Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Review Article

Atrial Natriuretic Peptide as a Biomarker and Therapeutic Target in Cancer: A Focus on Colorectal Cancer

Author(s): Shima Mehrabadi, Mahla Velayati, Nima Zafari, Samaneh Mollazadeh and Amir Avan*

Volume 19, Issue 2, 2024

Published on: 11 March, 2024

Article ID: e110324227855 Pages: 9

DOI: 10.2174/0115743624292634240223094729

Price: $65

Abstract

One of the most prevalent cancers throughout the world is colorectal cancer (CRC). Natriuretic peptides are important hormones that have a crucial role in the physiology of humans and other animals. There are a variety of treatments for colon cancer. However, conventional therapies have many side effects and low efficacy in the treatment of this disease. Atrial Natriuretic Peptide (ANP) is one of the most well-known natriuretic peptides involved in regulating blood pressure and blood volume. Studies have demonstrated that ANP has a therapeutic effect on different cancer types. The anti-tumor effect of ANP is exerted by inhibiting DNA synthesis but not inducing apoptosis. The anti-proliferative role of ANP has been reported in human breast, prostate, colon, pancreatic, lung, and ovarian cancer and in many other tumors. Therefore, we review the recent papers on natriuretic peptides in CRC as a common malignancy in adults to assess the pathways of ANP involved in the progression of CRC and its effects on the prevention or treatment of CRC and other cancer types.

[1]
Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361(25): 2449-60.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[2]
Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin 2009; 59(6): 366-78.
[http://dx.doi.org/10.3322/caac.20038] [PMID: 19897840]
[3]
Haraldsdottir S, Einarsdottir HM, Smaradottir A, Gunnlaugsson A, Halfdanarson TR. Colorectal cancer (Review). Laeknabladid 2014; 100(2): 75-82.
[PMID: 24639430]
[4]
Ciombor KK, Wu C, Goldberg RM. Recent therapeutic advances in the treatment of colorectal cancer. Annu Rev Med 2015; 66(1): 83-95.
[http://dx.doi.org/10.1146/annurev-med-051513-102539] [PMID: 25341011]
[5]
Świerczyński M, Szymaszkiewicz A, Fichna J, Zielińska M. New insights into molecular pathways in colorectal cancer: Adiponectin, interleukin-6 and opioid signaling. Biochim Biophys Acta Rev Cancer 2021; 1875(1): 188460.
[http://dx.doi.org/10.1016/j.bbcan.2020.188460] [PMID: 33184028]
[6]
Yang SY, Cho MS, Kim NK. Difference between right-sided and left-sided colorectal cancers: From embryology to molecular subtype. Expert Rev Anticancer Ther 2018; 18(4): 351-8.
[http://dx.doi.org/10.1080/14737140.2018.1442217] [PMID: 29458272]
[7]
Takahashi H, Takeda T, Nishizawa Y, et al. Phase I study of the administration of low-dose perioperative human atrial natriuretic peptide in patients with resectable colorectal cancer. Anticancer Res 2020; 40(9): 5301-7.
[http://dx.doi.org/10.21873/anticanres.14536] [PMID: 32878821]
[8]
Shapira S, Fokra A, Arber N, Kraus S. Peptides for diagnosis and treatment of colorectal cancer. Curr Med Chem 2014; 21(21): 2410-6.
[http://dx.doi.org/10.2174/0929867321666140205134616] [PMID: 24524764]
[9]
Serafino A, Moroni N, Psaila R, et al. Anti-proliferative effect of atrial natriuretic peptide on colorectal cancer cells: Evidence for an Akt-mediated cross-talk between NHE-1 activity and Wnt/β-catenin signaling. Biochim Biophys Acta Mol Basis Dis 2012; 1822(6): 1004-18.
[http://dx.doi.org/10.1016/j.bbadis.2012.02.016] [PMID: 22387884]
[10]
Nojiri T, Hosoda H, Tokudome T, et al. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc Natl Acad Sci 2015; 112(13): 4086-91.
[http://dx.doi.org/10.1073/pnas.1417273112] [PMID: 25775533]
[11]
Ahmed F, Tabassum N, Rasool S. Regulation of atrial natriuretic peptide (ANP) and its role in blood pressure. Int Curr Pharm J 2012; 1(7): 176-9.
[http://dx.doi.org/10.3329/icpj.v1i7.10812]
[12]
Curry FRE. Atrial natriuretic peptide: An essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J Clin Invest 2005; 115(6): 1458-61.
[http://dx.doi.org/10.1172/JCI25417] [PMID: 15931381]
[13]
Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol 2015; 308(10): F1047-55.
[http://dx.doi.org/10.1152/ajprenal.00164.2014] [PMID: 25651559]
[14]
Pandey KN. Molecular signaling mechanisms and function of natriuretic peptide receptor: A in the pathophysiology of cardiovascular homeostasis. Front Physiol 2021; 12: 693099.
[http://dx.doi.org/10.3389/fphys.2021.693099]
[15]
Xu M, Liu X, Li P, et al. Modified natriuretic peptides and their potential role in cancer treatment. Biomed J 2021; 45(1): 118-31.
[PMID: 34237455]
[16]
Kong X, Wang X, Xu W, et al. Natriuretic peptide receptor a as a novel anticancer target. Cancer Res 2008; 68(1): 249-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3086] [PMID: 18172317]
[17]
Vesely DL, Vesely BA, Eichelbaum EJ, Sun Y, Alli AA. Four cardiac hormones eliminate up to two-thirds of human breast cancers in athymic mice. In Vivo 2007; 21(6): 973-8.
[18]
Mezzasoma L, Talesa VN, Costanzi E, Bellezza I. Natriuretic peptides regulate prostate cells inflammatory behavior: Potential novel anticancer agents for prostate cancer. Biomolecules 2021; 11(6): 794.
[http://dx.doi.org/10.3390/biom11060794] [PMID: 34070682]
[19]
Serafino A, Pierimarchi P, Andreola F, et al. Atrial natriuretic peptide inhibits colorectal cancer cells growth by reverting the WNT/ß-catenin pathway. Cancer Res AACR. 2008; 68: p. (9)2323.
[20]
Skelton WP IV, Skelton M, Vesely DL. Inhibition of AKT in human pancreatic, renal and colorectal cancer cells by four cardiac hormones. Anticancer Res 2013; 33(3): 785-90.
[PMID: 23482745]
[21]
Serafino A, Pierimarchi P. Atrial natriuretic peptide: A magic bullet for cancer therapy targeting Wnt signaling and cellular pH regulators. Curr Med Chem 2014; 21(21): 2401-9.
[http://dx.doi.org/10.2174/0929867321666140205140152] [PMID: 24524761]
[22]
Pappano AJ, Wier WG. Cardiovascular physiology. Mosby Physiology Monograph Series. Elsevier Health Sciences 2018.
[23]
Rubattu S, Volpe M. Natriuretic peptides in the cardiovascular system: Multifaceted roles in physiology, pathology and therapeutics. Int J Mol Sci 2019; 20(16): 3991.
[24]
Clerico A, Emdin M. Natriuretic peptides: the hormones of the heart. Springer Science & Business Media 2007.
[25]
Moe GW. B-type natriuretic peptide in heart failure. Curr Opin Cardiol 2006; 21(3): 208-14.
[http://dx.doi.org/10.1097/01.hco.0000221582.71619.84] [PMID: 16601459]
[26]
Troughton R, Michael Felker G, Januzzi JL Jr. Natriuretic peptide-guided heart failure management. Eur Heart J 2014; 35(1): 16-24.
[http://dx.doi.org/10.1093/eurheartj/eht463] [PMID: 24216390]
[27]
Ibebuogu UN, Gladysheva IP, Houng AK, Reed GL. Decompensated heart failure is associated with reduced corin levels and decreased cleavage of pro-atrial natriuretic peptide. Circ Heart Fail 2011; 4(2): 114-20.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.109.895581] [PMID: 21216831]
[28]
Davidson NC, Struthers AD. Brain natriuretic peptide. J Hypertens 1994; 12(4): 329-36.
[http://dx.doi.org/10.1097/00004872-199404000-00001] [PMID: 8064155]
[29]
LaPointe MC. Molecular regulation of the brain natriuretic peptide gene. Peptides 2005; 26(6): 944-56.
[http://dx.doi.org/10.1016/j.peptides.2004.08.028] [PMID: 15911064]
[30]
Leuchte HH, Holzapfel M, Baumgartner RA, et al. Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol 2004; 43(5): 764-70.
[http://dx.doi.org/10.1016/j.jacc.2003.09.051] [PMID: 14998614]
[31]
Hall C. Essential biochemistry and physiology of (NT‐pro)BNP. Eur J Heart Fail 2004; 6(3): 257-60.
[http://dx.doi.org/10.1016/j.ejheart.2003.12.015] [PMID: 14987573]
[32]
Chen X, Zhan X, Chen M, et al. The prognostic value of combined NT-pro-BNP levels and NIHSS scores in patients with acute ischemic stroke. Intern Med 2012; 51(20): 2887-92.
[http://dx.doi.org/10.2169/internalmedicine.51.8027] [PMID: 23064562]
[33]
Dickey DM, Flora DR, Bryan PM, Xu X, Chen Y, Potter LR. Differential regulation of membrane guanylyl cyclases in congestive heart failure: natriuretic peptide receptor (NPR)-B, Not NPR-A, is the predominant natriuretic peptide receptor in the failing heart. Endocrinology 2007; 148(7): 3518-22.
[http://dx.doi.org/10.1210/en.2007-0081] [PMID: 17412809]
[34]
Kuhn M. Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol 2004; 99(2): 76-82.
[http://dx.doi.org/10.1007/s00395-004-0460-0] [PMID: 14963665]
[35]
Suttner SW, Boldt J. Natriuretic peptide system: Physiology and clinical utility. Curr Opin Crit Care 2004; 10(5): 336-41.
[http://dx.doi.org/10.1097/01.ccx.0000135513.26376.4f] [PMID: 15385748]
[36]
Gardner DG, Chen S, Glenn DJ, Grigsby CL. Molecular biology of the natriuretic peptide system: Implications for physiology and hypertension. Hypertension 2007; 49(3): 419-26.
[http://dx.doi.org/10.1161/01.HYP.0000258532.07418.fa] [PMID: 17283251]
[37]
Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 2012; 4(9): 011189.
[38]
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 2019; 19(6): 4529-35.
[http://dx.doi.org/10.3892/mmr.2019.10121] [PMID: 30942405]
[39]
Wu C, You J, Fu J, Wang X, Zhang Y. Phosphatidylinositol 3-Kinase/Akt mediates integrin signaling to control RNA polymerase i transcriptional activity. Mol Cell Biol 2016; 36(10): 1555-68.
[http://dx.doi.org/10.1128/MCB.00004-16] [PMID: 26976639]
[40]
Matsuoka T, Yashiro M, Nishioka N, Hirakawa K, Olden K, Roberts JD. PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer 2012; 106(9): 1535-42.
[41]
Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer. Cancer Cell 2003; 4(4): 257-62.
[http://dx.doi.org/10.1016/S1535-6108(03)00248-4] [PMID: 14585353]
[42]
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica et Biophysica Acta (BBA)-. Rev Can 2015; 1855(1): 104-21.
[43]
Johnson SM, Gulhati P, Rampy BA, et al. Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 2010; 210(5): 767-776, 776-.
[http://dx.doi.org/10.1016/j.jamcollsurg.2009.12.008] [PMID: 20421047]
[44]
Vesely DL. New anticancer agents: Hormones made within the heart. Anticancer Res 2012; 32(7): 2515-21.
[PMID: 22753708]
[45]
Peterson JE, Zurakowski D, Italiano JE Jr, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 2012; 15(2): 265-73.
[http://dx.doi.org/10.1007/s10456-012-9259-z] [PMID: 22402885]
[46]
Bhattacharya R, Ye XC, Wang R, et al. Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells. Cancer Res 2016; 76(10): 3014-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1605] [PMID: 26988990]
[47]
Des Guetz G, Uzzan B, Nicolas P, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 2006; 94(12): 1823-32.
[http://dx.doi.org/10.1038/sj.bjc.6603176] [PMID: 16773076]
[48]
Pedram A, Razandi M, Levin ER. Natriuretic peptides suppress vascular endothelial cell growth factor signaling to angiogenesis. Endocrinology 2001; 142(4): 1578-86.
[http://dx.doi.org/10.1210/endo.142.4.8099] [PMID: 11250939]
[49]
Bordicchia M, Liu D, Amri EZ, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; 122(3): 1022-36.
[http://dx.doi.org/10.1172/JCI59701] [PMID: 22307324]
[50]
Kandezi N, Mohammadi M, Ghaffari M, Gholami M, Motaghinejad M, Safari S. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/GSK3 or PI3/Akt/CREB/BDNF signaling pathways. Int J Mol Cell Med 2020; 9(1): 1-32.
[PMID: 32832482]
[51]
Uzar E, Evliyaoglu O, Yucel Y, et al. Serum cytokine and pro-brain natriuretic peptide (BNP) levels in patients with migraine. Eur Rev Med Pharmacol Sci 2011; 15(10): 1111-6.
[PMID: 22165670]
[52]
Vaz Pérez A, Doehner W, von Haehling S, et al. The relationship between tumor necrosis factor-α brain natriuretic peptide and atrial natriuretic peptide in patients with chronic heart failure. Int J Cardiol 2010; 141(1): 39-43.
[http://dx.doi.org/10.1016/j.ijcard.2008.11.146] [PMID: 19155075]
[53]
Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 2018; 62: 50-60.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.002] [PMID: 29169144]
[54]
Pai SG, Carneiro BA, Mota JM, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol 2017; 10(1): 101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[55]
Ge Z, Li LF, Wang CY, Wang Y, Ma WL. CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer. Eur Rev Med Pharmacol Sci 2018; 22(23): 8203-9.
[PMID: 30556859]
[56]
Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103(2): 311-20.
[http://dx.doi.org/10.1016/S0092-8674(00)00122-7] [PMID: 11057903]
[57]
Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 2019; 110: 473-81.
[http://dx.doi.org/10.1016/j.biopha.2018.11.082] [PMID: 30530050]
[58]
Schatoff EM, Leach BI, Dow LE. Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep 2017; 13(2): 101-10.
[http://dx.doi.org/10.1007/s11888-017-0354-9] [PMID: 28413363]
[59]
Bahrami A, Amerizadeh F, ShahidSales S. Therapeutic potential of targeting Wnt/β‐catenin pathway in treatment of colorectal cancer: Rational and progress. J Cell Biochem 2017; 118(8): 1979-83.
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[60]
Gurney A, Axelrod F, Bond CJ, et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci 2012; 109(29): 11717-22.
[http://dx.doi.org/10.1073/pnas.1120068109] [PMID: 22753465]
[61]
Vesely DL. Natriuretic peptides’ metabolic targets for treatment of cancer. J Investig Med 2013; 61(5): 816-22.
[http://dx.doi.org/10.2310/JIM.0b013e318292110a] [PMID: 23612148]
[62]
Krausova M, Korinek V. Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2014; 26(3): 570-9.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.032] [PMID: 24308963]
[63]
Koukourakis M, Papazoglou D, Giatromanolaki A, Bougioukas G, Maltezos E, Sivridis E. VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer 2004; 46(3): 293-8.
[http://dx.doi.org/10.1016/j.lungcan.2004.04.037] [PMID: 15541813]
[64]
Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJ. Anti-angiogenic activity of melatonin in advanced cancer patients. Neuroendocrinol Lett 2001; 22(1): 45-7.
[PMID: 11335879]
[65]
Crivellato E. The role of angiogenic growth factors in organogenesis. Int J Dev Biol 2011; 55(4-5): 365-75.
[http://dx.doi.org/10.1387/ijdb.103214ec] [PMID: 21858761]
[66]
Sidibe A, Ropraz P, Jemelin S, et al. Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours. Nat Commun 2018; 9(1): 355.
[http://dx.doi.org/10.1038/s41467-017-02610-0] [PMID: 29367702]
[67]
Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 2011; 4: 51.
[http://dx.doi.org/10.3389/fnmol.2011.00051] [PMID: 22144946]
[68]
Doanes AM, Hegland DD, Sethi R, Kovesdi I, Bruder JT, Finkel T. VEGF stimulates MAPK through a pathway that is unique for receptor tyrosine kinases. Biochem Biophys Res Commun 1999; 255(2): 545-8.
[http://dx.doi.org/10.1006/bbrc.1999.0227] [PMID: 10049745]
[69]
George ML, Tutton MG, Janssen F, et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 2001; 3(5): 420-7.
[http://dx.doi.org/10.1038/sj.neo.7900186] [PMID: 11687953]
[70]
Ishigami S-I, Arii S, Furutani M, et al. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer 1998; 78(10): 1379-84.
[http://dx.doi.org/10.1038/bjc.1998.688] [PMID: 9823983]
[71]
Cao D, Hou M, Guan Y, Jiang M, Yang Y, Gou H. Expression of HIF-1alpha and VEGF in colorectal cancer: Association with clinical outcomes and prognostic implications. BMC Cancer 2009; 9(1): 432.
[http://dx.doi.org/10.1186/1471-2407-9-432] [PMID: 20003271]
[72]
Zhang L, Wang H, Li C, et al. VEGF-A/Neuropilin 1 pathway confers cancer stemness via activating wnt/β-catenin axis in breast cancer cells. Cell Physiol Biochem 2017; 44(3): 1251-62.
[http://dx.doi.org/10.1159/000485455] [PMID: 29179185]
[73]
Li B, Xu W, Luo C, Gozal D, Liu R. VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res Mol Brain Res 2003; 111(1-2): 155-64.
[http://dx.doi.org/10.1016/S0169-328X(03)00025-1] [PMID: 12654515]
[74]
Ma J, Sawai H, Ochi N, et al. PTEN regulate angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem 2009; 331(1-2): 161-71.
[http://dx.doi.org/10.1007/s11010-009-0154-x] [PMID: 19437103]
[75]
Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350(23): 2335-42.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[76]
Stathopoulos GP, Batziou C, Trafalis D, et al. Treatment of colorectal cancer with and without bevacizumab: A phase III study. Oncology 2010; 78(5-6): 376-81.
[http://dx.doi.org/10.1159/000320520] [PMID: 20798560]
[77]
Isono M, Haneda M, Maeda S, Omatsu-Kanbe M, Kikkawa R. Atrial natriuretic peptide inhibits endothelin-1-induced activation of JNK in glomerular mesangial cells. Kidney Int 1998; 53(5): 1133-42.
[http://dx.doi.org/10.1046/j.1523-1755.1998.00869.x] [PMID: 9573527]
[78]
Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19(2): 142-9.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[79]
Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[80]
Yarden Y, Shilo B-Z. SnapShot: EGFR signaling pathway. Cell 2007; 131(5): 1-2.
[81]
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017; 9(5): 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[82]
Sun Y, Tang S, Jin X, Zhang C, Zhao W, Xiao X. Involvement of the p38 MAPK signaling pathway in S‐phase cell‐cycle arrest induced by Furazolidone in human hepatoma G2 cells. J Appl Toxicol 2013; 33(12): 1500-5.
[http://dx.doi.org/10.1002/jat.2829] [PMID: 23112108]
[83]
Meloche S, Pouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26(22): 3227-39.
[http://dx.doi.org/10.1038/sj.onc.1210414] [PMID: 17496918]
[84]
Tabana Y, Dahham S, Shah A, Majid A. Major signaling pathways of colorectal carcinogenesis. Recent Adv Colon Cancer 2016; 1: 1-2.
[85]
Rokita M, Stec R, Bodnar L, et al. Overexpression of epidermal growth factor receptor as a prognostic factor in colorectal cancer on the basis of the Allred scoring system. OncoTargets Ther 2013; 6: 967-76.
[http://dx.doi.org/10.2147/OTT.S42446] [PMID: 23926437]
[86]
Prins BA, Weber MJ, Hu RM, Pedram A, Daniels M, Levin ER. Atrial natriuretic peptide inhibits mitogen-activated protein kinase through the clearance receptor. Potential role in the inhibition of astrocyte proliferation. J Biol Chem 1996; 271(24): 14156-62.
[http://dx.doi.org/10.1074/jbc.271.24.14156] [PMID: 8662898]
[87]
Zhang Y, Li X, Liu L-P, et al. Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D(2) in the beating rat atrium. Korean J Physiol Pharmacol 2017; 21(3): 293-300.
[88]
Bando S, Soeki T, Matsuura T, et al. Plasma brain natriuretic peptide levels are elevated in patients with cancer. PLoS One 2017; 12(6): e0178607.
[http://dx.doi.org/10.1371/journal.pone.0178607] [PMID: 28570595]
[89]
Wright GA, Struthers AD. Natriuretic peptides as a prognostic marker and therapeutic target in heart failure. Heart 2006; 107(9): 705-12.
[http://dx.doi.org/10.1136/hrt.2003.018325]
[90]
Hamatani Y, Iguchi M, Ueno K, et al. Prognostic significance of natriuretic peptide levels in atrial fibrillation without heart failure. Heart 2021; 107(9): 705-12.
[http://dx.doi.org/10.1136/heartjnl-2020-317735] [PMID: 33219109]
[91]
Cao Z, Jia Y, Zhu B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int J Mol Sci 2019; 20(8): 1820.
[http://dx.doi.org/10.3390/ijms20081820] [PMID: 31013779]
[92]
Ma KK, Ogawa T, de Bold AJ. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J Mol Cell Cardiol 2004; 36(4): 505-13.
[http://dx.doi.org/10.1016/j.yjmcc.2004.01.001] [PMID: 15081310]
[93]
Burjonroppa SC, Tong AT, Xiao LC, Johnson MM, Yusuf SW, Lenihan DJ. Cancer patients with markedly elevated B-type natriuretic peptide may not have volume overload. Am J Clin Oncol 2007; 30(3): 287-93.
[http://dx.doi.org/10.1097/01.coc.0000256101.04404.b0] [PMID: 17551307]
[94]
Bando S, Soeki T, Matsuura T, et al. Plasma brain natriuretic peptide (BNP) level is elevated in patients with cancer. Euro Hea J 2013; 34(1)
[95]
Vesely BA, McAfee Q, Gower WR Jr, Vesely DL. Four peptides decrease the number of human pancreatic adenocarcinoma cells. Eur J Clin Invest 2003; 33(11): 998-1005.
[http://dx.doi.org/10.1046/j.1365-2362.2003.01262.x] [PMID: 14636304]
[96]
Vesely BA, Song S, Sanchez-Ramos J, et al. Four peptide hormones decrease the number of human breast adenocarcinoma cells. Eur J Clin Invest 2005; 35(1): 60-9.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01444.x] [PMID: 15638821]
[97]
Lelièvre V, Pineau N, Hu Z, et al. Proliferative actions of natriuretic peptides on neuroblastoma cells. Involvement of guanylyl cyclase and non-guanylyl cyclase pathways. J Biol Chem 2001; 276(47): 43668-76.
[http://dx.doi.org/10.1074/jbc.M107341200] [PMID: 11553633]
[98]
Baldini PM, Lentini A, Mattioli P, et al. Decrease of polyamine levels and enhancement of transglutaminase activity in selective reduction of B16-F10 melanoma cell proliferation induced by atrial natriuretic peptide. Melanoma Res 2006; 16(6): 501-7.
[http://dx.doi.org/10.1097/01.cmr.0000232296.99160.d7] [PMID: 17119451]
[99]
Vesely DL. Cardiac hormones for the treatment of cancer. Endocr Relat Cancer 2013; 20(3): R113-25.
[http://dx.doi.org/10.1530/ERC-13-0054] [PMID: 23533248]
[100]
Vesely DL, Eichelbaum EJ, Sun Y, et al. Elimination of up to 80% of human pancreatic adenocarcinomas in athymic mice by cardiac hormones. In Vivo 2007; 21(3): 445-51.
[PMID: 17591353]
[101]
Lenz A, Sun Y, Eichelbaum EJ, Skelton WP, Pi G, Vesely DL. Twice-weekly intravenous treatment of pancreatic cancer with atrial natriuretic peptide and vessel dilator. in vivo 2010; 24(2): 125-9.
[102]
Vesely BA, Alli AA, Song SJ, Gower WR Jr, Sanchez-Ramos J, Vesely DL. Four peptide hormones’ specific decrease (up to 97%) of human prostate carcinoma cells. Eur J Clin Invest 2005; 35(11): 700-10.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01569.x] [PMID: 16269020]
[103]
Zenitani M, Nojiri T, Uehara S, et al. C‐type natriuretic peptide in combination with sildenafil attenuates proliferation of rhabdomyosarcoma cells. Cancer Med 2016; 5(5): 795-805.
[http://dx.doi.org/10.1002/cam4.642] [PMID: 26816265]
[104]
Sadeghpour S, Velayati M, Zafari N, et al. Natriuretic peptides in gastrointestinal cancer: Biomarkers and potential therapeutic targets. Curr Drug Res Rev 2023; 16.
[http://dx.doi.org/10.2174/0125899775237721231024092023] [PMID: 37936462]
[105]
Pourali G, Zafari N, Velayati M, et al. Therapeutic potential of targeting transforming growth factor-beta (TGF-β) and programmed death-ligand 1 (PD-L1) in pancreatic cancer. Curr Drug Targets 2023; 24(17): 1335-45.
[http://dx.doi.org/10.2174/0113894501264450231129042256] [PMID: 38053355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy