2,4,5-trisubstituted imidazoles using “green” and expeditious ionic liquid catalyst under microwave irradiation. Russ. J. Gen. Chem., 2018, 88(3), 537-540.
[http://dx.doi.org/10.1134/S1070363218030234]
[84]
Hernández Muñoz, J.A.; Dos Santos, B.D.C.F.; Soares, R.F.; De Carvalho, E.M.; Jones, J.J.; Da Silva, F.M. The synthesis of imidazoles via the Radziszewski reaction in aqueous media. Heterocyclic. Lett, 2011, 1(4), 365-371.
[85]
Munoz, J.; Junior, J.; Silva, F. Radziszewski reaction: An elegant, easy, simple and efficient method to synthesise imidazoles. Curr. Org. Synth., 2014, 11(6), 824-834.
[http://dx.doi.org/10.2174/1570179411666140623223611]
[86]
Hernández Muñoz, J.A.; de Cavalho, E.M.; Jones, J.J.; da Silva, F.M. Propylene carbonate as a solvent in the eco-friendly synthesis of highly substituted imidazoles through the radziszewski reaction. Curr. Org. Synth., 2016, 13(3), 432-439.
[http://dx.doi.org/10.2174/1570179413999151110121949]
[87]
Sundberg, R.J. Indoles; Academic Press: New York, 1996.
[88]
Sundberg, R.J. Synthesis of the indole ring. In.In: The Chemistry of Indoles; Sundberg; Academic Press: New York, 1970;, 18, pp. 142-213.
[http://dx.doi.org/10.1016/B978-0-12-676950-0.50008-0]
[89]
Brown, E.G. Indoles. Ring Nitrogen and Key Biomolecules; Springer: Dordrecht, 1998, pp. 192-207.
[http://dx.doi.org/10.1007/978-94-011-4906-8_9]
[90]
Taber, D.F.; Tirunahari, P.K. Indole synthesis: A review and proposed classification. Tetrahedron, 2011, 67(38), 7195-7210.
[http://dx.doi.org/10.1016/j.tet.2011.06.040] [PMID: 25484459]
[91]
Robinson, B. The Fischer indole synthesis. Chem. Rev., 1963, 63(4), 373-401.
[http://dx.doi.org/10.1021/cr60224a003]
[92]
Heravi, M.M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Advances, 2017, 7(83), 52852-52887.
[http://dx.doi.org/10.1039/C7RA10716A]
[93]
Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles. Tetrahedron Lett., 1989, 30(16), 2129-2132.
[http://dx.doi.org/10.1016/S0040-4039(01)93730-X]
[94]
Bartoli, G.; Dalpozzo, R.; Nardi, M. Applications of Bartoli indole synthesis. Chem. Soc. Rev., 2014, 43(13), 4728-4750.
[http://dx.doi.org/10.1039/C4CS00045E] [PMID: 24718836]
[95]
Reissert, A. Effects of oxalester and sodium ethylate on nitrotoluenes. Synthesis of nitrated phenylpyruvic acids. Ber. Dtsch. Chem. Ges., 1897, 30(1), 1030-1053.
[http://dx.doi.org/10.1002/cber.189703001200]
[96]
Madelung, W. On a new way of representing substituted indoles. I. Ber. Dtsch. Chem. Ges., 1912, 45(1), 1128-1134.
[http://dx.doi.org/10.1002/cber.191204501160]
[97]
Baudin, J.B.; Julia, S.A. Synthesis of indoles from N-aryl-1-alkenylsulphinamides. Tetrahedron Lett., 1986, 27(7), 837-840.
[http://dx.doi.org/10.1016/S0040-4039(00)84114-3]
[98]
Pchalek, K.; Jones, A.W.; Wekking, M.M.T.; Black, D.S. Synthesis of activated 3-substituted indoles: An optimised one-pot procedure. Tetrahedron, 2005, 61(1), 77-82.
[http://dx.doi.org/10.1016/j.tet.2004.10.060]
[99]
Menéndez, J.C.; Sridharan, V.; Perumal, S.; Avendaño, C. Microwaveassisted, solvent-free bischler indole synthesis. Synlett, 2006, 2006(1), 0091-0095.
[http://dx.doi.org/10.1055/s-2005-922760]
[100]
Buu-Hoï, N.P.; Saint-Ruf, G.; Deschamps, D.; Hieu, H-T.; Hieu, H.T. Carcinogenic nitrogen compounds. Part LXXII. The Möhlau–Bischler reaction as a preparative route to 2-arylindoles. J. Chem. Soc. C, 1971, 0(0), 2606-2609.
[http://dx.doi.org/10.1039/J39710002606] [PMID: 5167555]
[101]
Black, D.S.C.; Kumar, N.; Wong, L.C.H. Synthesis of 4,6-Dimethoxyindoles. Aust. J. Chem., 1986, 39(1), 15-20.
[http://dx.doi.org/10.1071/CH9860015]
[102]
Black, D.S.; Bowyer, M.C.; Bowyer, P.K.; Ivory, A.J.; Kim, M.; Kumar, N.; Mcconnell, D.B.; Popiolek, M. Synthesis of activated 3-arylindoles. Aust. J. Chem., 1994, 47(9), 1741-1750.
[http://dx.doi.org/10.1071/CH9941741]
[103]
Vara, Y.; Aldaba, E.; Arrieta, A.; Pizarro, J.L.; Arriortua, M.I.; Cossío, F.P. Regiochemistry of the microwave-assisted reaction between aromatic amines and α-bromoketones to yield substituted 1H-indoles. Org. Biomol. Chem., 2008, 6(10), 1763-1772.
[http://dx.doi.org/10.1039/b719641e] [PMID: 18452011]
[104]
Yao, G.; Zhang, Z.X.; Zhang, C.B.; Xu, H.H.; Tang, R.Y. HFIP-promoted bischler indole synthesis under microwave irradiation. Molecules, 2018, 23(12), 3317-3327.
[http://dx.doi.org/10.3390/molecules23123317] [PMID: 30558133]
[105]
Thennakoon, N.; Kaur, G.; Wang, J.; Plieger, P.G.; Rowlands, G.J. An asymmetric variant of the bischler–möhlau indole synthesis. Aust. J. Chem., 2015, 68(4), 566-575.
[http://dx.doi.org/10.1071/CH14548]
[106]
Eisner, U.; Kuthan, J. Chemistry of dihydropyridines. Chem. Rev., 1972, 72(1), 1-42.
[http://dx.doi.org/10.1021/cr60275a001]
[107]
Swarnalatha, G.; Prasanthi, G.; Sirisha, N.; Chetty, C.M. 1,4-Dihydropyridines: A multtifunctional molecule: A review. Int. J. Chemtech Res., 2011, 3(1), 75-89.https://sphinxsai.com/Vol.3No.1/chem_jan-mar11/pdf/CT=13(75-89)%20JMCT11.pdf
[108]
Saini, A.; Kumar, S.; Sandhu, J.S. Hantzsch reaction: Recent advances in Hantzsch 1,4-dihydropyridines. J. Sci. Ind. Res., 2008, 67, 95-111.https://nopr.niscpr.res.in/bitstream/123456789/753/1/JSIR%2067%282%29%20%282008%29%2095-111.pdf
[109]
Pleiss, U. 1,4-Dihydropyridines (DHPs): A class of very potent drugs: syntheses of isotopically labeled DHP derivatives during the last four decades. J. Labelled Comp. Radiopharm., 2007, 50(9-10), 818-830.
[http://dx.doi.org/10.1002/jlcr.1418]
[110]
Evans, C.G.; Jinwal, U.K.; Makley, L.N.; Dickey, C.A.; Gestwicki, J.E. Identification of dihydropyridines that reduce cellular tau levels. Chem. Commun. , 2011, 47(1), 529-531.
[http://dx.doi.org/10.1039/C0CC02253E] [PMID: 21082080]
[111]
Yadav, J.S.; Subba Reddy, B.V.; Reddy, P.T. Unprecedented synthesis of Hantzsch 1,4-dihydropyridines under Biginelli reaction conditions. Synth. Commun., 2001, 31(3), 425-430.
[http://dx.doi.org/10.1081/SCC-100000534]
[112]
Pajuste, K.; Plotniece, A.; Kore, K.; Intenberga, L.; Cekavicus, B.; Kaldre, D.; Duburs, G.; Sobolev, A. Use of pyridinium ionic liquids as catalysts for the synthesis of 3,5-bis(dodecyloxycarbonyl)-1,4-dihydropyridine derivative. Open Chem., 2011, 9(1), 143-148.
[http://dx.doi.org/10.2478/s11532-010-0132-x]
[113]
Palakshi Reddy, B.; Rajesh, K.; Vijayakumar, V. Ionic liquid[tbmim]Cl2/AlCl3 under ultrasonic irradiation towards synthesis of 1,4-DHP’s. Arab. J. Chem., 2015, 8(1), 138-141.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.027]
[114]
Datta, B.; Pasha, M.A. Silica sulfuric acid: An efficient heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild and solvent-free conditions. Chin. J. Catal., 2011, 32(6-8), 1180-1184.
[http://dx.doi.org/10.1016/S1872-2067(10)60252-5]
[115]
Murthy, Y.L.N.; Rajack, A.; Taraka Ramji, M. Jeson babu, J.; Praveen, C.; Aruna Lakshmi, K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines. Bioorg. Med. Chem. Lett., 2012, 22(18), 6016-6023.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.003] [PMID: 22901391]
[116]
Ko, S.; Sastry, M.N.V.; Lin, C.; Yao, C.F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett., 2005, 46(34), 5771-5774.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.148]
[117]
Reddy, C.S.; Raghu, M. Facile ZrCl4 promoted fourcomponent coupling one-pot synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction. Indian J. Chem. B, 2008, 1578-1582.
[118]
Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett., 2009, 50(37), 5248-5250.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.018]
[119]
Zolfigol, M.A.; Safaiee, M. Synthesis of 1,4-dihydropyridines under solventfree conditions. Synlett, 2004, 2004(5), 0827-0828.
[http://dx.doi.org/10.1055/s-2004-820010]
[120]
Liang, J.C.; Yeh, J.L.; Wang, C.S.; Liou, S.F.; Tsai, C.H.; Chen, I.J. The new generation dihydropyridine type calcium blockers, bearing 4-phenyl oxypropanolamine, display α-/β-Adrenoceptor antagonist and long-Acting antihypertensive activities. Bioorg. Med. Chem., 2002, 10(3), 719-730.
[http://dx.doi.org/10.1016/S0968-0896(01)00318-2] [PMID: 11814861]
[121]
Correa, W.H.; Scott, J.L. Solvent-free, two-step synthesis of some unsymmetrical 4-aryl-1,4-dihydropyridines. Green Chem., 2001, 3(6), 296-301.
[http://dx.doi.org/10.1039/b106397a]
[122]
Sapkal, S.B.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett., 2009, 50(15), 1754-1756.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.140]
[123]
Bridgwood, K.L.; Veitch, G.E.; Ley, S.V. Magnesium nitride as a convenient source of ammonia: Preparation of dihydropyridines. Org. Lett., 2008, 10(16), 3627-3629.
[http://dx.doi.org/10.1021/ol801399w] [PMID: 18642824]
[124]
Kumar, A.; Maurya, R. Efficient synthesis of hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett, 2008, 2008(6), 883-885.
[http://dx.doi.org/10.1055/s-2008-1042908]
[125]
Safari, J.; Banitaba, S.H.; Khalili, S.D. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J. Mol. Catal. Chem., 2011, 335(1-2), 46-50.
[http://dx.doi.org/10.1016/j.molcata.2010.11.012]
[126]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, P.N.; Malik, S. Silica-supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for multicomponent synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction. Res. Chem. Intermed., 2014, 40(1), 357-369.
[http://dx.doi.org/10.1007/s11164-012-0968-0]
[127]
da Silva, F.M.; Gonçalves, M.; Ferre, F.T.; Sena, J.D.; Coelho, R.B.; Jones Junior, J. 4-phenyl-1,4-dihydropyridines by Hantzsch reaction in water. Heterocycl. Commun., 2009, 15(1), 57-60.
[http://dx.doi.org/10.1515/HC.2009.15.1.57]
[128]
Chen, L.; Zhang, Z.; Zu, L. Organocatalytic hantzsch type reaction using aryl hydrazines, propiolic acid esters and enals: Enantioselective synthesis of paroxetine. Adv. Synth. Catal., 2020, 362(23), 5385-5390.
[http://dx.doi.org/10.1002/adsc.202000779]
[129]
Sobolev, A.; Franssen, M.C.R.; Vigante, B.; Cekavicus, B.; Zhalubovskis, R.; Kooijman, H.; Spek, A.L.; Duburs, G.; de Groot, A. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters. J. Org. Chem., 2002, 67(2), 401-410.
[http://dx.doi.org/10.1021/jo0104025] [PMID: 11798310]
[130]
Martín, N.; Quinteiro, M.; Seoane, C.; Soto, J.L.; Mora, A.; Suárez, M.; Ochoa, E.; Morales, A.; Bosque, J.R.D. Synthesis and conformational study of acridine derivatives related to 1,4-dihydropyridines. J. Heterocycl. Chem., 1995, 32(1), 235-238.
[http://dx.doi.org/10.1002/jhet.5570320139]
[131]
Loupy, A.; Suárez, M.; Esperanza, S.; Morán, L.; Rolando, E. Synthesis of decahydroacridines under microwaves using ammonium acetate supported on alumina. Heterocycles, 1999, 51(1), 21-27.
[http://dx.doi.org/10.3987/COM-98-8272]
[132]
Singh, S.K.; Singh, K.N. Eco-friendly and facile one-pot multicomponent synthesis of acridinediones in water under microwave. J. Heterocycl. Chem., 2011, 48(1), 69-73.
[http://dx.doi.org/10.1002/jhet.508]
[133]
Kidwai, M.; Bhatnagar, D. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate. Chem. Pap., 2010, 64(6), 825-828.
[http://dx.doi.org/10.2478/s11696-010-0070-2]
[134]
Magyar, Á.; Hell, Z. An efficient one-pot four-component synthesis of 9-aryl-hexahydroacridine-1,8-dione derivatives in the presence of a molecular sieves supported iron catalyst. Catal. Lett., 2019, 149(9), 2528-2534.
[http://dx.doi.org/10.1007/s10562-019-02845-0]
[135]
Schramm, M.; Thomas, G.; Towart, R.; Franckowiak, G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature, 1983, 303(5917), 535-537.
[http://dx.doi.org/10.1038/303535a0] [PMID: 6190088]
[136]
Ramesh, K.B.; Pasha, M.A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2–I as a new heterogeneous catalyst and their anticancer activity. Bioorg. Med. Chem. Lett., 2014, 24(16), 3907-3913.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.047] [PMID: 25042338]
[137]
Alvala, M.; Bhatnagar, S.; Ravi, A.; Jeankumar, V.U.; Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Novel acridinedione derivatives: Design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies. Bioorg. Med. Chem. Lett., 2012, 22(9), 3256-3260.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.030] [PMID: 22464458]
[138]
Patel, M.M.; Mali, M.D.; Patel, S.K. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivatives. Bioorg. Med. Chem. Lett., 2010, 20(21), 6324-6326.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.001] [PMID: 20850303]
[139]
Alponti, L.H.R.; Picinini, M.; Urquieta-Gonzalez, E.A.; Corrêa, A.G. USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: structure and recycling of the catalyst. J. Mol. Struct., 2021, 1227(5), 129430.
[http://dx.doi.org/10.1016/j.molstruc.2020.129430]
[140]
Schiff, H. Ueber condensirte Harnstoffe. Justus Liebigs Ann. Chem., 1869, 151(2), 186-213.
[http://dx.doi.org/10.1002/jlac.18691510208]
[141]
Claisen, L.; Matthews, F.E. Condensations of acetoacetic ether with aldehydes. Justus Liebigs Ann. Chem., 1883, 218(2), 170-185.
[http://dx.doi.org/10.1002/jlac.18832180205]
[142]
Behrend, R. Experiments on the synthesis of bodies of the uric acid series. Justus Liebigs Ann. Chem., 1885, 229(1-2), 1-44.
[http://dx.doi.org/10.1002/jlac.18852290102]
[143]
Behrend, R. Ueber das Verhalten von substituirten Harnstoffen gegen Acetessigäther. Justus Liebigs Ann. Chem., 1886, 233(1), 1-15.
[http://dx.doi.org/10.1002/jlac.18862330102]
[144]
Yadav, L.D.S.; Rai, A.; Rai, V.K.; Awasthi, C. Chiral ionic liquid-catalyzed Biginelli reaction: Stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron, 2008, 64(7), 1420-1429.
[http://dx.doi.org/10.1016/j.tet.2007.11.044]
[145]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A facile approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using a microwave promoted Biginelli protocol in ionic liquid. J. Chem. Sci., 2012, 124(4), 921-926.
[http://dx.doi.org/10.1007/s12039-012-0278-5]
[146]
Muñoz-Muñiz, O.; Juaristi, E. An enantioselective approach to the Biginelli dihydropyrimidinone condensation reaction using CeCl3 and InCl3 in the presence of chiral ligands. ARKIVOC, 2003, 2003(11), 16-26.
[http://dx.doi.org/10.3998/ark.5550190.0004.b03]
[147]
Starcevich, J.T.; Laughlin, T.J.; Mohan, R.S. Iron(III) tosylate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via the Biginelli reaction. Tetrahedron Lett., 2013, 54(8), 983-985.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.032]
[148]
Litvić, M.; Večenaj, I.; Ladišić, Z.M.; Lovrić, M.; Vinković, V.; Filipan-Litvić, M. First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: A simple and efficient protocol for the multigram scale synthesis of 3,4-dihydropyrimidinones by Biginelli reaction. Tetrahedron, 2010, 66(19), 3463-3471.
[http://dx.doi.org/10.1016/j.tet.2010.03.024]
[149]
Kumar, P.M.; Kumar, K.S.; Poreddy, S.R.; Mohakhud, P.K.; Mukkanti, K.; Pal, M. Biginelli reaction beyond three-component limit: synthesis of functionalized pyrimidinones via a one-pot Biginelli-Pd mediated C–C coupling strategy. Tetrahedron Lett., 2011, 52(11), 1187-1191.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.015]
[150]
Patil, R.V.; Chavan, J.U.; Dalal, D.S.; Shinde, V.S.; Beldar, A.G. Biginelli reaction: Polymer supported catalytic approaches. ACS Comb. Sci., 2019, 21(3), 105-148.
[http://dx.doi.org/10.1021/acscombsci.8b00120] [PMID: 30645098]
[151]
Yar, M.; Bajda, M.; Shahzadi, L.; Shahzad, S.A.; Ahmed, M.; Ashraf, M.; Alam, U.; Khan, I.U.; Khan, A.F. Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: In vitro biological evaluation and in silico docking. Bioorg. Chem., 2014, 54, 96-104.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.003] [PMID: 24880489]
[152]
Chikhale, R.V.; Bhole, R.P.; Khedekar, P.B.; Bhusari, K.P. Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates. Eur. J. Med. Chem., 2009, 44(9), 3645-3653.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.021] [PMID: 19321237]
[153]
Chopda, L.V.; Dave, P.N. Recent advances in homogeneous and heterogeneous catalyst in Biginelli reaction from 2015-19: A concise review. ChemistrySelect, 2020, 5(19), 5552-5572.
[http://dx.doi.org/10.1002/slct.202000742]
[154]
Cervasio, R.J.; Bello Forero, J.S.; Hernández Muñoz, J.A.; Jr, J.J.; da Silva, F.M. Biginelli reaction using propylene carbonate as green solvent: An elegant methodology for the synthesis of dihydropyrimidinones and dihydropyrimidinthiones. Curr. Org. Synth., 2017, 14(5), 715-720.
[http://dx.doi.org/10.2174/1570179414666161229162243]
[155]
Wang, G.; Yan, C.; Lu, Y. Exploring DNA binding properties and biological activities of dihydropyrimidinones derivatives. Colloids Surf. B Biointerfaces, 2013, 106, 28-36.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.019] [PMID: 23434688]
[156]
Oliver Kappe, C.; Fabian, W.M.F.; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53(8), 2803-2816.
[http://dx.doi.org/10.1016/S0040-4020(97)00022-7]
[157]
Prashantha Kumar, B.R.; Masih, P.; Karthikeyan, E.; Bansal, A. Suja; Vijayan, P. Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest: A 3D-QSAR study on their cytotoxicity. Med. Chem. Res., 2010, 19(4), 344-363.
[http://dx.doi.org/10.1007/s00044-009-9195-7]
[158]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[159]
Ramos, L.M.; Guido, B.C.; Nobrega, C.C.; Corrêa, J.R.; Silva, R.G.; de Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; Neto, B.A.D. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: Kinetics, mechanism, and antitumoral activity. Chemistry, 2013, 19(13), 4156-4168.
[http://dx.doi.org/10.1002/chem.201204314] [PMID: 23460474]
[160]
Soni, R.; Singh, G.; Kaur, R.; Kaur, G.; Gill, R.K.; Bariwal, J. Review on monastrol: A novel kinesin-5 inhibitor. Chem. Biol. Interf., 2014, 4(3), 163-175.https://cbijournal.com/paper-archive/may-june-2014-vol-3/Review-Paper-2.pdf
[161]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[162]
Kappe, C.O.; Uray, G.; Roschger, P.; Lindner, W.; Kratky, C.; Keller, W. Synthesis and reactions of biginelli compounds −5. Facile preparation and resolution of a stable 5-dihydropyrimidinecarboxylic acid. Tetrahedron, 1992, 48(26), 5473-5480.
[http://dx.doi.org/10.1016/S0040-4020(01)88301-0]
[163]
Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J.M.J. A combinatorial approach to recognition of chirality: preparation of highly enantioselective aryl-dihydropyrimidine selectors for chiral HPLC. J. Comb. Chem., 1999, 1(1), 105-112.
[http://dx.doi.org/10.1021/cc980014p] [PMID: 10746018]
[164]
Kleidernigg, O.P.; Kappe, C.O. Separation of enantiomers of 4-aryldihydropyrimidines by direct enantioselective HPLC. A critical comparison of chiral stationary phases. Tetrahedron Asymmetry, 1997, 8(12), 2057-2067.
[http://dx.doi.org/10.1016/S0957-4166(97)00214-0]
[165]
Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J.M.J. Highly selective chiral recognition on polymer supports: preparation of a combinatorial library of dihydropyrimidines and its screening for novel chiral HPLC ligands. Chem. Commun. , 1998, (20), 2237-2238.
[http://dx.doi.org/10.1039/a806395h]
[166]
Singh, K.; Arora, D.; Falkowski, D.; Liu, Q.; Moreland, R.S. An efficacious protocol for C-4 substituted 3,4-dihydropyrimidinones. Synthesis and calcium channel binding studies. Eur. J. Org. Chem., 2009, 2009(19), 3258-3264.
[http://dx.doi.org/10.1002/ejoc.200900208] [PMID: 24273442]
[167]
Singh, K.; Singh, S. Chemical resolution of inherently racemic dihydropyrimidinones via a site selective functionalization of Biginelli compounds with chiral electrophiles: A case study. Tetrahedron, 2009, 65(21), 4106-4112.
[http://dx.doi.org/10.1016/j.tet.2009.03.060]
[168]
Alvim, H.G.O.; Pinheiro, D.L.J.; Carvalho-Silva, V.H.; Fioramonte, M.; Gozzo, F.C.; da Silva, W.A.; Amarante, G.W.; Neto, B.A.D. Combined role of the asymmetric counteranion-directed catalysis (ACDC) and ionic liquid effect for the enantioselective biginelli multicomponent reaction. J. Org. Chem., 2018, 83(19), 12143-12153.
[http://dx.doi.org/10.1021/acs.joc.8b02101] [PMID: 30160956]
[169]
Guo, Y.; Zou, C.; Gao, Z.; Fan, C.; Chen, J.; Li, J.; Huang, Y.; Huang, G.; Yu, H. Enantioselective biginelli reaction of aliphatic aldehydes catalyzed by a chiral phosphoric acid: A key step in the synthesis of the bicyclic guanidine core of crambescin a and batzelladine A. Synthesis, 2018, 50(12), 2394-2406.
[http://dx.doi.org/10.1055/s-0036-1591567]
[170]
Guo, Y.; Zou, C.; Gao, Z.; Meng, X.; Huang, G.; Zhong, H.; Yu, H.; Ding, X.; Tang, H. Highly enantioselective biginelli reaction of aliphatic aldehydes catalyzed by chiral phosphoric acids. Synlett, 2017, 28(15), 2041-2045.
[http://dx.doi.org/10.1055/s-0036-1588853]
[171]
Hu, X.; Zhang, R.; Xie, J.; Zhou, Z.; Shan, Z. Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from l-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron Asymmetry, 2017, 28(1), 69-74.
[http://dx.doi.org/10.1016/j.tetasy.2016.11.014]
[172]
Bhadury, P.; Sun, Z. Axially chiral brønsted acid catalyzed transformations of electrophilic imines. Curr. Org. Chem., 2014, 18(1), 127-150.
[http://dx.doi.org/10.2174/138527281801140121154544]
[173]
An, D.; Fan, Y.S.; Gao, Y.; Zhu, Z.Q.; Zheng, L.Y.; Zhang, S.Q. Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur. J. Org. Chem., 2014, 2014(2), 301-306.
[http://dx.doi.org/10.1002/ejoc.201301560]
[174]
Xu, F.; Huang, D.; Lin, X.; Wang, Y. Highly enantioselective Biginelli reaction catalyzed by SPINOL-phosphoric acids. Org. Biomol. Chem., 2012, 10(22), 4467-4470.
[http://dx.doi.org/10.1039/c2ob25663k] [PMID: 22565820]
[175]
Goss, J.M.; Schaus, S.E. Enantioselective synthesis of SNAP-7941: Chiral dihydropyrimidone inhibitor of MCH1-R. J. Org. Chem., 2008, 73(19), 7651-7656.
[http://dx.doi.org/10.1021/jo801463j] [PMID: 18767801]
[176]
Chen, X.H.; Xu, X.Y.; Liu, H.; Cun, L.F.; Gong, L.Z. Highly enantioselective organocatalytic Biginelli reaction. J. Am. Chem. Soc., 2006, 128(46), 14802-14803.
[http://dx.doi.org/10.1021/ja065267y] [PMID: 17105279]
[177]
Li, N.; Chen, X.H.; Song, J.; Luo, S.W.; Fan, W.; Gong, L.Z. Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids. J. Am. Chem. Soc., 2009, 131(42), 15301-15310.
[http://dx.doi.org/10.1021/ja905320q] [PMID: 19785440]
[178]
Yu, J.; Shi, F.; Gong, L.Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44(11), 1156-1171.
[http://dx.doi.org/10.1021/ar2000343] [PMID: 21800828]
[179]
Wan, J.P.; Lin, Y.; Liu, Y. Catalytic asymmetric Biginelli reaction for the enantioselective synthesis of 3,4-dihydropyrimidinones (DHPMs). Curr. Org. Chem., 2014, 18(6), 687-699.
[http://dx.doi.org/10.2174/138527281806140415235855]
[180]
Huang, Y.; Yang, F.; Zhu, C. Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines. J. Am. Chem. Soc., 2005, 127(47), 16386-16387.
[http://dx.doi.org/10.1021/ja056092f] [PMID: 16305212]
[181]
Cai, Y.F.; Yang, H.M.; Li, L.; Jiang, K.Z.; Lai, G.Q.; Jiang, J.X.; Xu, L.W. Cooperative and enantioselective NbCl5/primary amine catalyzed Biginelli reaction. Eur. J. Org. Chem., 2010, 2010(26), 4986-4990.
[http://dx.doi.org/10.1002/ejoc.201000894]
[182]
Fedorova, O.V.; Titova, Y.A.; Ovchinnikova, I.G.; Rusinov, G.L.; Charushin, V.N. 4-Hydroxyproline containing podands as new chiralcatalysts for the asymmetric Biginelli reaction. Mendeleev Commun., 2018, 28(4), 357-358.
[http://dx.doi.org/10.1016/j.mencom.2018.07.004]
[183]
Yu, H.; Dai, G.; He, Q.R.; Tang, J.J. Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents. Med. Chem. Res., 2017, 26(4), 787-795.
[http://dx.doi.org/10.1007/s00044-017-1790-4]
[184]
Yu, H.; Xu, P.; He, H.; Zhu, J.; Lin, H.; Han, S. Highly enantioselective Biginelli reactions using methanopyroline/thiourea – based dual organocatalyst systems: Asymmetric synthesis of 4-substituted unsaturated aryl dihydropyrimidines. Tetrahedron Asymmetry, 2017, 28(2), 257-265.
[http://dx.doi.org/10.1016/j.tetasy.2016.11.015]
[185]
Hang, Z.; Zhu, J.; Lian, X.; Xu, P.; Yu, H.; Han, S. A highly enantioselective Biginelli reaction using self-assembled methanoproline–thiourea organocatalysts: Asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem. Commun. , 2016, 52(1), 80-83.
[http://dx.doi.org/10.1039/C5CC07880F] [PMID: 26498376]
[186]
Barrulas, P.; Benaglia, M.; Burke, A.J. Synthesis of novel cinchona-amino acid hybrid organocatalysts for asymmetric catalysis. Tetrahedron Asymmetry, 2014, 25(12), 923-935.
[http://dx.doi.org/10.1016/j.tetasy.2014.05.003]
[187]
Xu, D.Z.; Li, H.; Wang, Y. Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: Asymmetric synthesis of dihydropyrimidines. Tetrahedron, 2012, 68(38), 7867-7872.
[http://dx.doi.org/10.1016/j.tet.2012.07.027]
[188]
Wang, Y.; Yu, J.; Miao, Z.; Chen, R. Bifunctional primary amine-thiourea–TfOH (BPAT·TfOH) as a chiral phase-transfer catalyst: The asymmetric synthesis of dihydropyrimidines. Org. Biomol. Chem., 2011, 9(8), 3050-3054.
[http://dx.doi.org/10.1039/c0ob01268h] [PMID: 21394354]
[189]
Saha, S.; Moorthy, J.N. Enantioselective organocatalytic Biginelli reaction: Dependence of the catalyst on sterics, hydrogen bonding, and reinforced chirality. J. Org. Chem., 2011, 76(2), 396-402.
[http://dx.doi.org/10.1021/jo101717m] [PMID: 21192642]
[190]
Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. An enantioselective biginelli reaction catalyzed by a simple chiral secondary amine and achiral brønsted acid by a dual-activation route. Chemistry, 2008, 14(10), 3177-3181.
[http://dx.doi.org/10.1002/chem.200701581] [PMID: 18246559]
[191]
González-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E. Application of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane derivatives in asymmetric organocatalysis: the Biginelli reaction. ARKIVOC, 2008, 2008(6), 61-72.
[http://dx.doi.org/10.3998/ark.5550190.0009.606]
[192]
Ding, D.; Zhao, C.G. Primary amine catalyzed biginelli reaction for the enantioselective synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Eur. J. Org. Chem., 2010, 2010(20), 3802-3005.
[http://dx.doi.org/10.1002/ejoc.201000448] [PMID: 21188287]
[193]
Wang, Y.; Yang, H.; Yu, J.; Miao, Z.; Chen, R. Highly enantioselective biginelli reaction promoted by chiral bifunctional primary amine-thiourea catalysts: Asymmetric synthesis of dihydropyrimidines. Adv. Synth. Catal., 2009, 351(18), 3057-3062.
[http://dx.doi.org/10.1002/adsc.200900597]
[194]
Wu, Y.Y.; Chai, Z.; Liu, X.Y.; Zhao, G.; Wang, S.W. Synthesis of substituted 5-(Pyrrolidin-2-yl)tetrazoles and their application in the asymmetric biginelli reaction. Eur. J. Org. Chem., 2009, 2009(6), 904-911.
[http://dx.doi.org/10.1002/ejoc.200801046]
[195]
Deepa; Yadav, G.D.; Aalam, M.J.; Chaudhary, P.; Singh, S. Synthesis of dihydropyrimidinones (DHPMs) and hexahydro xanthene catalyzed by 1,4-diazabicyclo [2.2.2] octane triflate under solvent-free condition. Curr. Org. Synth., 2019, 16(5), 776-786.
[http://dx.doi.org/10.2174/1570179415666181113154232] [PMID: 31984893]
[196]
Titova, Y.A.; Gruzdev, D.A.; Fedorova, O.V.; Alisienok, O.A.; Murashkevich, A.N.; Krasnov, V.P.; Rusinov, G.L.; Charushin, V.N. New chiral proline-based catalysts for silicon and zirconium oxides-promoted asymmetric Biginelli reaction. Chem. Heterocycl. Compd., 2018, 54(4), 417-427.
[http://dx.doi.org/10.1007/s10593-018-2285-z]
[197]
Fedorova, O.V.; Titova, Y.A.; Vigorov, A.Y.; Toporova, M.S.; Alisienok, O.A.; Murashkevich, A.N.; Krasnov, V.P.; Rusinov, G.L.; Charushin, V.N. Asymmetric biginelli reaction catalyzed by silicon, titanium and aluminum oxides. Catal. Lett., 2016, 146(2), 493-498.
[http://dx.doi.org/10.1007/s10562-015-1666-5]
[198]
Fedorova, O.V.; Valova, M.S.; Titova, Y.A.; Ovchinnikova, I.G.; Grishakov, A.N.; Uimin, M.A.; Mysik, A.A.; Ermakov, A.E.; Rusinov, G.L.; Charushin, V.N. Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinet. Catal., 2011, 52(2), 226-233.
[http://dx.doi.org/10.1134/S0023158411020066]
[199]
Titova, Y.; Fedorova, O.; Rusinova, G.; Vigorova, A.; Krasnova, V.; Murashkevich, A.; Charushin, V. Effect of nanosized TiO2–SiO2 covalently modified by chiral moleculeson the asymmetric Biginelli reaction. Catal. Today, 2015, 241, 270-274.
[http://dx.doi.org/10.1016/j.cattod.2014.01.035]
[200]
Uhm, Y.R.; Lee, H.M.; Olga, F.; Irina, O.; Marina, V.; Gennady, R.; Valery, C.; Rhee, C.K. Synthesis of carbon encapsulated metal (Ni and Cu) nano particles and applications for chiral catalysts. Res. Chem. Intermed., 2010, 36(6-7), 867-873.
[http://dx.doi.org/10.1007/s11164-010-0194-6]
[201]
Dias Benincá, L.A.; Pereira Ligiéro, C.B.; da Silva Santos, J.; Junior, J.J.; da Silva, F.M. Eco-friendly and enantiospecific biginelli synthesis using (+)-myrtenal as the substrate: An impeccable and unequivocal analysis of the product. Curr. Org. Synth., 2020, 17(5), 389-395.
[http://dx.doi.org/10.2174/1570179417666200506103137] [PMID: 32370718]
[202]
Zeng, M.; Xue, Y.; Qin, Y.; Peng, F.; Li, Q.; Zeng, M.H. CuBr-promoted domino Biginelli reaction for the diastereoselective synthesis of bridged polyheterocycles: Mechanism studies and in vitro anti-tumor activities. Chin. Chem. Lett., 2022, 33(11), 4891-4895.
[http://dx.doi.org/10.1016/j.cclet.2022.02.075]
[203]
Wiegand, E.E.; Rathburn, D.W. Synthesis of some propionamido ketones and 2,5-diethyl-1,3-oxazoles. J. Chem. Eng. Data, 1973, 18(2), 237.
[http://dx.doi.org/10.1021/je60057a001]
[204]
Maeda, I.; Takehara, M.; Togo, K.; Asai, S.; Yoshida, R. The synthetic intermediate of pyridoxine. I. A Novel Synthesis of 5-Alkoxy-2-carboxy-4-methyloxazole. Bull. Chem. Soc. Jpn., 1969, 42(5), 1435-1437.
[http://dx.doi.org/10.1246/bcsj.42.1435]
[205]
Wiegand, E.E.; Rathburn, D.W. Polyphosphoric acid cyclization of acetamidoketones to 2,5-dimethyl-1,3-oxazoles. Synthesis, 1970, 1970(12), 648-649.
[http://dx.doi.org/10.1055/s-1970-21655]
[206]
Daub, G.H.; Ackerman, M.E.; Hayes, F.N. Anhydrous hydrofluoric acid as a cyclizing agent in the preparation of several substituted oxazoles from N-aroyl-.alpha.-amino ketones. J. Org. Chem., 1973, 38(4), 828-829.
[http://dx.doi.org/10.1021/jo00944a051]
[207]
Meguro, K.; Tawada, H.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Studies on antidiabetic agents. VII Synthesis and hypoglycemic activity of 4-oxazoleacetic acid derivatives. Chem. Pharm. Bull. , 1986, 34(7), 2840-2851.
[http://dx.doi.org/10.1248/cpb.34.2840] [PMID: 3769086]
[208]
Morwick, T.; Hrapchak, M.; DeTuri, M.; Campbell, S. A practical approach to the synthesis of 2,4-disubstituted oxazoles from amino acids. Org. Lett., 2002, 4(16), 2665-2668.
[http://dx.doi.org/10.1021/ol020092s] [PMID: 12153204]
[209]
Szabó, T.; Kormány, R.; Dancsó, A.; Volk, B.; Milen, M. Total synthesis of bacterial 5-(3-indolyl)oxazole alkaloids: Pimprinols A–C. SynOpen, 2019, 3(4), 148-156.
[http://dx.doi.org/10.1055/s-0039-1690336]
[210]
Davies, J.R.; Kane, P.D.; Moody, C.J.; Slawin, A.M.Z. Control of competing N-H insertion and Wolff rearrangement in dirhodium(II)-catalyzed reactions of 3-indolyl diazoketoesters. synthesis of a potential precursor to the marine 5-(3-indolyl)oxazole martefragin A. J. Org. Chem., 2005, 70(15), 5840-5851.
[http://dx.doi.org/10.1021/jo050303h] [PMID: 16018676]
[211]
Thompson, M.J.; Heal, W.; Chen, B. Synthesis of 5-aminothiazoles as building blocks for library synthesis. Tetrahedron Lett., 2006, 47(14), 2361-2364.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.004]
[212]
Zhou, R.R.; Cai, Q.; Li, D.K.; Zhuang, S.Y.; Wu, Y.D.; Wu, A.X. Acid-promoted multicomponent tandem cyclization to synthesize fully substituted oxazoles via robinson–gabriel-type reaction. J. Org. Chem., 2017, 82(12), 6450-6456.
[http://dx.doi.org/10.1021/acs.joc.7b00763] [PMID: 28523909]
[213]
Axelrod, B.; Belzile, J. Notes: Isolation of an alkaloid annuloline, from the roots of lolium multiflorum. J. Org. Chem., 1958, 23(6), 919-920.
[http://dx.doi.org/10.1021/jo01100a617]
[214]
O’Donovan, D.G.; Horan, H. The biosynthesis of annuloline, a unique oxazole alkaloid. J. Chem. Soc. C, 1971, 1971(0), 331-334.
[http://dx.doi.org/10.1039/j39710000331]
[215]
Karimoto, R.S.; Axelrod, B.; Wolinsky, J.; Schall, E.D. The structure and synthesis of annuloline, an oxazole alkaloid occurring in annual rye grass. Phytochemistry, 1964, 3(2), 349-355.
[http://dx.doi.org/10.1016/S0031-9422(00)88062-0]
[216]
Keni, M.; Tepe, J.J. One-pot friedel-crafts/robinson-gabriel synthesis of oxazoles using oxazolone templates. J. Org. Chem., 2005, 70(10), 4211-4213.
[http://dx.doi.org/10.1021/jo0501590] [PMID: 15876123]
[217]
Savelson, E.; Tepe, J.J. One-pot friedel–crafts/robinson–gabriel synthesis of the indole-oxazole scaffold and its application to the synthesis of breitfussins. J. Org. Chem., 2023, 88(2), 755-761.
[http://dx.doi.org/10.1021/acs.joc.2c00033] [PMID: 35235750]
[218]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Preti, D.; Fruttarolo, F.; Pavani, M.G.; Tabrizi, M.A.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Balzarini, J.; Hadfield, J.A.; Brancale, A.; Hamel, E. Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization. J. Med. Chem., 2007, 50(9), 2273-2277.
[http://dx.doi.org/10.1021/jm070050f] [PMID: 17419607]
[219]
Ferguson, G.N.; Valant, C.; Horne, J.; Figler, H.; Flynn, B.L.; Linden, J.; Chalmers, D.K.; Sexton, P.M.; Christopoulos, A.; Scammells, P.J. 2-aminothienopyridazines as novel adenosine A1 receptor allosteric modulators and antagonists. J. Med. Chem., 2008, 51(19), 6165-6172.
[http://dx.doi.org/10.1021/jm800557d] [PMID: 18771255]
[220]
Oberdorf, C.; Schepmann, D.; Vela, J.M.; Diaz, J.L.; Holenz, J.; Wünsch, B. Thiophene bioisosteres of spirocyclic σ receptor ligands. 1. N-substituted spiro[piperidine-4,4′-thieno[3,2-c]pyrans J. Med. Chem., 2008, 51(20), 6531-6537.
[http://dx.doi.org/10.1021/jm8007739] [PMID: 18816044]
[221]
Meltzer, H.Y.; Fibiger, H.C. Olanzapine: A new typical antipsychotic drug. Neuropsychopharmacology, 1996, 14(2), 83-85.
[http://dx.doi.org/10.1016/0893-133X(95)00197-L] [PMID: 8822530]
[222]
Wang, K.; Kim, D.; Dömling, A. Cyanoacetamide MCR (III): Three-component Gewald reactions revisited. J. Comb. Chem., 2010, 12(1), 111-118.
[http://dx.doi.org/10.1021/cc9001586] [PMID: 19958011]
[223]
Seck, P.; Thomae, D.; Kirsch, G. Synthesis of substituted amino-cycloalkyl[b]thieno-[3,2-e]pyridines. J. Heterocycl. Chem., 2008, 45(3), 853-857.
[http://dx.doi.org/10.1002/jhet.5570450333]
[224]
Koike, K.; Jia, Z.; Nikaido, T.; Liu, Y.; Zhao, Y.; Guo, D. Echinothiophene, a novel benzothiophene glycoside from the roots of Echinops grijissii. Org. Lett., 1999, 1(2), 197-198.
[http://dx.doi.org/10.1021/ol9905295]
[225]
Briel, D.; Rybak, A.; Kronbach, C.; Unverferth, K. Substituted 2-Aminothiopen-derivatives: A potential new class of GluR6-Antagonists. Eur. J. Med. Chem., 2010, 45(1), 69-77.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.025] [PMID: 19819046]
[226]
Singh, D.; Mohan, S.; Sharma, P.C.; Sarvanan, J. Synthesis and evaluation of some novel piperidino thiophenes as potential antioxidant and anti-inflammatory agents. Acta. Pharm. Sci., 2007, 49(1), 29-38.
[227]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Cruz-Lopez, O.; Iaconinoto, M.A.; Preti, D.; Shryock, J.C.; Moorman, A.R.; Vincenzi, F.; Varani, K.; Andrea Borea, P. Synthesis and biological evaluation of 2-amino-3-(4-chlorobenzoyl)-4-[N-(substituted) piperazin-1-yl]thiophenes as potent allosteric enhancers of the A1 adenosine receptor. J. Med. Chem., 2008, 51(18), 5875-5879.
[http://dx.doi.org/10.1021/jm800586p] [PMID: 18729349]
[228]
Abd-El-Aziz, A.S.; Afifi, T.H. Novel azo disperse dyes derived from aminothiophenes: Synthesis and UV–visible studies. Dyes Pigments, 2006, 70(1), 8-17.
[http://dx.doi.org/10.1016/j.dyepig.2005.03.004]
[229]
Tümer, F.; Ekinci, D.; Zilbeyaz, K.; Demir, Ü. An efficient synthesis of substituted 4-aryl-3-cyano-2-amino thiophenes by a stepwise gewald reaction. Turk. J. Chem., 2004, 28(4), 395-403.https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=2697&context=chem
[230]
Solovyev, A.Y.; Androsov, D.A.; Neckers, D.C. One-pot synthesis of substituted 2-aminobenzo[b]thiophenes. J. Org. Chem., 2007, 72(8), 3122-3124.
[http://dx.doi.org/10.1021/jo062141a] [PMID: 17375954]
[231]
Fevig, T.L.; Phillips, W.G.; Lau, P.H. A novel and expeditious approach to thiophene-3-carboxylates. J. Org. Chem., 2001, 66(7), 2493-2497.
[http://dx.doi.org/10.1021/jo001376y] [PMID: 11281794]
[232]
Vaghasiya, S.J.; Dodiya, D.K.; Trivedi, A.R.; Surani, J.J.; Shah, V.H. Synthesis and biological screening of some novel pyrazolo[[3′,4′:4,5]thieno[2,3-d]pyrimidin-8-ones via Gewald reaction. ARKIVOC, 2008, 2008(12), 1-8.
[http://dx.doi.org/10.3998/ark.5550190.0009.c01]
[233]
Pinkerton, A.B.; Lee, T.T.; Hoffman, T.Z.; Wang, Y.; Kahraman, M.; Cook, T.G.; Severance, D.; Gahman, T.C.; Noble, S.A.; Shiau, A.K.; Davis, R.L. Synthesis and SAR of thiophene containing kinesin spindle protein (KSP) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(13), 3562-3569.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.076] [PMID: 17498954]
[234]
Dzhavakhishvili, S.G.; Gorobets, N.Y.; Musatov, V.I.; Desenko, S.M.; Paponov, B.V. Three possible products from the reactions of gewald’s amide with aromatic aldehydes. J. Heterocycl. Chem., 2008, 45(2), 573-577.
[http://dx.doi.org/10.1002/jhet.5570450243]
[235]
Sridhar, M.; Rao, R.M.; Baba, N.H.K.; Kumbhare, R.M. Microwave accelerated Gewald reaction: Synthesis of 2-aminothiophenes. Tetrahedron Lett., 2007, 48(18), 3171-3172.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.052]
[236]
Hoener, A.P.; Henkel, B.; Gauvin, J.C. Novel one-pot microwave assisted gewald synthesis of 2-acyl amino thiophenes on solid support. Synlett, 2002, 2003(1), 0063-0066.
[http://dx.doi.org/10.1055/s-2003-36229]
[237]
Hu, Y.; Wei, P.; Huang, H.; Han, S.Q.; Ouyang, P.K. Synthesis of 2-aminothiophenes on ionic liquid phase support using the gewald reaction. Synth. Commun., 2006, 36(11), 1543-1548.
[http://dx.doi.org/10.1080/00397910600588819]
[238]
Mekheimer, R.A.; Ameen, M.A.; Sadek, K.U. Solar thermochemical reactions II1: Synthesis of 2-aminothiophenes via Gewald reaction induced by solar thermal energy. Chin. Chem. Lett., 2008, 19(7), 788-790.
[http://dx.doi.org/10.1016/j.cclet.2008.04.041]
[239]
Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
[240]
Xu, X-Y.; Zeng, B-B.; Wang, T.; Huang, X-G.; Liu, J.; Li, B.; Wu, J-J.; Chen, K-X.; Zhu, W-L. An efficient one-pot synthesis of substituted 2-aminothiophenes via three-component gewald reaction catalyzed by l-proline. Synlett, 2010, 2010(9), 1351-1354.
[http://dx.doi.org/10.1055/s-0029-1219917]
[241]
Rezaei-Seresht, E.; Bakhshi-Noroozi, M.; Maleki, B. Piperazine-grafted magnetic reduced graphene oxide (Fe3O4@rgo-nh) as a reusable heterogeneous catalyst for gewald three-component reaction. Polycycl. Aromat. Compd., 2021, 41(9), 1944-1952.
[http://dx.doi.org/10.1080/10406638.2019.1708417]
[242]
Kurmach, M.; Yaremov, P.; Shvets, O. Cs-containing hierarchical zeolites as catalysts for Gewald reaction. Mater. Today Proc., 2022, 62(15), 7745-7750.
[http://dx.doi.org/10.1016/j.matpr.2022.04.766]
[243]
Forero, J.S.B.; de Carvalho, E.M.; Jones, J., Jr; da Silva, F.M. A new protocol for the synthesis of 2-aminothiophenes through the Gewald reaction in solvent-free conditions. Heterocyclic. Lett, 2011, 1(1), 61-67.https://www.heteroletters.org/issue1/Paper-9.pdf
[244]
dos Santos, B.D.C.F.; Forero, J.S.B.; de Carvalho, E.M.; Jones, J., Jr; da Silva, F.M. A solvente less synthesis of 2-aminothiophenes via the Gewald reaction under ultrasonic conditions. Heterocyclic. Lett., 2012, 2(1), 31-36.https://www.heteroletters.org/issue5/Paper-4.pdf
[245]
Forero, J.S.B.; Jones, J., Jr; da Silva, F.M. The synthetic potential and chemical aspects of the Gewald reaction: Application in the preparation of 2-aminothiophenes and related heterocycles. Curr. Org. Synth., 2013, 10(3), 347-365.
[http://dx.doi.org/10.2174/1570179411310030002]
[246]
Duvauchelle, V.; Meffre, P.; Benfodda, Z. Green methodologies for the synthesis of 2-aminothiophene. Environ. Chem. Lett., 2023, 21(1), 597-621.
[http://dx.doi.org/10.1007/s10311-022-01482-1] [PMID: 36060495]
[247]
Kavitha, K.; Srikrishna, D.; Dubey, P.K.; Aparna, P. An efficient one-pot four-component Gewald reaction: Synthesis of substituted 2-aminothiophenes with coumarin–thiazole scaffolds under environmentally benign conditions. J. Sulfur Chem., 2019, 40(2), 195-208.
[http://dx.doi.org/10.1080/17415993.2018.1556275]
[248]
Du, W. Towards new anticancer drugs: A decade of advances in synthesis of camptothecins and related alkaloids. Tetrahedron, 2003, 59(44), 8649-8687.
[http://dx.doi.org/10.1016/S0040-4020(03)01203-1]
[249]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[250]
Sridharan, V.; Suryavanshi, P.A.; Menéndez, J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev., 2011, 111(11), 7157-7259.
[http://dx.doi.org/10.1021/cr100307m] [PMID: 21830756]
[251]
Su, D.S.; Lim, J.J.; Tinney, E.; Wan, B.L.; Young, M.B.; Anderson, K.D.; Rudd, D.; Munshi, V.; Bahnck, C.; Felock, P.J.; Lu, M.; Lai, M.T.; Touch, S.; Moyer, G.; DiStefano, D.J.; Flynn, J.A.; Liang, Y.; Sanchez, R.; Prasad, S.; Yan, Y.; Perlow-Poehnelt, R.; Torrent, M.; Miller, M.; Vacca, J.P.; Williams, T.M.; Anthony, N.J. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants. Bioorg. Med. Chem. Lett., 2009, 19(17), 5119-5123.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.031] [PMID: 19631528]
[252]
Ramesh, E.; Manian, R.D.R.S.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg. Med. Chem., 2009, 17(2), 660-666.
[http://dx.doi.org/10.1016/j.bmc.2008.11.058] [PMID: 19097914]
[253]
Pagliero, R.J.; Lusvarghi, S.; Pierini, A.B.; Brun, R.; Mazzieri, M.R. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines. Bioorg. Med. Chem., 2010, 18(1), 142-150.
[http://dx.doi.org/10.1016/j.bmc.2009.11.010] [PMID: 19942439]
[254]
Thevis, M.; Kohler, M.; Schänzer, W. New drugs and methods of doping and manipulation. Drug Discov. Today, 2008, 13(1-2), 59-66.
[http://dx.doi.org/10.1016/j.drudis.2007.11.003] [PMID: 18190865]
[255]
Cai, S.X.; Zhou, Z-L.; Huang, J-C.; Whittemore, E.R.; Egbuwoku, Z.O.; Lü, Y.; Hawkinson, J.E.; Woodward, R.M.; Weber, E.; Keana, J.F.W. Synthesis and structure-activity relationships of 1,2,3,4-tetrahydroquinolines-2,3-4-trioxine 3-oximes: Novel and highly potent antagonist for nmda receptor glycine site. J. Med. Chem., 1996, 39(17), 3248-3255.
[http://dx.doi.org/10.1021/jm960214k] [PMID: 8765507]
[256]
Liu, J.; Wang, Y.; Sun, Y.; Marshall, D.; Miao, S.; Tonn, G.; Anders, P.; Tocker, J.; Tang, H.L.; Medina, J. Tetrahydroquinoline derivatives as CRTH2 antagonists. Bioorg. Med. Chem. Lett., 2009, 19(24), 6840-6844.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.094] [PMID: 19896843]
[257]
Kouznetsov, V.V.; Arenas, D.R.M.; Arvelo, F.; Bello-Forero, J.S.; Sojo, F.; Muñoz, A. 4-Hydroxy-3-methoxyphenyl Substituted 3-methyl-tetrahydro-quinoline derivatives obtained through imino diels-alder reactions as potential antitumoral agents. Lett. Drug Des. Discov., 2010, 7(9), 632-639.
[http://dx.doi.org/10.2174/157018010792929577]
[258]
Nagata, N.; Furuya, K.; Oguro, N.; Nishiyama, D.; Kawai, K.; Yamamoto, N.; Ohyabu, Y.; Satsukawa, M.; Miyakawa, M. Lead evaluation of tetrahydroquinolines as nonsteroidal selective androgen receptor modulators for the treatment of osteoporosis. ChemMedChem, 2014, 9(1), 197-206.
[http://dx.doi.org/10.1002/cmdc.201300348] [PMID: 24273094]
[259]
Ghashghaei, O.; Masdeu, C.; Alonso, C.; Palacios, F.; Lavilla, R. Recent advances of the Povarov reaction in medicinal chemistry. Drug Discov. Today. Technol., 2018, 29, 71-79.
[http://dx.doi.org/10.1016/j.ddtec.2018.08.004] [PMID: 30471676]
[260]
de Fátima, Â.; Fernandes, S.A.; Ferreira de Paiva, W.; de Freitas Rego, Y. The povarov reaction: A versatile method to synthesize tetrahydroquinolines, quinolines and julolidines. Synthesis, 2022, 54(14), 3162-3179.
[http://dx.doi.org/10.1055/a-1794-8355]
[261]
Forero, J.S.B.; Jones, J., Jr; da Silva, F.M. The povarov reaction as a versatile strategy for the preparation of 1, 2, 3, 4-tetrahydroquinoline derivatives: An overview. Curr. Org. Synth., 2016, 13(2), 157-175.
[http://dx.doi.org/10.2174/1570179412666150706183906]
[262]
France, S.; Phun, L.H. Enantio- and diastereoselective rh(ii)-catalyzed 1,3-dipolar cycloadditions of carbonyl ylides and their recent applications in complex molecule synthesis. Curr. Org. Synth., 2010, 7(4), 332-347.
[http://dx.doi.org/10.2174/157017910791414463]
[263]
Xie, M.; Lin, L.; Feng, X. Catalytic asymmetric inverse-electron-demand hetero-diels−alder reactions. Chem. Rec., 2017, 17(12), 1184-1202.
[http://dx.doi.org/10.1002/tcr.201700006] [PMID: 28508470]
[264]
Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Catalytic asymmetric aza-diels-alder reaction: Pivotal milestones and recent applications to synthesis of nitrogen-containing heterocycles. Adv. Synth. Catal., 2021, 363(6), 1466-1526.
[http://dx.doi.org/10.1002/adsc.202001307]
[265]
Fochi, M.; Bernardi, L.; Caruana, L. Catalytic asymmetric aza-diels-alder reactions: The povarov cycloaddition reaction. Synthesis, 2013, 46(2), 135-157.
[http://dx.doi.org/10.1055/s-0033-1338581]
[266]
Forero, J.S.B.; de Carvalho, E.M.; Jones, J., Jr; da Silva, F.M. Facile, efficient diastereoselective synthesis of tetrahydroquinoline scaffolds using propylene carbonate as an eco-friendly solvent. Curr. Org. Synth., 2015, 12(1), 102-107.
[http://dx.doi.org/10.2174/1570179411666140722175810]
[267]
Dehnhardt, C.M.; Espinal, Y.; Venkatesan, A.M. Practical one-pot procedure for the synthesis of 1,2,3,4-tetrahydroquinolines by the imino-diels-alder reaction. Synth. Commun., 2008, 38(5), 796-802.
[http://dx.doi.org/10.1080/00397910701820988]
[268]
Trifonov, L.S.; Orahovats, A.S. A facile 2,6-transannular cyclisation of 2-aryl-1,2,4,5-tetrahydro-1-benzazocine-3,6-diones from 1,2-Bis(trimethylsilyloxy)cyclobutene and Schiff bases. Heterocycles, 1984, 22(2), 355-364.
[http://dx.doi.org/10.3987/R-1984-02-0355]
[269]
Stevenson, P.J.; Nieuwenhuyzen, M.; Osborne, D. Three component coupling reactions of N-acetyl-2-azetine-rapid stereoselective entry to 2,3,4-trisubstituted tetrahydroquinolines. Chem. Commun. , 2002, 5(5), 444-445.
[http://dx.doi.org/10.1039/b110242g] [PMID: 12120533]
[270]
Shao, L.X.; Shi, M. Montmorillonite KSF-catalyzed one-pot, three-component, aza-diels–alder reactions of methylenecyclopropanes with arenecarbaldehydes and arylamines. Adv. Synth. Catal., 2003, 345(8), 963-966.
[http://dx.doi.org/10.1002/adsc.200303057]
[271]
Shi, M.; Shao, L.X.; Xu, B. The Lewis acids catalyzed aza-Diels-Alder reaction of methylenecyclopropanes with imines. Org. Lett., 2003, 5(4), 579-582.
[http://dx.doi.org/10.1021/ol0275365] [PMID: 12583774]
[272]
Lu, J.M.; Shi, M. Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with ethyl (arylimino)acetates: A facile synthetic protocol for pyrrolidine and 1,2,3,4-tetrahydroquinoline derivatives. Org. Lett., 2007, 9(9), 1805-1808.
[http://dx.doi.org/10.1021/ol070501q] [PMID: 17402743]
[273]
Smith, C.D.; Gavrilyuk, J.I.; Lough, A.J.; Batey, R.A. Lewis acid catalyzed three-component hetero-Diels-alder (povarov) reaction of N-arylimines with strained norbornene-derived dienophiles. J. Org. Chem., 2010, 75(3), 702-715.
[http://dx.doi.org/10.1021/jo9021106] [PMID: 20039638]
[274]
Kouznetsov, V.V.; Bello Forero, J.S.; Amado Torres, D.F. A simple entry to novel spiro dihydroquinoline-oxindoles using Povarov reaction between 3-N-aryliminoisatins and isoeugenol. Tetrahedron Lett., 2008, 49(41), 5855-5857.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.096]
[275]
Goli, N.; Kallepu, S.; Mainkar, P.S.; Lakshmi, J.K.; Chegondi, R.; Chandrasekhar, S. Synthetic strategy toward the pentacyclic core of melodinus alkaloids. J. Org. Chem., 2018, 83(4), 2244-2249.
[http://dx.doi.org/10.1021/acs.joc.7b03138] [PMID: 29338221]
[276]
Ribelles, P.; Sridharan, V.; Villacampa, M.; Ramos, M.T.; Menéndez, J.C. Diastereoselective, multicomponent access to trans-2-aryl-4-arylamino-1,2,3,4-tetrahydroquinolines via an AA′BC sequential four-component reaction and their application to 2-arylquinoline synthesis. Org. Biomol. Chem., 2013, 11(4), 569-579.
[http://dx.doi.org/10.1039/C2OB26754C] [PMID: 23090014]
[277]
Menéndez, J.; Sridharan, V.; Avendaño, C. New findings on the cerium(iv) ammonium nitrate catalyzed povarov reaction: stereoselective synthesis of 4-alkoxy-2-aryl-1,2,3,4-tetrahydroquinoline derivatives. Synthesis, 2008, 2008(7), 1039-1044.
[http://dx.doi.org/10.1055/s-2008-1032126]
[278]
Martínez Bonilla, C.A.; Puerto Galvis, C.E.; Vargas Méndez, L.Y.; Kouznetsov, V.V. Ce(SO4)2-catalysed the highly diastereoselective synthesis of tetrahydroquinolines via an imino Diels Alder ABB′ type reaction and their in vivo toxicity and imaging in zebrafish embryos. RSC Advances, 2016, 6(44), 37478-37486.
[http://dx.doi.org/10.1039/C6RA04325A]
[279]
Wang, X.S.; Yin, M.Y.; Wang, W.; Tu, S.J. A stereoselective povarov reaction leading to exo-tetrahydroindolo[3,2-c]quinoline derivatives catalyzed by iodine. Eur. J. Org. Chem., 2012, 2012(25), 4811-4818.
[http://dx.doi.org/10.1002/ejoc.201200551]
[280]
Rai, N.P.; Shashikanth, S.; Arunachalam, P.N. Iodine-catalyzed aza-diels–alder reactions of aliphatic n-arylaldimines. Synth. Commun., 2009, 39(12), 2125-2136.
[http://dx.doi.org/10.1080/00397910802638552]
[281]
Sridharan, V.; Perumal, P.T.; Avendaño, C.; Menéndez, J.C. The first aza Diels–Alder reaction involving an αβ-unsaturated hydrazone as the dienophile: stereoselective synthesis of C-4 functionalized 1,2,3,4-tetrahydroquinolines containing a quaternary stereocenter. Org. Biomol. Chem., 2007, 5(9), 1351-1353.
[http://dx.doi.org/10.1039/B703083E] [PMID: 17464403]
[282]
Priestley, E.S.; De Lucca, I.; Zhou, J.; Zhou, J.; Saiah, E.; Stanton, R.; Robinson, L.; Luettgen, J.M.; Wei, A.; Wen, X.; Knabb, R.M.; Wong, P.C.; Wexler, R.R. Discovery and gram-scale synthesis of BMS-593214, a potent, selective FVIIa inhibitor. Bioorg. Med. Chem. Lett., 2013, 23(8), 2432-2435.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.013] [PMID: 23478148]
[283]
Kiselyov, A.S.; Smith, L.,II; Armstrong, R.W. Solid support synthesis of polysubstituted tetrahydroquinolines via three-component condensation catalyzed by Yb(OTf)3. Tetrahedron, 1998, 54(20), 5089-5096.
[http://dx.doi.org/10.1016/S0040-4020(98)00248-8]
[284]
Benmeddah, A.; Bar, N.; Villemin, D.; Lohier, J.F.; Mostefa-Kara, B.; Legay, R. First examples of Povarov reaction of cyclopentadienones. Helv. Chim. Acta, 2018, 101(5), e1800023.
[http://dx.doi.org/10.1002/hlca.201800023]
[285]
Peñaranda Gómez, A.; Rodríguez Bejarano, O.; Kouznetsov, V.V.; Ochoa-Puentes, C. One-pot diastereoselective synthesis of tetrahydroquinolines from star anise oil in choline chloride/zinc chloride eutectic mixture. ACS Sustain. Chem. Eng., 2019, 7(22), 18630-18639.
[http://dx.doi.org/10.1021/acssuschemeng.9b05073]
[286]
Kouznetsov, V.V.; Meléndez Gómez, C.M.; Rojas Ruíz, F.A.; del Olmo, E. Simple entry to new 2-alkyl-1,2,3,4-tetrahydroquinoline and 2,3-dialkylquinoline derivatives using BiCl3-catalyzed three component reactions of anilines and aliphatic aldehydes in the presence (or lack) of N-vinyl amides. Tetrahedron Lett., 2012, 53(25), 3115-3118.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.008]
[287]
Chakraborty, B.; Kar, A.; Chanda, R.; Jana, U. Application of the povarov reaction in biaryls under iron catalysis for the general synthesis of dibenzo. [a,c]Acridines. J. Org. Chem., 2020, 85(14), 9281-9289.
[http://dx.doi.org/10.1021/acs.joc.0c01300] [PMID: 32588630]
[288]
Jarrige, L.; Blanchard, F.; Masson, G. Enantioselective organocatalytic intramolecular Aza-Diels–Alder reaction. Angew. Chem. Int. Ed., 2017, 56(35), 10573-10576.
[http://dx.doi.org/10.1002/anie.201705746] [PMID: 28661020]
[289]
Friedlaender, P. Ueber o. Amidobenzaldehyd. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2572-2575.
[http://dx.doi.org/10.1002/cber.188201502219]
[290]
Von Pechmann, H.; Duisberg, C. On the compounds of phenols with acetoacetic ether. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2119-2128.
[http://dx.doi.org/10.1002/cber.188301602117]
[291]
Fischer, E.; Hess, O. Synthese von Indolderivaten. Ber. Dtsch. Chem. Ges., 1884, 17(1), 559-568.
[http://dx.doi.org/10.1002/cber.188401701155]
[292]
Paal, C. Synthese von Thiophen- und Pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1885, 18(1), 367-371.
[http://dx.doi.org/10.1002/cber.18850180175]
[293]
Conrad, M.; Limpach, L. synthesen von Chinolinderivaten mittelst Acetessigester. Ber. Dtsch. Chem. Ges., 1887, 20(1), 944-948.
[http://dx.doi.org/10.1002/cber.188702001215]
[294]
Döbner, O. On α-alkylcinchoninic acids and α-alkylquinolines. Justus Liebigs Ann. Chem., 1887, 242(3), 265-289.
[http://dx.doi.org/10.1002/jlac.18872420302]
[295]
Knorr, L. Synthetic experiments with the acetoacetic ester. Justus Liebigs Ann. Chem., 1887, 238(1-2), 137-219.
[http://dx.doi.org/10.1002/jlac.18872380107]
[296]
Claisen, L.; Lowman, O. About benzoylacetone. Ber. Dtsch. Chem. Ges., 1888, 21(1), 1149-1157.
[http://dx.doi.org/10.1002/cber.188802101217]
[297]
Combes, A. On syntheses in the quinole series using acetylacetone and its derivatives. Bull. Soc. Chim. Fr., 1888, 49, 89-92.https://gallica.bnf.fr/ark:/12148/bpt6k281998h/f93.image.langDE
[298]
Hantzsch, A. New way of forming pyrrole derivatives. Ber. Dtsch. Chem. Ges., 1890, 23(1), 1474-1476.
[http://dx.doi.org/10.1002/cber.189002301243]
[299]
Fritsch, P. Synthesen in der Isocumarin- und Isochinolinreihe. Ber. Dtsch. Chem. Ges., 1893, 26(1), 419-422.
[http://dx.doi.org/10.1002/cber.18930260191]
[300]
Pomeranz, C. Über eine neue Isochinolinsynthese. Monatsh. Chem., 1893, 14(1), 116-119.
[http://dx.doi.org/10.1007/BF01517862]
[301]
Fischer, E. Neue bildungsweise der oxazole. Ber. Dtsch. Chem. Ges., 1896, 29(1), 205-214.
[http://dx.doi.org/10.1002/cber.18960290143]
[302]
Guareschi, I. Synthesis of pyridine compounds from ketone ethers with cyanacetic ether in the presence of ammonia and amines; Mem. Reale Accad. Sci.: Torino, 1896. 1-30.
[303]
Camps, R. Synthese von α‐ und γ‐ Oxychinolinen. Ber. Dtsch. Chem. Ges., 1899, 32(3), 3228-3234.
[http://dx.doi.org/10.1002/cber.18990320389]
[304]
Camps, R. Synthesis of α- and γ-oxyquinolines. Arch. Pharm., 1899, 237(9), 659-691.
[http://dx.doi.org/10.1002/ardp.18992370902]
[305]
Kostanecki, S. Różycki, A. On a mode of formation of chromone derivatives. Ber. Dtsch. Chem. Ges., 1901, 34(1), 102-109.
[http://dx.doi.org/10.1002/cber.19010340119]
[306]
Feist, F. Studies in the furan and pyrrole groups. Ber. Dtsch. Chem. Ges., 1902, 35(2), 1537-1544.
[http://dx.doi.org/10.1002/cber.19020350263]
[307]
Baron, H.; Remfry, F.G.P.; Thorpe, J.F. CLXXV. The formation and reactions of imino-compounds. Part I. Condensation of ethyl cyanoacetate with its sodium derivative. J. Chem. Soc. Trans., 1904, 85(0), 1726-1761.
[http://dx.doi.org/10.1039/CT9048501726]
[308]
Chichibabin, A.E. (A.E, ChichiBABINA) About the synthesis of pyridine bases from aldehydes of a saturated nature and ammonia. Zhurnal obshchei khimii, 1905, 37(1), 1229-1253.
[309]
Hinsberg, O. Synthetische Versuche mit Thiodiglykolsäureester. Ber. Dtsch. Chem. Ges., 1910, 43(1), 901-906.
[http://dx.doi.org/10.1002/cber.191004301153]
[310]
Benary, E. Synthese von Pyridin-Derivaten aus Dichlor-äther und β-Amino-crotonsäureester. Ber. Dtsch. Chem. Ges., 1911, 44(1), 489-493.
[http://dx.doi.org/10.1002/cber.19110440175]
[311]
Pictet, A.; Kay, F.W. Über eine synthetische Darstellungsmethode der Isochinolin. Basen. Ber. Dtsch. Chem. Ges., 1909, 42(2), 1973-1979.
[http://dx.doi.org/10.1002/cber.19090420274]
[312]
Allan, J.; Robinson, R. CCXC. An accessible derivative of chromonol. J. Chem. Soc. Trans., 1924, 125(0), 2192-2195.
[http://dx.doi.org/10.1039/CT9242502192]
[313]
Nenitzescu, C.D. Über einige derivate des methyl-5-oxy-indols. Bull. Soc. Chim. Romania, 1929, 11(1-2), 1-7.
[314]
Bergs, H. Method for representing hydanyoins. 5660941929, 1929.
[315]
Bucherer, H.T.; Fischbeck, H.T. Hexahydrodiphenylamin und seine derivate. J. Prakt. Chem., 1934, 140, 69-89.https://gallica.bnf.fr/ark:/12148/bpt6k909140/f76.item.r=J
[316]
Algar, J.; Flynn, J.P. A new method for the synthesis of flavonols. Proc. R. Ir. Acad., 1934/1935, 42(1934/1935), 1-8.https://www.jstor.org/stable/20517064
[317]
Oyamada, T. A new general method for the synthesis of the derivatives of flavonol. Bull. Chem. Soc. Jpn., 1935, 10(5), 182-186.
[http://dx.doi.org/10.1246/bcsj.10.182]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy