Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Alternative Reactions to Friedel-crafts Acylation on Highly Activated Substrates

Author(s): Debora Inacio Leite, Luiz Claudio Ferreira Pimentel, Maria da Conceição Avelino Dias, Monica Macedo Bastos* and Nubia Boechat

Volume 28, Issue 13, 2024

Published on: 13 May, 2024

Page: [1006 - 1022] Pages: 17

DOI: 10.2174/0113852728294270240425093501

Price: $65

Abstract

Friedel-crafts acylation (FCAcyl) is the most widespread method used to prepare aryl ketones and aldehydes. However, depending on the type of group attached to the benzene, their derivatives influence the electronic characteristics and structural orientations of the compounds during acylation; thus, the groups are very important for the success of the reaction. The existence of strong electron-donating groups, such as polyhydroxy/ polyalkoxyphenols and anilines on the aromatic ring, makes this reaction difficult. To overcome these problems and with the aim of obtaining aromatic ketones from benzene compounds, appropriate methodologies were described. Therefore, this review consists of showing the importance and applicability of the Houben-Hoesch and Sugasawa reactions as alternatives for the Friedel-crafts acylation of polyhydroxy/polyalkoxyphenols and anilines, respectively. The main advances used in the original methodologies were also described. The use of these reactions as an alternative to the renowned Friedel-crafts acylation reactions should be taken into consideration as an important synthetic tool because there is the possibility of reducing steps, with consequent improvement of yield, in addition to optimizing reaction performance.

Next »
Graphical Abstract

[1]
Singh, S.; Mondal, S.; Tiwari, V.; Karmakar, T.; Hazra, C.K. Cooperative friedel–crafts alkylation of electron-deficient arenes via catalyst activation with hexafluoroisopropanol**. Chemistry, 2023, 29(18), e202300180.
[http://dx.doi.org/10.1002/chem.202300180] [PMID: 36680470]
[2]
Feng, Z.; Gupta, G.; Mamlouk, M. A review of anion exchange membranes prepared via Friedel-crafts reaction for fuel cell and water electrolysis. Int. J. Hydrogen Energy, 2023, 48(66), 25830-25858.
[http://dx.doi.org/10.1016/j.ijhydene.2023.03.299]
[3]
Kabi, A.K.; Gujjarappa, R.; Vodnala, N.; Kaldhi, D.; Tyagi, U.; Mukherjee, K.; Malakar, C.C. HFIP-mediated strategy towards β-oxo amides and subsequent Friedel-craft type cyclization to 2 quinolinones using recyclable catalyst. Tetrahedron Lett., 2020, 61(46), 152535.
[http://dx.doi.org/10.1016/j.tetlet.2020.152535]
[4]
Ahmad, T.; Khan, S.; Ullah, N. Recent advances in the catalytic asymmetric Friedel-crafts reactions of indoles. ACS Omega, 2022, 7(40), 35446-35485.
[http://dx.doi.org/10.1021/acsomega.2c05022] [PMID: 36249392]
[5]
Singh, S.; Mahato, R.; Sharma, P.; Yadav, N.; Vodnala, N.; Kumar Hazra, C. Development of transition-metal-free Lewis acid-initiated double arylation of aldehyde: A facile approach towards the total synthesis of anti-breast-cancer agent. Chemistry, 2022, 28(14), e202104545.
[http://dx.doi.org/10.1002/chem.202104545] [PMID: 35060647]
[6]
Brunen, S.; Mitschke, B.; Leutzsch, M.; List, B. Asymmetric catalytic friedel–crafts reactions of unactivated arenes. J. Am. Chem. Soc., 2023, 145(29), 15708-15713.
[http://dx.doi.org/10.1021/jacs.3c05148] [PMID: 37440437]
[7]
Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry Part B: Reactions and Synthesis, 5th; Springer Science+Business Media LLC: Spring street: New York, 2007, pp. 1017-1023.
[8]
Smith, M.B.; March, J. March’s advanced organic chemistry: reactions, mechanisms, and structure, 6th; John Wiley & sons: Hoboken: New Jersey: Canada, 2007, pp. 1-8.
[9]
Bruckner, R. Mechanisms Reactions, Stereochemistry and Synthesis, 3rd; Springer-Verlag: Berlin, Heidelberg, 2010, pp. 229-233.
[10]
Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry, 2nd ed; OUP Oxford: UK, 2012.
[http://dx.doi.org/10.1093/hesc/9780199270293.001.0001]
[11]
Sumita, A.; Ohwada, T. Friedel-crafts-type acylation and amidation reactions in strong brønsted acid: taming superelectrophiles. Molecules, 2022, 27(18), 5984.
[http://dx.doi.org/10.3390/molecules27185984] [PMID: 36144714]
[12]
Huang, Z.; Jin, L.; Han, H.; Lei, A. The “kinetic capture” of an acylium ion from live aluminum chloride promoted Friedel–crafts acylation reactions. Org. Biomol. Chem., 2013, 11(11), 1810-1814.
[http://dx.doi.org/10.1039/c3ob27094g] [PMID: 23389472]
[13]
Olah, G.A.; Prakash, G.K.S.; Sommer, J.; Molnar, A. Superacid Chemistry, 2nd ed; Wiley: Hoboken, New Jersey, USA, 2009.
[http://dx.doi.org/10.1002/9780470421604]
[14]
Sato, Y.; Yato, M.; Ohwada, T.; Saito, S.; Shudo, K. Involvement of dicationic species as the reactive intermediates in gattermann, Houben-hoesch, and Friedel-crafts reactions of nonactivated benzenes. J. Am. Chem. Soc., 1995, 117(11), 3037-3043.
[http://dx.doi.org/10.1021/ja00116a009]
[15]
Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.; Klumpp, D.A. Superacid-catalyzed reactions of cinnamic acids and the role of superelectrophiles. J. Org. Chem., 2004, 69(7), 2340-2347.
[http://dx.doi.org/10.1021/jo030327t] [PMID: 15049628]
[16]
Olah, G.A.; Brydon, D.L.; Porter, R.D. Stable carbonium ions. LXXXIII. Protonation of amino acids, simple peptides, and insulin in superacid solutions. J. Org. Chem., 1970, 35(2), 317-328.
[http://dx.doi.org/10.1021/jo00827a006]
[17]
Nasreen, A. Efficient and facile regio-selective Friedel-crafts acylation of aromatics using cobalt (II) mercury tetra thiocyanate. SSRN, 2023, 1-13.
[http://dx.doi.org/10.2139/ssrn.4345379]
[18]
Tamaddon, F.; Rashidi, H. ZnCl2:2HOAc: A deep eutectic solvent for the friedel–crafts acetylation of poly-phenols and chemo-selective protection of alcohols. Res. Chem. Intermed., 2023, 49(8), 3589-3603.
[http://dx.doi.org/10.1007/s11164-023-05050-2]
[19]
Saint-Jacques, K.; Charette, A.B. Continuous flow Friedel–Crafts acetylation of phenols and electron-rich arenes and heteroarenes. J. Flow Chem., 2023, 13(2), 193-199.
[http://dx.doi.org/10.1007/s41981-023-00270-4]
[20]
Park, H.; Lee, S. Palladium and copper-catalyzed friedel–crafts acylation with activated amides. Adv. Synth. Catal., 2023, 365(18), 3167-3171.
[http://dx.doi.org/10.1002/adsc.202300376]
[21]
Shi, T.H.; Akine, S.; Ohtani, S.; Kato, K.; Ogoshi, T. Friedel–crafts acylation for accessing multi-bridge-functionalized large pillar[n]arenes. Angew. Chem. Int. Ed., 2024, 63(6), e202318268.
[http://dx.doi.org/10.1002/anie.202318268] [PMID: 38108597]
[22]
Martins, A.; Amaro, B.; Santos, M.S.C.S.; Nunes, N.; Elvas-Leitão, R.; Carvalho, A.P. Hierarchical zeolites prepared using a surfactant-mediated strategy: ZSM-5 vs. Y as catalysts for friedel–crafts acylation reaction. Molecules, 2024, 29(2), 517.
[http://dx.doi.org/10.3390/molecules29020517] [PMID: 38276595]
[23]
Liu, C.; Yu, J.; Bao, L.; Zhang, G.; Zou, X.; Zheng, B.; Li, Y.; Zhang, Y. Electricity-promoted friedel–crafts acylation of biarylcarboxylic acids. J. Org. Chem., 2023, 88(6), 3794-3801.
[http://dx.doi.org/10.1021/acs.joc.2c03071] [PMID: 36861957]
[24]
Wu, X.T.; Xiao, E.K.; Ma, F.; Yin, J.; Wang, J.; Chen, P.; Jiang, Y.J. Substrate-controlled regiodivergent synthesis of fluoroacylated carbazoles via Friedel–crafts acylation. J. Org. Chem., 2021, 86(9), 6734-6743.
[http://dx.doi.org/10.1021/acs.joc.1c00473] [PMID: 33852307]
[25]
Choudhary, V.R.; Jha, R. Acylation of nitrobenzene and substituted nitrobenzenes by benzoyl chloride using GaClx- and GaAlClx-grafted meporous Si-MCM-41 catalysts. Microporous Mesoporous Mater., 2009, 119(1-3), 360-362.
[http://dx.doi.org/10.1016/j.micromeso.2008.11.001]
[26]
Song, Y.; Yu, Z.; Wang, W.; Wang, S. Ag-catalyzed acylation of N-heterocycles in aqueous solution. Tetrah. Lett., 2023, 141, 133518.
[27]
Paul, S.; Bhakat, M.; Guin, J. Radical C−H acylation of nitrogen heterocycles induced by an aerobic oxidation of aldehydes. Chem. Asian J., 2019, 14(18), 3154-3160.
[http://dx.doi.org/10.1002/asia.201900857] [PMID: 31318481]
[28]
Paul, S.; Gupta, M. Selective fries rearrangement catalyzed by zinc powder. Synthesis, 2004, 2004(11), 1789-1792.
[http://dx.doi.org/10.1055/s-2004-829152]
[29]
Hoesch, K. A new synthesis of aromatic ketones. I. Preparation of some phenol-ketones. Ber. Dtsch. Chem. Ges., 1915, 48(1), 1122-1133.
[http://dx.doi.org/10.1002/cber.191504801156]
[30]
Ruff, J.K. Friedel-crafts and related reactions. Volume I: General aspects. By George Olah. Inorg. Chem., 1964, 3(8), 1205-1206.
[http://dx.doi.org/10.1021/ic50018a043]
[31]
Hoesch, K.; Von Zarzecki, T. A new synthesis of aromatic ketones. II. Artificial production of maclurin and related ketones. Ber. Dtsch. Chem. Ges., 1917, 50, 462-468.
[http://dx.doi.org/10.1002/cber.19170500181]
[32]
Houben, J. Über die Kern-Kondensation von Phenolen und Phenol-äthern mit Nitrilen zu Phenol- und Phenol-äther-Ketimiden und -Ketonen (I.). Ber. Dtsch. Chem. Ges., 1926, 59(11), 2878-2891.
[http://dx.doi.org/10.1002/cber.19260591135]
[33]
Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; Academic Press, 2005, pp. 1-8.
[34]
Housecroft, C.E.; Constable, E.C. An Introduction to Organic, Inorganic and Physical Chemistry, 4th ed; Pearson Education Limited, 2010, pp. 1-6.
[35]
Sugasawa, T.; Toyoda, T.; Adachi, M.; Sasakura, K. Aminohaloborane in organic synthesis. 1. Specific ortho substitution reaction of anilines. J. Am. Chem. Soc., 1978, 100(15), 4842-4852.
[http://dx.doi.org/10.1021/ja00483a034]
[36]
Simpson, J.C.E.; Atkinson, C.M.; Schofield, K.; Stephenson, O. 172. o-Amino-ketones of the acetophenone and benzophenone types. J. Chem. Soc., 1945, 646-657.
[http://dx.doi.org/10.1039/jr9450000646]
[37]
Hewett, C.L.; Lermit, L.J.; Openshaw, H.T.; Todd, A.R.; Williams, A.H.; Woodward, F.N. 73. Derivatives of arsacridine. Part I. J. Chem. Soc., 1948, 292-295.
[http://dx.doi.org/10.1039/jr9480000292] [PMID: 18914106]
[38]
Schofield, K.; Theobald, R.S. 171. Indoles. Part I. The Bz-nitro-2: 3-dimethylindoles and their use in preparing nitro-2-aminoacetophenones. J. Chem. Soc., 1949, 796-799.
[http://dx.doi.org/10.1039/jr9490000796]
[39]
Sternbach, L.H.; Reeder, E.; Keller, O.; Metlesics, W. Quinazolines and 1,4-benzodiazepines. III. Substituted 2-amino-5-phenyl-3H-1,4-benzodiazepine 4-Oxides. J. Org. Chem., 1961, 26(11), 4488-4497.
[http://dx.doi.org/10.1021/jo01069a069]
[40]
Niedenzu, K.; Dawson, J.W. Boron-nitrogen compounds. II. Aminoboranes, Part 1: The preparation of organic substituted aminoboranes through a Grinard reaction. J. Am. Chem. Soc., 1959, 81(21), 5553-5555.
[http://dx.doi.org/10.1021/ja01530a010]
[41]
Wager, C.A.B.; Miller, S.A. Two robust, efficient syntheses of [phenyl ring-U-14C]indole through use of [phenyl ring-U-14C]aniline. J. Labelled Comp. Radiopharm., 2006, 49(7), 615-622.
[http://dx.doi.org/10.1002/jlcr.1067]
[42]
Douglas, A.W.; Abramson, N.L.; Houpis, I.N.; Karady, S.; Molina, A.; Xavier, L.C.; Yasuda, N. In situ NMR spectroscopic studies of aniline ortho acylation (Sugasawa reaction): The nature of reaction intermediates and Lewis acid influence on yield. Tetrahedron Lett., 1994, 35(37), 6807-6810.
[http://dx.doi.org/10.1016/0040-4039(94)85010-0]
[43]
Houpis, I.N.; Molina, A.; Douglas, A.W.; Xavier, L.; Lynch, J.; Volante, R.P.; Reider, P.J. Synthesis of a new generation reverse transcriptase inhibitor via the BCl3/GaCl3-induced condensation of anilines with nitriles (sugasawa reaction). Tetrahedron Lett., 1994, 35(37), 6811-6814.
[http://dx.doi.org/10.1016/0040-4039(94)85011-9]
[44]
Raja, E.K.; Klumpp, D.A. Fluoro-substituted ketones from nitriles using acidic and basic reaction conditions. Tetrahedron Lett., 2011, 52(40), 5170-5172.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.125] [PMID: 22383858]
[45]
Nowak, K.; Ratajczak-Wrona, W.; Górska, M. Jabłońska, E. Parabens and their effects on the endocrine system. Mol. Cell. Endocrinol., 2018, 474, 238-251.
[http://dx.doi.org/10.1016/j.mce.2018.03.014] [PMID: 29596967]
[46]
Neri, I.; Laneri, S.; Di Lorenzo, R.; Dini, I.; Russo, G.; Grumetto, L. Parabens permeation through biological membranes: A comparative study using franz cell diffusion system and biomimetic liquid chromatography. Molecules, 2022, 27(13), 4263.
[http://dx.doi.org/10.3390/molecules27134263] [PMID: 35807508]
[47]
Reber, K.P.; Sivey, J.D.; Vollmuth, M.; Gujarati, P.D. Synthesis of 13C-labeled parabens from isotopically enriched phenols using the Houben–Hoesch reaction. J. Labelled Comp. Radiopharm., 2022, 65(9), 254-263.
[http://dx.doi.org/10.1002/jlcr.3992] [PMID: 35868986]
[48]
Ram, R.N.; Soni, V.K.; Gupta, D.K. Organocatalytic selective benzoylation of alcohols with trichloromethyl phenyl ketone: Inverse selectivity in benzoylation of alcohols containing phenol or aromatic amine functionality. Tetrahedron, 2012, 68(44), 9068-9075.
[http://dx.doi.org/10.1016/j.tet.2012.08.051]
[49]
Colquhoun, H.M.; Lewis, D.F.; Williams, D.J. Synthesis of dixanthones and poly(dixanthone)s by cyclization of 2-aryloxybenzonitriles in trifluoromethanesulfonic acid. Org. Lett., 2001, 3(15), 2337-2340.
[http://dx.doi.org/10.1021/ol010097+] [PMID: 11463310]
[50]
Basavaiah, D.; Satyanarayana, T. A novel, tandem construction of C–N and C–C bonds: Facile and one-pot transformation of the Baylis–Hillman adducts into 2-benzazepines. Chem. Commun. , 2004, (1), 32-33.
[http://dx.doi.org/10.1039/B310550D] [PMID: 14737318]
[51]
Zhu, Y.; Peng, L.; Hu, J.; Chen, Y.; Chen, F. Current anti-Alzheimer’s disease effect of natural products and their principal targets. J. Integr. Neurosci., 2019, 18(3), 327-339.
[http://dx.doi.org/10.31083/j.jin.2019.03.1105] [PMID: 31601083]
[52]
Zhang, F.R.; Cao, F.; Liu, K.; He, Y.P.; Luo, G.; Ye, Z.S. Bifunctional Lewis base catalyzed asymmetric N-allylic alkylation of 2-hydroxypyridines. Org. Lett., 2022, 24(47), 8603-8608.
[http://dx.doi.org/10.1021/acs.orglett.2c03207] [PMID: 36403156]
[53]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[54]
Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev., 2006, 106(7), 2875-2911.
[http://dx.doi.org/10.1021/cr0505270] [PMID: 16836303]
[55]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd; WILEY-VCH GmbH & Co: KGaA: Weinheim, 2003, pp. 102-107.
[http://dx.doi.org/10.1002/352760183X]
[56]
Outlaw, V.K.; Townsend, C.A. A practical route to substituted 7-aminoindoles from pyrrole-3-carboxaldehydes. Org. Lett., 2014, 16(24), 6334-6337.
[http://dx.doi.org/10.1021/ol503078h] [PMID: 25479249]
[57]
Proisl, K.; Kafka, S.; Kosmrlj, J. Chemistry and applications of 4-hydroxyquinolin-2-one and quinoline-2,4-dionebased compounds. Curr. Org. Chem., 2017, 21(19), 1949-1975.
[http://dx.doi.org/10.2174/1385272821666170711155631]
[58]
de Macedo, M.B.; Kimmel, R.; Urankar, D.; Gazvoda, M.; Peixoto, A.; Cools, F.; Torfs, E.; Verschaeve, L.; Lima, E.S. Lyčka, A.; Milićević, D.; Klásek, A.; Cos, P.; Kafka, S.; Košmrlj, J.; Cappoen, D. Design, synthesis and antitubercular potency of 4-hydroxyquinolin-2(1H)-ones. Eur. J. Med. Chem., 2017, 138, 491-500.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.061] [PMID: 28689097]
[59]
Kobayashi, Y. Nakatani, T.; Tanaka, R.; Okada, M.; Torii, E.; Harayama, T.; Kimachi, T. α-Dimethylaminomethylenation-induced Houben–Hoesch-type cyclization of cyanoacetanilides: A practical synthesis of 3-formyl-4-hydroxyquinolin-2(1H)-ones. Tetrahedron, 2011, 67(19), 3457-3463.
[http://dx.doi.org/10.1016/j.tet.2011.03.040]
[60]
Wu, C.; Huang, P.; Sun, Z.; Lin, M.; Jiang, Y.; Tong, J.; Ge, C. Synthesis of 4-quinolones via triflic anhydride-mediated intramolecular Houben-Hoesch reaction of β-arylamino acrylonitriles. Tetrahedron, 2016, 72(11), 1461-1466.
[http://dx.doi.org/10.1016/j.tet.2016.01.051]
[61]
Stasyuk, A.J. Smoleń S.; Glodkowska-Mrowka, E.; Brutkowski, W.; Cyrański, M.K.; Tkachenko, N.; Gryko, D.T. Synthesis of fluorescent naphthoquinolizines via intramolecular Houben-Hoesch reaction. Chem. Asian J., 2015, 10(3), 553-558.
[http://dx.doi.org/10.1002/asia.201403339] [PMID: 25580599]
[62]
Kulkarni, M.R.; Gaikwad, N.D. Recent advances towards the synthesis of 4H-quinolizin-4-one. Tetrahedron, 2020, 76(35), 131409.
[http://dx.doi.org/10.1016/j.tet.2020.131409]
[63]
Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun., 2022, 17(1), 1934578X2110697.
[http://dx.doi.org/10.1177/1934578X211069721]
[64]
de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem., 2021, 338, 127535.
[http://dx.doi.org/10.1016/j.foodchem.2020.127535] [PMID: 32798817]
[65]
Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[66]
Zhang, Q. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13(20), 1-26.
[67]
Franco, D.P.; Pereira, T.M.; Vitorio, F.; Nadur, N.F.; Lacerda, R.B.; Kümmerle, A.E. The importance of cumarins for medicinal chemistry and the development of bioactive compounds in the last years. Quim. Nova, 2021, 44(2), 180-197.
[68]
Gonçalves, R.S.B.; Barreto, M.B.; Gomes, C.R.B.; Souza, M.V.N. Natural products as HIV reverse transcriptase inhibitors. Fitos, 2009, 4(1), 87-107.
[http://dx.doi.org/10.32712/2446-4775.2009.89]
[69]
Viegas, C., Jr; Bolzani, V.S.; Barreiro, E.J. Os produtos naturais e a química medicinal moderna. Quim. Nova, 2006, 29(2), 326-337.
[http://dx.doi.org/10.1590/S0100-40422006000200025]
[70]
Rao, A.V.R.; Gaitonde, A.S.; Prakash, K.R.C.; Rao, S.P. A concise synthesis of chiral 2-methyl chroman-4-ones: Stereo selective build-up of the chromanol moiety of anti-HIV agent calanolide A. Tetrahedron Lett., 1994, 35(34), 6347-6350.
[http://dx.doi.org/10.1016/S0040-4039(00)73429-0]
[71]
Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules, 2019, 24(6), 1076.
[http://dx.doi.org/10.3390/molecules24061076] [PMID: 30893792]
[72]
Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res., 2019, 33(9), 2221-2243.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[73]
Hou, S. Genistein: Therapeutic and preventive effects, mechanisms, and clinical application in digestive tract tumor. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/5957378] [PMID: 35815271]
[74]
Stachulski, A.V.; Berry, N.G.; Lilian Low, A.C.; Moores, S.L.; Row, E.; Warhurst, D.C.; Adagu, I.S.; Rossignol, J.F. Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo. J. Med. Chem., 2006, 49(4), 1450-1454.
[http://dx.doi.org/10.1021/jm050973f] [PMID: 16480281]
[75]
Wang, D.; Hu, M.; Li, X.; Zhang, D.; Chen, C.; Fu, J.; Shao, S.; Shi, G.; Zhou, Y.; Wu, S.; Zhang, T. Design, synthesis, and evaluation of isoflavone analogs as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2019, 168, 207-220.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.053] [PMID: 30822710]
[76]
Cho, H.W.; Gim, H.J.; Li, H.; Subedi, L.; Kim, S.Y.; Ryu, J.H.; Jeon, R. Structure–activity relationship of phytoestrogen analogs as erα/β agonists with neuroprotective activities. Chem. Pharm. Bull. , 2021, 69(1), 99-105.
[http://dx.doi.org/10.1248/cpb.c20-00706] [PMID: 33390527]
[77]
Arkhipov, V.V.; Smirnov, M.N.; Khilya, V.P. Chemistry of modified flavonoids. Chem. Heterocycl. Compd., 1997, 33(5), 515-519.
[http://dx.doi.org/10.1007/BF02291930]
[78]
Shou, Q.Y.; Tan, Q.; Shen, Z.W. Hirtellanines A and B, a pair of isomeric isoflavonoid derivatives from Campylotropis hirtella and their immunosuppressive activities. Bioorg. Med. Chem. Lett., 2009, 19(13), 3389-3391.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.043] [PMID: 19481938]
[79]
Zheng, S.; Li, X.; Tan, H.; Yu, C.; Zhang, J.; Shen, Z. Studies on the total synthesis of hirtellanine A: Regioselective synthesis of benzopyran. Eur. J. Org. Chem., 2013, 2013(7), 1356-1366.
[http://dx.doi.org/10.1002/ejoc.201201339]
[80]
Jalili-Baleh, L.; Babaei, E.; Abdpour, S.; Nasir Abbas Bukhari, S.; Foroumadi, A.; Ramazani, A.; Sharifzadeh, M.; Abdollahi, M.; Khoobi, M. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 152, 570-589.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.004]
[81]
Mazziotti, I.; Petrarolo, G.; La Motta, C. Aurones: A golden resource for active compounds. Molecules, 2021, 27(1), 2.
[http://dx.doi.org/10.3390/molecules27010002] [PMID: 35011233]
[82]
Kumar, S.; Lathwal, E.; Kumar, G.; Saroha, B.; Kumar, S.; Mahata, S.; Sahoo, P.K.; Nasare, V.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line. Chem. Data Collect., 2020, 30, 100559.
[http://dx.doi.org/10.1016/j.cdc.2020.100559]
[83]
Saroha, B.; Kumar, G.; Arya, P.; Raghav, N.; Kumar, S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg. Chem., 2023, 140, 106805.
[http://dx.doi.org/10.1016/j.bioorg.2023.106805] [PMID: 37634269]
[84]
Caburet, J.; Verdirosa, F.; Moretti, M.; Roulier, B.; Simoncelli, G.; Haudecoeur, R.; Ghazi, S.; Jamet, H.; Docquier, J.D.; Boucherle, B.; Peuchmaur, M. Aurones and derivatives as promising New Delhi metallo-β-lactamase (NDM-1) inhibitors. Bioorg. Med. Chem., 2024, 97, 117559.
[http://dx.doi.org/10.1016/j.bmc.2023.117559] [PMID: 38109811]
[85]
Mulrooney, C.A.; O’Brien, E.M.; Morgan, B.J.; Kozlowski, M.C. Perylenequinones: Isolation, synthesis, and biological activity. Eur. J. Org. Chem., 2012, 2012(21), 3887-3904.
[http://dx.doi.org/10.1002/ejoc.201200184] [PMID: 24039544]
[86]
Olivo, M.; Chin, W.W.L. Perylenequinones in photodynamic therapy: Cellular versus vascular response. J. Environ. Pathol. Toxicol. Oncol., 2006, 25(1-2), 223-238.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.140] [PMID: 16566720]
[87]
Khiralla, A.; Mohammed, A.O.; Yagi, S. Fungal perylenequinones. Mycol. Prog., 2022, 21(3), 38.
[http://dx.doi.org/10.1007/s11557-022-01790-4] [PMID: 35401071]
[88]
Kim, B.T.; Kim, H.S.; Moon, W.S.; Hwang, K.J. The construction of novel perylenequinone core via efficient synthesis of versatile ortho-naphthoquinone as a key intermediate. Tetrahedron, 2009, 65(23), 4625-4628.
[http://dx.doi.org/10.1016/j.tet.2009.03.057]
[89]
Hwang, K.J.; Shin, Y-M.; Kim, D-H.; Kim, B-T. Synthesis of versatile 1-indanones and their conversion to 1,2-naphthoquinones, key precursors for the construction of perylenequinone core. Bull. Korean Chem. Soc., 2012, 33(9), 3095-3098.
[http://dx.doi.org/10.5012/bkcs.2012.33.9.3095]
[90]
Tan, C.J.; Di, Y.T.; Wang, Y.H.; Zhang, Y.; Si, Y.K.; Zhang, Q.; Gao, S.; Hu, X.J.; Fang, X.; Li, S.F.; Hao, X.J. Three new indole alkaloids from Trigonostemon lii. Org. Lett., 2010, 12(10), 2370-2373.
[http://dx.doi.org/10.1021/ol100715x] [PMID: 20405956]
[91]
Zhao, B.; Hao, X.Y.; Zhang, J.X.; Liu, S.; Hao, X.J. Rapid total synthesis of (±)trigonoliimine A via a Strecker/Houben-Hoesch sequence. Org. Lett., 2013, 15(3), 528-530.
[http://dx.doi.org/10.1021/ol303344d] [PMID: 23311984]
[92]
Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 2021, 10(7), 1064.
[http://dx.doi.org/10.3390/antiox10071064] [PMID: 34209224]
[93]
Liu, J.; Yang, Z.; Luo, S.; Hao, Y.; Ren, J.; Su, Y.; Wang, W.; Li, R. Facile method for the large-scale synthesis of 6,7,4´-trihydroxyisoflavanone. Synth. Commun., 2014, 44(22), 3296-3303.
[http://dx.doi.org/10.1080/00397911.2014.886331]
[94]
O’Hagan, D.; Young, R.J. Future challenges and opportunities with fluorine in drugs? Med. Chem. Res., 2023, 32(7), 1231-1234.
[http://dx.doi.org/10.1007/s00044-023-03094-y]
[95]
Makarenko, O.; Bondarenko, S.; Mrug, G.; Frasinyuk, M. Synthesis and transformation of 6-aminomethyl derivatives of 7-hydroxy-2′-fluoroisoflavones. Fren.Ukrain. J. Chem., 2020, 8(2), 203-213.
[http://dx.doi.org/10.17721/fujcV8I2P203-213]
[96]
Bi, Z.; Zhang, W.; Yan, X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed. Pharmacother., 2022, 151, 113180.
[http://dx.doi.org/10.1016/j.biopha.2022.113180] [PMID: 35676785]
[97]
Zeng, Y.; Xiong, Y.; Yang, T.; Wang, Y.; Zeng, J.; Zhou, S.; Luo, Y.; Li, L. Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: From effects to molecular mechanisms. Biomed. Pharmacother., 2022, 147, 112642.
[http://dx.doi.org/10.1016/j.biopha.2022.112642] [PMID: 35078094]
[98]
Yang, X. Icaritin: A novel natural candidate for hemetological malignancies therapy. BioMed Res. Int., 2019, 2019, 4860268.
[99]
Mu, G.; Pu, W.; Zhou, M.; Liu, Y.; Yang, H.; Wang, C. Synthesis of Icaritin. Youji Huaxue, 2013, 33(6), 1298-1303.
[http://dx.doi.org/10.6023/cjoc201303016]
[100]
Ochola, E.A.; Karanja, D.M.S.; Elliott, S.J. The impact of Neglected Tropical Diseases (NTDs) on health and wellbeing in Sub-Saharan Africa (SSA): A case study of Kenya. PLoS Negl. Trop. Dis., 2021, 15(2), e0009131.
[http://dx.doi.org/10.1371/journal.pntd.0009131] [PMID: 33571200]
[101]
Weng, H.B.; Chen, H.X.; Wang, M.W. Innovation in neglected tropical disease drug discovery and development. Infect. Dis. Poverty, 2018, 7(1), 67.
[http://dx.doi.org/10.1186/s40249-018-0444-1] [PMID: 29950174]
[102]
Tabuti, J.R.S.; Obakiro, S.B.; Nabatanzi, A.; Anywar, G.; Nambejja, C.; Mutyaba, M.R.; Omara, T.; Waako, P. Medicinal plants used for treatment of malaria by indigenous communities of Tororo district. Eastern Uganda. Trop. Med. Health, 2023, 51(1), 34.
[http://dx.doi.org/10.1186/s41182-023-00526-8] [PMID: 37303066]
[103]
World Health Organization Africa Region. Available from: https://www.afro.who.int/health-topics/malaria (Acessed March 25, 2024)
[104]
Nigussie, G.; Wale, M. Medicinal plants used in traditional treatment of malaria in Ethiopia: A review of ethnomedicine, anti-malarial and toxicity studies. Malar. J., 2022, 21(1), 262.
[http://dx.doi.org/10.1186/s12936-022-04264-w] [PMID: 36088324]
[105]
Sanon, S.; Ollivier, E.; Azas, N.; Mahiou, V.; Gasquet, M.; Ouattara, C.T.; Nebie, I.; Traore, A.S.; Esposito, F.; Balansard, G.; Timon-David, P.; Fumoux, F. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J. Ethnopharmacol., 2003, 86(2-3), 143-147.
[http://dx.doi.org/10.1016/S0378-8741(02)00381-1] [PMID: 12738078]
[106]
Ekasari, W.; Widyawaruyanti, A.; Cholies Zaini, N.; Honda, T.; Morita, H.; Syafruddin, D. Antimalarial activity of cassiarin a from the leaves of Cassia siamea. Heterocycles, 2009, 78(7), 1831-1836.
[http://dx.doi.org/10.3987/COM-09-11680]
[107]
Rudyanto, M.; Tomizawa, Y.; Morita, H.; Honda, T. First total synthesis of cassiarin A, a naturally occurring potent antiplasmodial alkaloid. Org. Lett., 2008, 10(10), 1921-1922.
[http://dx.doi.org/10.1021/ol8004112] [PMID: 18412353]
[108]
Deguchi, J.; Hirahara, T.; Oshimi, S.; Hirasawa, Y.; Ekasari, W.; Shirota, O.; Honda, T.; Morita, H. Total synthesis of a novel tetracyclic alkaloid, cassiarin F from the flowers of Cassia siamea. Org. Lett., 2011, 13(16), 4344-4347.
[http://dx.doi.org/10.1021/ol201674a] [PMID: 21755916]
[109]
Sasakura, K.; Terui, Y.; Sugasawa, T. Aminohaloborane in organic synthesis. X. A convenient, economical exclusive ortho substitution reaction of N-alkyl and N-aminoalkyl anilines. Chem. Pharm. Bull. , 1985, 33(5), 1836-1842.
[http://dx.doi.org/10.1248/cpb.33.1836]
[110]
Earley, J.V.; Gilman, N.W. Synthesis of substituted (2-aminophenyl)-3-(and-4-)pyridinylmethanones. Synth. Commun., 1985, 15(14), 1271-1276.
[http://dx.doi.org/10.1080/00397918508077275]
[111]
Tabuchi, S.; Ito, H.; Sogabe, H.; Kuno, M.; Kinoshita, T.; Tatumi, I.; Yamamoto, N.; Mitsui, H.; Satoh, Y. Dual CCK-A and CCK-B receptor antagonists (II). Preparation and structure activity relationships of 5-alkyl-9-methyl-1,4-benzodiazepines and discovery of FR208419. Chem. Pharm. Bull. , 2000, 48(1), 1-15.
[http://dx.doi.org/10.1248/cpb.48.1] [PMID: 10705468]
[112]
Atechian, S.; Nock, N.; Norcross, R.D.; Ratni, H.; Thomas, A.W.; Verron, J.; Masciadri, R. New vistas in quinoline synthesis. Tetrahedron, 2007, 63(13), 2811-2823.
[http://dx.doi.org/10.1016/j.tet.2007.01.050]
[113]
Lee, G.T.; Prasad, K. Repič O. A facile synthesis of 2,4-diaza-1-borines from anilines. Tetrahedron Lett., 2002, 43(17), 3255-3257.
[http://dx.doi.org/10.1016/S0040-4039(02)00365-9]
[114]
Campaniço, A.; Harjivan, S.G.; Freitas, E.; Serafini, M.; Gaspar, M.M.; Capela, R.; Gomes, P.; Jordaan, A.; Madureira, A.M.; André, V.; Silva, A.B.; Duarte, M.T.; Portugal, I.; Perdigão, J.; Moreira, R.; Warner, D.F.; Lopes, F. Structural optimization of antimycobacterial azaaurones towards improved solubility and metabolic stability. ChemMedChem, 2023, 18(24), e202300410.
[http://dx.doi.org/10.1002/cmdc.202300410] [PMID: 37845182]
[115]
Leite, D.I.; Campaniço, A.; Costa, P.A.G.; Correa, I.A.; da Costa, L.J.; Bastos, M.M.; Moreira, R.; Lopes, F.; Jordaan, A.; Warner, D.F.; Boechat, N. New azaaurone derivatives as potential multitarget agents in HIV-TB coinfection. Arch. Pharm., 2024, 357(2), 2300560.
[http://dx.doi.org/10.1002/ardp.202300560] [PMID: 38032154]
[116]
Busacca, C.A.; Wei, X.; Haddad, N.; Kapadia, S.; Lorenz, J.C.; Saha, A.K.; Varsolona, R.J.; Berkenbusch, T.; Campbell, S.C.; Farina, V.; Feng, X.; Gonnella, N.C.; Grinberg, N.; Jones, P.J.; Lee, H.; Li, Z.; Niemeier, O.; Samstag, W.; Sarvestani, M.; Schroeder, J.; Smoliga, J.; Spinelli, E.M.; Vitous, J.; Senanayake, C.H. Practical large-scale synthesis of the hepatitis C virus protease inhibitor BI 201335. Asian J. Org. Chem., 2012, 1(1), 80-89.
[http://dx.doi.org/10.1002/ajoc.201200014]
[117]
Prasad, K.; Lee, G.T.; Chaudhary, A.; Girgis, M.J.; Streemke, J.W. Repič,; O. Design of new reaction conditions for the Sugasawa reaction based on mechanistic insights. Org. Process Res. Dev., 2003, 7(5), 723-732.
[http://dx.doi.org/10.1021/op0340659]
[118]
Yaegashi, T.; Sawada, S.; Nagata, H.; Furuta, T.; Yokokura, T.; Miyasaka, T. Synthesis and antitumor activity of 20(S)-camptothecin derivatives. A-ring-substituted 7-ethylcamptothecins and their E-ring-modified water-soluble derivatives. Chem. Pharm. Bull. , 1994, 42(12), 2518-2525.
[http://dx.doi.org/10.1248/cpb.42.2518] [PMID: 7697767]
[119]
Desrat, S.; Jean, M.; van de Weghe, P. Setbacks and hopes: En route to the synthesis of uncialamycin. Tetrahedron, 2011, 67(39), 7510-7516.
[http://dx.doi.org/10.1016/j.tet.2011.07.090]
[120]
Liu, C.; Yang, Z.; Ji, J.; Li, H.; Man, L.; Li, R.; Zhang, Z. Synthesis of 4-Pyridinylquinolines via Sugasawa and Friedlander reaction from 4-cyanopyridine with anilines and ketones. Lett. Org. Chem., 2023, 20(8), 755-762.
[http://dx.doi.org/10.2174/1570178620666230214100138]
[121]
Sternbach, L.H. The benzodiazepine story. Prog. Drug Res., 1978, 22, 229-266.
[PMID: 30117]
[122]
Liu, J.J.; Daniewski, I.; Ding, Q.; Higgins, B.; Ju, G.; Kolinsky, K.; Konzelmann, F.; Lukacs, C.; Pizzolato, G.; Rossman, P.; Swain, A.; Thakkar, K.; Wei, C.C.; Miklowski, D.; Yang, H.; Yin, X.; Wovkulich, P.M. Pyrazolobenzodiazepines: Part I. Synthesis and SAR of a potent class of kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(20), 5984-5987.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.079]
[123]
Liu, J.J.; Higgins, B.; Ju, G.; Kolinsky, K.; Luk, K.C.; Packman, K.; Pizzolato, G.; Ren, Y.; Thakkar, K.; Tovar, C.; Zhang, Z.; Wovkulich, P.M. Discovery of a highly potent, orally active mitosis/angiogenesis inhibitor r1530 for the treatment of solid tumors. ACS Med. Chem. Lett., 2013, 4(2), 259-263.
[http://dx.doi.org/10.1021/ml300351e] [PMID: 24900658]
[124]
Antoni, F.; Bause, M.; Scholler, M.; Bauer, S.; Stark, S.A.; Jackson, S.M.; Manolaridis, I.; Locher, K.P.; König, B.; Buschauer, A.; Bernhardt, G. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur. J. Med. Chem., 2020, 191, 112133.
[http://dx.doi.org/10.1016/j.ejmech.2020.112133] [PMID: 32105979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy