Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Quantitative Comparison of Liver Volume, Proton Density Fat Fraction, and Time Burden between Automatic Whole Liver Segmentation and Manual Sampling MRI Strategies for Diagnosing Metabolic Dysfunction-associated Steatotic Liver Disease in Obese Patients

Author(s): Di Cao, Yifan Yang, Mengyi Li, Yang Liu, Dawei Yang, Hui Xu, Han Lv, Zhongtao Zhang, Peng Zhang, Xibin Jia* and Zhenghan Yang*

Volume 20, 2024

Published on: 07 March, 2024

Article ID: e15734056282249 Pages: 17

DOI: 10.2174/0115734056282249231206060136

Price: $65

Abstract

Background: The performance of automatic liver segmentation and manual sampling MRI strategies needs be compared to determine interchangeability.

Objective: To compare automatic liver segmentation and manual sampling strategies (manual whole liver segmentation and standardized manual region of interest) for performance in quantifying liver volume and MRI-proton density fat fraction (MRI-PDFF), identifying steatosis grade, and time burden.

Methods: Fifty patients with obesity who underwent liver biopsy and MRI between December 2017 and November 2018 were included. Sampling strategies included automatic and manual whole liver segmentation and 4 and 9 large regions of interest. Intraclass correlation coefficient (ICC), Bland–Altman, linear regression, receiver operating characteristic curve, and Pearson correlation analyses were performed.

Results: Automatic whole liver segmentation liver volume and manual whole liver segmentation liver volume showed excellent agreement (ICC=0.97), high correlation (R2=0.96), and low bias (3.7%, 95% limits of agreement, -4.8%, 12.2%) in liver volume. There was the best agreement (ICC=0.99), highest correlation (R2=1.00), and minimum bias (0.84%, 95% limits of agreement, -0.20%, 1.89%) between automated whole liver segmentation MRI-PDFF and manual whole liver segmentation MRI-PDFF. There was no difference of each paired comparison of receiver operating characteristic curves for detecting steatosis (P=0.07–1.00). The minimum time burden for automatic whole liver segmentation was 0.32 s (0.32–0.33 s).

Conclusion: Automatic measurement has similar effects to manual measurement in quantifying liver volume, MRI-PDFF, and detecting steatosis. Time burden of automatic whole liver segmentation is minimal among all sampling strategies. Manual measurement can be replaced by automatic measurement to improve quantitative efficiency.

[1]
Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic dysfunction-associated steatotic liver disease (MASLD): A state-of-the-art review. J Obes Metab Syndr 2023; 32(3): 197-213.
[http://dx.doi.org/10.7570/jomes23052] [PMID: 37700494]
[2]
Davison BA, Harrison SA, Cotter G, et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J Hepatol 2020; 73(6): 1322-32.
[http://dx.doi.org/10.1016/j.jhep.2020.06.025] [PMID: 32610115]
[3]
Kessler LG, Barnhart HX, Buckler AJ, et al. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 2015; 24(1): 9-26.
[http://dx.doi.org/10.1177/0962280214537333] [PMID: 24919826]
[4]
Tang A, Desai A, Hamilton G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 2015; 274(2): 416-25.
[http://dx.doi.org/10.1148/radiol.14140754] [PMID: 25247408]
[5]
Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol Metab 2021; 50: 101167.
[http://dx.doi.org/10.1016/j.molmet.2021.101167] [PMID: 33460786]
[6]
Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: Quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267(3): 767-75.
[http://dx.doi.org/10.1148/radiol.13121360] [PMID: 23382293]
[7]
Serai SD, Dillman JR, Trout AT. Proton density fat fraction measurements at 1.5- and 3-T hepatic MR imaging: Same-day agreement among readers and across two imager manufacturers. Radiology 2017; 284(1): 244-54.
[http://dx.doi.org/10.1148/radiol.2017161786] [PMID: 28212052]
[8]
Hong CW, Wolfson T, Sy EZ, et al. Optimization of region‐of‐interest sampling strategies for hepatic MRI proton density fat fraction quantification. J Magn Reson Imaging 2018; 47(4): 988-94.
[http://dx.doi.org/10.1002/jmri.25843] [PMID: 28842937]
[9]
Hong CW, Cui JY, Batakis D, et al. Repeatability and accuracy of various region-of-interest sampling strategies for hepatic MRI proton density fat fraction quantification. Abdom Radiol 2021; 46(7): 3105-16.
[http://dx.doi.org/10.1007/s00261-021-02965-5] [PMID: 33609166]
[10]
Li M, Cao D, Liu Y, et al. Alterations in the liver fat fraction features examined by magnetic resonance imaging following bariatric surgery: A self-controlled observational study. Obes Surg 2020; 30(5): 1917-28.
[http://dx.doi.org/10.1007/s11695-020-04415-5] [PMID: 32048152]
[11]
Cao D, Li M, Liu Y, et al. Comparison of reader agreement, correlation with liver biopsy, and time-burden sampling strategies for liver proton density fat fraction measured using magnetic resonance imaging in patients with obesity: A secondary cross-sectional study. BMC Med Imaging 2022; 22(1): 92.
[http://dx.doi.org/10.1186/s12880-022-00821-6] [PMID: 35581577]
[12]
Summers RM. Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol 2016; 207(1): 67-79.
[http://dx.doi.org/10.2214/AJR.15.15996] [PMID: 27101207]
[13]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[14]
Graffy PM, Sandfort V, Summers RM, Pickhardt PJ. Automated liver fat quantification at nonenhanced abdominal CT for population-based steatosis assessment. Radiology 2019; 293(2): 334-42.
[http://dx.doi.org/10.1148/radiol.2019190512] [PMID: 31526254]
[15]
Kinner S, Reeder SB, Yokoo T. Quantitative imaging biomarkers of NAFLD. Dig Dis Sci 2016; 61(5): 1337-47.
[http://dx.doi.org/10.1007/s10620-016-4037-1] [PMID: 26848588]
[16]
Hill CE, Biasiolli L, Robson MD, Grau V, Pavlides M. Emerging artificial intelligence applications in liver magnetic resonance imaging. World J Gastroenterol 2021; 27(40): 6825-43.
[http://dx.doi.org/10.3748/wjg.v27.i40.6825] [PMID: 34790009]
[17]
Park HJ, Park B, Lee SS. Radiomics and deep learning: Hepatic applications. Korean J Radiol 2020; 21(4): 387-401.
[http://dx.doi.org/10.3348/kjr.2019.0752] [PMID: 32193887]
[18]
Jimenez-Pastor A, Alberich-Bayarri A, Lopez-Gonzalez R, et al. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images. Eur Radiol 2021; 31(10): 7876-87.
[http://dx.doi.org/10.1007/s00330-021-07838-5] [PMID: 33768292]
[19]
Cho Y, Kim MJ, Park BJ, et al. Active learning for efficient segmentation of liver with convolutional neural network-corrected labeling in magnetic resonance imaging-derived proton density fat fraction. J Digit Imaging 2021; 34(5): 1225-36.
[http://dx.doi.org/10.1007/s10278-021-00516-4] [PMID: 34561782]
[20]
Chen X, Wei X, Tang M, et al. Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks. Ann Transl Med 2021; 9(24): 1768.
[http://dx.doi.org/10.21037/atm-21-5822] [PMID: 35071462]
[21]
Hasenstab K, Cunha GM, Ichikawa S, et al. CNN color-coded difference maps accurately display longitudinal changes in liver MRI-PDFF. Eur Radiol 2021; 31(7): 5041-9.
[http://dx.doi.org/10.1007/s00330-020-07649-0] [PMID: 33449180]
[22]
Martí-Aguado D, Jiménez-Pastor A, Alberich-Bayarri Á, et al. Automated whole-liver MRI segmentation to assess steatosis and iron quantification in chronic liver disease. Radiology 2022; 302(2): 345-54.
[http://dx.doi.org/10.1148/radiol.2021211027] [PMID: 34783592]
[23]
Campo CA, Hernando D, Schubert T, Bookwalter CA, Pay AJV, Reeder SB. Standardized approach for ROI-based measurements of proton density fat fraction and R2* in the liver. AJR Am J Roentgenol 2017; 209(3): 592-603.
[http://dx.doi.org/10.2214/AJR.17.17812] [PMID: 28705058]
[24]
Yang Y, Jia X, Wang L. Robust liver segmentation using boundary preserving dual attention network. 5th Chinese Conference, PRCV 2022. Shenzhen, China. November 4–7, 2022; 298-310.
[http://dx.doi.org/10.1007/978-3-031-18910-4_25]
[25]
Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci 2002; 15(1): 83-96.
[PMID: 12046553]
[26]
Expert Consultation WHO. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363(9403): 157-63.
[http://dx.doi.org/10.1016/S0140-6736(03)15268-3] [PMID: 14726171]
[27]
Bedossa P. Diagnosis of non‐alcoholic fatty liver disease/non‐alcoholic steatohepatitis: Why liver biopsy is essential. Liver Int 2018; 38(S1): 64-6.
[http://dx.doi.org/10.1111/liv.13653] [PMID: 29427497]
[28]
Johnson BL, Schroeder ME, Wolfson T, et al. Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 2014; 39(2): 440-7.
[http://dx.doi.org/10.1002/jmri.24153] [PMID: 23596052]
[29]
Tang A, Chen J, Le TA, et al. Cross-sectional and longitudinal evaluation of liver volume and total liver fat burden in adults with nonalcoholic steatohepatitis. Abdom Imaging 2015; 40(1): 26-37.
[http://dx.doi.org/10.1007/s00261-014-0175-0] [PMID: 25015398]
[30]
Procter AJ, Sun JY, Malcolm PN, Toms AP. Measuring liver fat fraction with complex-based chemical shift MRI: the effect of simplified sampling protocols on accuracy. BMC Med Imaging 2019; 19(1): 14.
[http://dx.doi.org/10.1186/s12880-019-0311-y] [PMID: 30736759]
[31]
Raunig DL, McShane LM, Pennello G, et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. Stat Methods Med Res 2015; 24(1): 27-67.
[http://dx.doi.org/10.1177/0962280214537344] [PMID: 24919831]
[32]
Diedenhofen B, Musch J. Cocor: A comprehensive solution for the statistical comparison of correlations. PLoS One 2015; 10(4): e0121945.
[http://dx.doi.org/10.1371/journal.pone.0121945] [PMID: 25835001]
[33]
Wang K, Mamidipalli A, Retson T, et al. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network. Radiol Artif Intell 2019; 1(2): 180022.
[http://dx.doi.org/10.1148/ryai.2019180022] [PMID: 32582883]
[34]
van Wissen J, Bakker N, Doodeman HJ, Jansma EP, Bonjer HJ, Houdijk APJ. Preoperative methods to reduce liver volume in bariatric surgery: A systematic review. Obes Surg 2016; 26(2): 251-6.
[http://dx.doi.org/10.1007/s11695-015-1769-5] [PMID: 26123526]
[35]
Romeijn MM, Kolen AM, Holthuijsen DDB, et al. Effectiveness of a low-calorie diet for liver volume reduction prior to bariatric surgery: A systematic review. Obes Surg 2021; 31(1): 350-6.
[http://dx.doi.org/10.1007/s11695-020-05070-6] [PMID: 33140292]
[36]
Sofue K, Mileto A, Dale BM, Zhong X, Bashir MR. Interexamination repeatability and spatial heterogeneity of liver iron and fat quantification using MRI-based multistep adaptive fitting algorithm. J Magn Reson Imaging 2015; 42(5): 1281-90.
[http://dx.doi.org/10.1002/jmri.24922] [PMID: 25920074]
[37]
Vu KN, Gilbert G, Chalut M, Chagnon M, Chartrand G, Tang A. MRI‐determined liver proton density fat fraction, with MRS validation: Comparison of regions of interest sampling methods in patients with type 2 diabetes. J Magn Reson Imaging 2016; 43(5): 1090-9.
[http://dx.doi.org/10.1002/jmri.25083] [PMID: 26536609]
[38]
Mahady SE, Adams LA. Burden of non-alcoholic fatty liver disease in Australia. J Gastroenterol Hepatol 2018; 33(S1): 1-11.
[http://dx.doi.org/10.1111/jgh.14270] [PMID: 29851153]
[39]
Nakayama Y, Li Q, Katsuragawa S, et al. Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 2006; 240(3): 743-8.
[http://dx.doi.org/10.1148/radiol.2403050850] [PMID: 16857979]
[40]
Yokoo T, Serai SD, Pirasteh A, et al. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: A meta-analysis. Radiology 2018; 286(2): 486-98.
[http://dx.doi.org/10.1148/radiol.2017170550] [PMID: 28892458]
[41]
Tamaki N, Ajmera V, Loomba R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. Nat Rev Endocrinol 2022; 18(1): 55-66.
[http://dx.doi.org/10.1038/s41574-021-00584-0] [PMID: 34815553]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy