Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Position Control of Electro-hydraulic Servo System Based on Repetitive Control Strategy

Author(s): Bing Zhang*, Michael Enyan, Rao Junsen, Zhang Xinxing and Liu Hongyu

Volume 17, Issue 4, 2024

Published on: 08 March, 2024

Page: [260 - 280] Pages: 21

DOI: 10.2174/0122127976288436240221060807

Price: $65

Abstract

Background: When performing repetitive work in an electro-hydraulic servo system, the expected tracking signals are often periodic signals, such as trigonometric functions. For this kind of electro-hydraulic servo system, repetitive control is one of the most ideal control strategies.

Objective: The objective of this patent technology is to improve the position-tracking performance of the electro-hydraulic servo system and minimize tracking errors by designing and implementing a repetitive control strategy.

Methods: The study models an electro-hydraulic servo system, designs a stabilizing controller, and develops a plug-in repetitive controller to enhance EHSS tracking. The regeneration spectrum is used as a stability criterion, and performance is evaluated using statistical metrics like Mean Square Error (MSE), Root Mean Square Error (RMSE), and standard deviation of the tracking error along with tracking performance and steady-state error.

Results: The developed controller, validated through simulation analysis and real-time experiments, significantly reduces tracking error and enhances system position tracking accuracy, demonstrating its effectiveness. For instance, the repetitive control strategy outperforms PID and backstepping controllers at 30 mm with 0.5 Hz, achieving an error of 0.2 with an RMSE of 0.0924 and σ of 0.0878. Similar trends are observed at various test conditions, highlighting the consistent and robust performance of the designed repetitive controller. Additionally, the designed repetitive controller demonstrates an average improvement of 75.175% and 62.97% compared to the proportional- integral-derivative and backstepping controllers, respectively.

Conclusion: The designed controller provides technical support for position control of the electrohydraulic servo system, achieves position control requirements, and significantly improves positioning accuracy and response.

[1]
Manring ND, Fales RC. Hydraulic control systems. John Wiley & Sons 2019.
[http://dx.doi.org/10.1002/9781119418528]
[2]
Ding W, Deng H, Xia Y, Duan X. Tracking control of electro-hydraulic servo multi-closed-chain mechanisms with the use of an approximate nonlinear internal model. Control Eng Pract 2017; 58: 225-41.
[http://dx.doi.org/10.1016/j.conengprac.2016.11.003]
[3]
Yang X, Ge Y, Deng W, Yao J, Zhou N. Active fault-tolerant control for hydraulic actuating cylinders of aeroengine guidevane control mechanisms. CSA 2022; 43(9): 625464-25464.
[4]
Lopes RS, Nostrani MP, Carvalho LA, Dell’Amico A, Krus P, De Negri VJ. Modeling and analysis of a digital hydraulic actuator for flight control surfaces. Proceedings of the ASME/BATH 2021 Symposium on Fluid Power and Motion Control. October 19–21, 2021 2021.
[http://dx.doi.org/10.1115/FPMC2021-68923]
[5]
Yousef MA, Rabie MG, Rateb RA. System identification and controller design for a typical electro-hydraulic servo motor. 2021 International Telecommunications Conference (ITC-Egypt). 13-15 July 2021; Alexandria, Egypt. 2021.
[http://dx.doi.org/10.1109/ITC-Egypt52936.2021.9513950]
[6]
Shanmugasundar G, Fegade V, Mahdal M, Kalita K. Optimization of Variable Stiffness Joint in Robot Manipulator Using a Novel NSWOA-MARCOS Approach. Processes 2022; 10(6): 1074.
[http://dx.doi.org/10.3390/pr10061074]
[7]
Shanmugasundar G, Kalita K. Čep R, Chohan JS. Decision models for selection of industrial robots—A comprehensive comparison of multi-criteria decision making. Processes 2023; 11(6): 1681.
[http://dx.doi.org/10.3390/pr11061681]
[8]
Yang J. Hydraulic driving based intelligent vehicle height adjusting control structure, has first hydraulic cylinder, second hydraulic cylinder, third hydraulic cylinder and fourth hydraulic cylinder that are respectively fixed with middle supporting hydraulic cylinder. CN Patent 209552862U, 2019.
[9]
Shanmugasundar G, Sapkota G. Čep R, Kalita K. Application of MEREC in multi-criteria selection of optimal spray-painting robot. Processes 2022; 10(6): 1172.
[http://dx.doi.org/10.3390/pr10061172]
[10]
Du H, He Y, Yang Y, Wang Y. Study on tie rod force characteristics in electro-hydraulic power steering system for heavy vehicle. Proc Inst Mech Eng, D J Automob Eng 2021; 235(2-3): 564-79.
[http://dx.doi.org/10.1177/0954407020957766]
[11]
Shanmugasundar G, Sivaramakrishnan R, Meganathan S, Balasubramani S. Structural optimization of an five degrees of freedom (T-3R-T) robot manipultor using finite element analysis. Mater Today Proc 2019; 16: 1325-32.
[http://dx.doi.org/10.1016/j.matpr.2019.05.231]
[12]
Shanmugasundar G, Muralikumaran R, Sathishkumar L, et al. Design and finite element analysis of 6 DOF robotic arm for automatic pick and place application in industry 4.0. AIP Conf Proc 2023; 2747(1): 040006.
[http://dx.doi.org/10.1063/5.0132528]
[13]
Sonoda M, Oki T, Shibata K, Ochiai M, Long XP. Hydraulic drive apparatus for hydraulic excavator has first hydraulic pump that supplies hydraulic oil to boom hydraulic cylinder and second hydraulic pump that supplies hydraulic oil to arm hydraulic cylinder and bucket hydraulic cylinder. JP Patent 2008045575-A, 2008.
[14]
Peng J. Movable double-layer hydraulic lift, has lower bottom plate connected with first hydraulic cylinder, second hydraulic cylinder, third hydraulic cylinder and fourth hydraulic cylinder, where lower end of second hydraulic cylinder is connected with ground. CN Patent 209427931-U, 2019.
[15]
Rafeeq M, Afzal A, Rajendra S. Remote supervision and control of air conditioning systems in different modes. J Inst Eng (India): B 2019; 100(1): 175-85.
[http://dx.doi.org/10.1007/s40032-017-0434-2]
[16]
Kimyanggu L. Energy recovery device comprises a hydraulic cylinder for adding hydraulic pressure to energy of high-pressure reverse osmosis concentrated seawater, includes hydraulic cylinder and hydraulic cylinder piston rod to serve as piston rod. KR Patent 2020054142-A, 2020.
[17]
Harrold MJ, Thies PR, Newsam D, Ferreira BC, Johanning L. Modeling a nonlinear mooring system for floating offshore wind using a hydraulic cylinder analogy. 38th International Conference on Ocean, Offshore and Arctic Engineering.
[18]
Guo Q, Shi G, Wang D, He C, Hu J, Wang W. Iterative learning based output feedback control for electro-hydraulic loading system of a gait simulator. Mechatronics 2018; 54: 110-20.
[http://dx.doi.org/10.1016/j.mechatronics.2018.07.011]
[19]
Liu S, Wang L, Li C, et al. Disturbance rejection control with voltage constraint for electro-hydraulic system involving unknown dead-zones and drastic supply pressure variation. IEEE Access 2020; 8: 84551-68.
[http://dx.doi.org/10.1109/ACCESS.2020.2991162]
[20]
Wei Y, Qian L, Yin Q, Zou Q. Prescribed performance dynamic surface control of hydraulic-driven barrel servo system with disturbance compensation. Int J Control Autom Syst 2023; 21: 208-20.
[21]
Yang X, Ge Y, Deng W, Yao J. Precision motion control for electro-hydraulic axis systems under unknown time-variant parameters and disturbances. Chin J Aeronauti 2024; 37(1): 463-71.
[http://dx.doi.org/10.1016/j.cja.2023.06.001]
[22]
Chen H. Research of the Electro-hydraulic servo system based on RBF fuzzy neural network controller. J Softw 2012; 7(9): 1960-7.
[http://dx.doi.org/10.4304/jsw.7.9.1960-1967]
[23]
Yan H, Liu Y, Ma L. Mechanism of temperature's acting on electro-hydraulic servo valve. IEEE Access 2019; 7: 80465-77.
[http://dx.doi.org/10.1109/ACCESS.2019.2922135]
[24]
Essa MESM, Aboelela MAS, Hassan MAM. Position control of hydraulic servo system using proportional-integral-derivative controller tuned by some evolutionary techniques. J Vib Control 2016; 22(12): 2946-57.
[http://dx.doi.org/10.1177/1077546314551445]
[25]
Minorsky N. Directional stability of automatically steered bodies. J Am Soc Nav Eng Inc 1922; 34(2): 280-309.
[http://dx.doi.org/10.1111/j.1559-3584.1922.tb04958.x]
[26]
Das J. Nonlinear modeling and PID control through experimental characterization for an electrohydraulic actuation system: System characterization with validation. J Braz Soc Mech Sci Eng 2017; 39(4): 1177-87.
[27]
Nguyen MH, Dao HV, Ahn KK. Adaptive robust position control of electro-hydraulic servo systems with large uncertainties and disturbances. Appl Sci 2022; 12(2): 794.
[http://dx.doi.org/10.3390/app12020794]
[28]
Coskun MY. İtik M. Intelligent PID control of an industrial electrohydraulic system. ISA Trans 2023; 139: 484-98.
[http://dx.doi.org/10.1016/j.isatra.2023.04.005] [PMID: 37062608]
[29]
Mintsa HA, Eny GE, Senouveau N, Nzué RMA. Optimal tuning PID controller gains from ziegler-nichols approach for an electrohydraulic servo system. J Eng Res Rep 2023; 25(11): 158-66.
[http://dx.doi.org/10.9734/jerr/2023/v25i111031]
[30]
Fan Y, Shao J, Sun G, Shao X. Improved beetle antennae search algorithm-based lévy flight for tuning of PID controller in force control system. Math Probl Eng 2020; 2020: 1-22.
[http://dx.doi.org/10.1155/2020/4287315]
[31]
Fadel MZ. Hybrid control algorithm sliding mode-PID for an electrohydraulic servo actuator system based on particle swarm optimization technique. J Eur Syst Autom 2023; 56(1): 153-63.
[http://dx.doi.org/10.18280/jesa.560119]
[32]
Negara AT, Ardiyanto I, Wahyunggoro O. Tuning of fractional-order PID controller for electro-hydraulic servo valve system. International Conference on Information and Communications Technology (ICOIACT). Yogyakarta, Indonesia. 2019; pp. 659-62.
[http://dx.doi.org/10.1109/ICOIACT46704.2019.8938409]
[33]
Alqadasi MMA, Othman SM, Rahmat MF, Abdullah F. Optimization of PID for industrial electro-hydraulic actuator using PSOGSA. TELKOMNIKA 2019; 17(5): 2625.
[http://dx.doi.org/10.12928/telkomnika.v17i5.12808]
[34]
Cao F. PID controller optimized by genetic algorithm for direct-drive servo system. Neural Comput Appl 2020; 32(1): 23-30.
[http://dx.doi.org/10.1007/s00521-018-3739-z]
[35]
Feng H, Ma W, Yin C, Cao D. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom Construct 2021; 127: 103722.
[http://dx.doi.org/10.1016/j.autcon.2021.103722]
[36]
Zhao Q, Fan CX, Sun ZY, Chen J. Research on PID and optimal control of vehicle electro-hydraulic active suspension. Linye Gongcheng Xuebao 2014; 30(1): 68-72.
[37]
Liu ZH, Deng SP, Jiang YX. Research of electro-hydraulic position servo system based on PID with disturbance observer. Key Eng Mater 2016; 693: 1752-7.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.693.1752]
[38]
Onder M, Bayrak A, Aksoy S. RISE-based backstepping control design for an electro-hydraulic arm system with parametric uncertainties. Int J Control 2022; 95(10): 2815-27.
[http://dx.doi.org/10.1080/00207179.2021.1939164]
[39]
Won D, Kim W, Tomizuka M. Nonlinear control with high-gain extended state observer for position tracking of electro-hydraulic systems. IEEE/ASME Trans Mechatron 2020; 25(6): 2610-21.
[http://dx.doi.org/10.1109/TMECH.2020.2985619]
[40]
Deng W, Yao J, Wang Y, Yang X, Chen J. Output feedback backstepping control of hydraulic actuators with valve dynamics compensation. Mech Syst Signal Process 2021; 158: 107769.
[http://dx.doi.org/10.1016/j.ymssp.2021.107769]
[41]
Zou Q. Extended state observer-based finite time control of electro-hydraulic system via sliding mode technique. Asian J Control 2022; 24(5): 2311-27.
[http://dx.doi.org/10.1002/asjc.2638]
[42]
Zou Q, Chen D, Wei K. Sliding mode based mode free control of electro-hydraulic system with extended state observer. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC) 1637-41.
[43]
Cheng C, Liu S, Wu H. Sliding mode observer-based fractional-order proportional–integral–derivative sliding mode control for electro-hydraulic servo systems. Proc Inst Mech Eng, C J Mech Eng Sci 2020; 234(10): 1887-98.
[http://dx.doi.org/10.1177/0954406220903337]
[44]
Lin F, Ou K, Wang Y-X. A position adaptive control associated with high gain observer for electro-hydraulic servo system. 2020 Chinese Automation Congress (CAC). Shanghai, China. 2020; pp. 3345-50.
[http://dx.doi.org/10.1109/CAC51589.2020.9327275]
[45]
Yang G, Yao J. Nonlinear adaptive output feedback robust control of hydraulic actuators with largely unknown modeling uncertainties. Appl Math Model 2020; 79: 824-42.
[http://dx.doi.org/10.1016/j.apm.2019.10.062]
[46]
Ji X, Wang C, Zhang Z, Chen S, Guo X. Nonlinear adaptive position control of hydraulic servo system based on sliding mode back-stepping design method. Proc Inst Mech Eng, Part I, J Syst Control Eng 2021; 235(4): 474-85.
[http://dx.doi.org/10.1177/0959651820949663]
[47]
Guo K, Li M, Shi W, Pan Y. Adaptive tracking control of hydraulic systems with improved parameter convergence. IEEE Trans Ind Electron 2022; 69(7): 7140-50.
[http://dx.doi.org/10.1109/TIE.2021.3101006]
[48]
Chen L, Jiang J, Gao W, et al. Position control for a hydraulic loading system using the adaptive backsliding control method. Control Eng Pract 2023; 138: 105586.
[http://dx.doi.org/10.1016/j.conengprac.2023.105586]
[49]
Sa Y, Zhu Z, Tang Y, Li X, Shen G. Adaptive dynamic surface control using nonlinear disturbance observers for position tracking of electro-hydraulic servo systems. Proc Inst Mech Eng, Part I, J Syst Control Eng 2022; 236(3): 634-53.
[http://dx.doi.org/10.1177/09596518211037096]
[50]
Guo Q, Chen Z. Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty. Mech Syst Signal Process 2021; 146: 106869.
[http://dx.doi.org/10.1016/j.ymssp.2020.106869]
[51]
Song Y, Hu Z, Ai C. Fuzzy compensation and load disturbance adaptive control strategy for electro-hydraulic servo pump control system. Electronics 2022; 11(7): 1159.
[http://dx.doi.org/10.3390/electronics11071159]
[52]
Zaare S, Soltanpour MR. Optimal robust adaptive fuzzy backstepping control of electro-hydraulic servo position system. Trans Inst Meas Contr 2022; 44(6): 1247-62.
[http://dx.doi.org/10.1177/01423312211051496]
[53]
Yao Z, Liang X, Jiang GP, Yao J. Model-based reinforcement learning control of electrohydraulic position servo systems. IEEE/ASME Trans Mechatron 2023; 28(3): 1446-55.
[http://dx.doi.org/10.1109/TMECH.2022.3219115]
[54]
Ren HP, Jiao SS, Wang X, Kaynak O. Fractional order integral sliding mode controller based on neural network: theory and electro-hydraulic benchmark test. IEEE/ASME Trans Mechatron 2022; 27(3): 1457-66.
[http://dx.doi.org/10.1109/TMECH.2021.3088955]
[55]
Yang M, Zhang X, Xia Y, Liu Q, Zhu Q. Adaptive neural network-based sliding mode control for a hydraulic rotary drive joint. Comput Electr Eng 2022; 102: 108189.
[http://dx.doi.org/10.1016/j.compeleceng.2022.108189]
[56]
Tran DT, Nguyen MN, Ahn KK. RBF neural network based backstepping control for an electrohydraulic elastic manipulator. Appl Sci 2019; 9(11): 2237.
[http://dx.doi.org/10.3390/app9112237]
[57]
Tran DT, Ba DX, Ahn KK. Adaptive backstepping sliding mode control for equilibrium position tracking of an electrohydraulic elastic manipulator. IEEE Trans Ind Electron 2020; 67(5): 3860-9.
[http://dx.doi.org/10.1109/TIE.2019.2918475]
[58]
Wan Z, Yue L, Fu Y. Neural network-based adaptive backstepping control for electro-hydraulic servo system position tracking. Int J Aerosp Eng 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/3069092]
[59]
Wan Z, Fu Y. Fuzzy wavelet neural network-based backstepping control for electro-hydraulic servo systems. 2022 34th Chinese Control and Decision Conference (CCDC). Hefei, China 2022; pp. 3103-8.
[60]
Tony Thomas A, Thangarasu SK, Sowmithra T. Modeling and simulation of an electro-hydraulic system using fuzzy logic approach. In: Fluid Mechanics and Fluid Power. Singapore: Springer 2021; pp. 807-22.
[http://dx.doi.org/10.1007/978-981-16-0698-4_89]
[61]
Tran DT, Truong HVA, Ahn KK. Adaptive backstepping sliding mode control based RBFNN for a hydraulic manipulator including actuator dynamics. Appl Sci 2019; 9(6): 1265.
[http://dx.doi.org/10.3390/app9061265]
[62]
Huang J, An H, Yang Y, Wu C, Wei Q, Ma H. Model predictive trajectory tracking control of electro-hydraulic actuator in legged robot with multi-scale online estimator. IEEE Access 2020; 8: 95918-33.
[http://dx.doi.org/10.1109/ACCESS.2020.2995701]
[63]
Shi Q, He L. Model predictive control approach for electro-hydraulic braking by wire. IEEE Trans Industr Inform 2023; 19(2): 1380-8.
[http://dx.doi.org/10.1109/TII.2022.3159537]
[64]
Khedr OH, Maged SA, Al-Oufy AK, Awad MI. Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load. Int J Dynam Control 2023; 2023: 1-3.
[65]
Mi-Ching T, Wu-Sung Y. Design of a plug-in type repetitive controller for periodic inputs. IEEE Trans Control Syst Technol 2002; 10(4): 547-55.
[http://dx.doi.org/10.1109/TCST.2002.1014674]
[66]
Ayas MS, Altas IH. Designing and implementing a plug-in type repetitive controller for a redundantly actuated ankle rehabilitation robot. Proc Inst Mech Eng, Part I, J Syst Control Eng 2018; 232(5): 592-607.
[http://dx.doi.org/10.1177/0959651818762062]
[67]
Fateh MM, Tehrani HA, Karbassi SM. Repetitive control of electrically driven robot manipulators. Int J Syst Sci 2013; 44(4): 775-85.
[http://dx.doi.org/10.1080/00207721.2011.625478]
[68]
Itik M. Repetitive control of a trilayer conjugated polymer actuator. Sens Actuators A Phys 2013; 194(194): 149-59.
[http://dx.doi.org/10.1016/j.sna.2013.01.052]
[69]
Necipoglu S, Cebeci SA, Has YE, Guvenc L, Basdogan C. Robust repetitive controller for fast AFM imaging. IEEE Trans Nanotechnol 2011; 10(5): 1074-82.
[http://dx.doi.org/10.1109/TNANO.2011.2106797]
[70]
Zhang X, Zheng Z. Application of repetitive control in electric spring. IEEE Access 2020; 8: 216607-16.
[http://dx.doi.org/10.1109/ACCESS.2020.3041648]
[71]
Demirel B, Güvenç L. Parameter space design of repetitive controllers for satisfying a robust performance requirement. IEEE Trans Automat Contr 2010; 55(8): 1893-9.
[http://dx.doi.org/10.1109/TAC.2010.2049280]
[72]
Jiang X, Hong H. Analysis and design of the plug-in type repetitive control system based on steady-state residual convergence ratio. Int J Adv Robot Syst 2019; 16(3)
[http://dx.doi.org/10.1177/1729881419850977]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy