Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Bionanofactories for the Environmental Friendly Fabrication of Silver Nanoparticles: Application to the Analysis of Antimicrobial Agents

Author(s): Shatrudhan Prajapati, Shikha Yadav* and Javed Khan

Volume 20, Issue 2, 2024

Published on: 05 March, 2024

Page: [98 - 114] Pages: 17

DOI: 10.2174/0115734129281373240214071815

Price: $65

Abstract

The green synthesis of silver nanoparticles has garnered significant interest because of the unique physicochemical and biological properties they possess. These nanoparticles could have applications in a wide variety of fields, including biomedicine, cellular imaging, cosmetics, healthcare tourism, food and agriculture. The formation of nanoparticles is facilitated by the use of bionanofactories, or green synthesis processes, which utilise living organisms, biomolecules, and plant-based materials as bio reductive or bio sealing agents. Green chemistry is cost-effective in addition to being environmentally friendly, non-toxic, and biodegradable. By considering the results of recent studies using techniques like scanning electron microscopy, transmission electron microscopy, atomic force microscopy, ultraviolet/visible spectrophotometry, Fourier transform infrared spectroscopy or X-ray diffraction, we illuminate the most recent advances in green synthesis and the physicochemical properties of green silver nanoparticles. We also discuss the properties of silver nanoparticles that make them effective against bacteria, fungi, and parasites.

Graphical Abstract

[1]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[2]
Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod., 2020, 272, 122880.
[http://dx.doi.org/10.1016/j.jclepro.2020.122880]
[3]
Parveen, K.; Banse, V.; Ledwani, L. Green synthesis of nanoparticles: Their advantages and disadvantages. In: InAIP conference proceedings; AIP Publishing LLC, 1724, 1724, p. (1)020048.
[4]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[5]
Dyawanapelly, S.; Junnuthula, V.; Singh, A. The holy grail of polymer therapeutics for cancer therapy: An overview on the pharmacokinetics and bio distribution. Curr. Drug Metab., 2015, 16(7), 522-537.
[http://dx.doi.org/10.2174/1389200216666141219122614] [PMID: 25523548]
[6]
Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem., 2006, 8(5), 417-432.
[http://dx.doi.org/10.1039/b517131h]
[7]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[8]
Barbalinardo, M.; Bertacchini, J.; Bergamini, L.; Magarò, M.S.; Ortolani, L.; Sanson, A.; Palumbo, C.; Cavallini, M.; Gentili, D. Surface properties modulate protein corona formation and determine cellular uptake and cytotoxicity of silver nanoparticles. Nanoscale, 2021, 13(33), 14119-14129.
[http://dx.doi.org/10.1039/D0NR08259G] [PMID: 34477693]
[9]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[10]
Gottimukkala, K.S.; Harika, R.P.; Zamare, D. Green synthesis of iron nanoparticles using green tea leaves extract. J. Nanomed. Biother. Discov., 2017, 7, 151.
[11]
Kumar, S.; Lather, V.; Pandita, D. Green synthesis of therapeutic nanoparticles: An expanding horizon. Nanomedicine, 2015, 10(15), 2451-2471.
[http://dx.doi.org/10.2217/nnm.15.112] [PMID: 26227948]
[12]
Husen, A.; Siddiqi, K.S. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res. Lett., 2014, 9(1), 229.
[http://dx.doi.org/10.1186/1556-276X-9-229] [PMID: 24910577]
[13]
Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci., 2011, 169(2), 59-79.
[http://dx.doi.org/10.1016/j.cis.2011.08.004] [PMID: 21981929]
[14]
Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes-A review. Colloids Surf. B Biointerfaces, 2014, 121, 474-483.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.027] [PMID: 25001188]
[15]
Asmathunisha, N.; Kathiresan, K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B Biointerfaces, 2013, 103, 283-287.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.030] [PMID: 23202242]
[16]
Schröfel, A.; Kratošová, G.; Šafařík, I.; Šafaříková, M.; Raška, I.; Shor, L.M. Applications of biosynthesized metallic nanoparticles – A review. Acta Biomater., 2014, 10(10), 4023-4042.
[http://dx.doi.org/10.1016/j.actbio.2014.05.022] [PMID: 24925045]
[17]
Ravichandran, A.; Subramanian, P.; Manoharan, V.; Muthu, T.; Periyannan, R.; Thangapandi, M.; Ponnuchamy, K.; Pandi, B.; Marimuthu, P.N. Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J. Photochem. Photobiol. B, 2018, 185, 117-125.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.031] [PMID: 29886330]
[18]
Salari, Z.; Danafar, F.; Dabaghi, S.; Ataei, S.A. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J. Saudi Chem. Soc., 2016, 20(4), 459-464.
[http://dx.doi.org/10.1016/j.jscs.2014.10.004]
[19]
Murugesan, S.; Bhuvaneswari, S.; Sivamurugan, V. Green synthesis, characterization of silver nanoparticles of a marine red alga Spyridia fusiformis and their antibacterial activity. Int. J. Pharm. Pharm. Sci., 2017, 9(5), 192-197.
[http://dx.doi.org/10.22159/ijpps.2017v9i5.17105]
[20]
Singh, G.; Babele, P.K.; Shahi, S.K.; Sinha, R.P.; Tyagi, M.B.; Kumar, A. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J. Microbiol. Biotechnol., 2014, 24(10), 1354-1367.
[http://dx.doi.org/10.4014/jmb.1405.05003] [PMID: 24986675]
[21]
Buszewski, B.; Railean-Plugaru, V.; Pomastowski, P.; Rafińska, K.; Szultka-Mlynska, M.; Golinska, P.; Wypij, M.; Laskowski, D.; Dahm, H. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. Infect., 2018, 51(1), 45-54.
[http://dx.doi.org/10.1016/j.jmii.2016.03.002] [PMID: 27103501]
[22]
Abd-Elnaby, H.M.; Abo-Elala, G.M.; Abdel-Raouf, U.M.; Hamed, M.M. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res., 2016, 42(3), 301-312.
[http://dx.doi.org/10.1016/j.ejar.2016.05.004]
[23]
Xue, B.; He, D.; Gao, S.; Wang, D.; Yokoyama, K.; Wang, L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int. J. Nanomedicine, 2016, 11, 1899-1906.
[PMID: 27217752]
[24]
El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.M.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; Sabir, J.S.M.; Zou, X.; Halabi, M.F.; Sarhan, W.; Guo, W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances, 2019, 9(42), 24539-24559.
[http://dx.doi.org/10.1039/C9RA02225B] [PMID: 35527869]
[25]
Liu, J.; Hurt, R.H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol., 2010, 44(6), 2169-2175.
[http://dx.doi.org/10.1021/es9035557] [PMID: 20175529]
[26]
Lee, Y.J.; Kim, J.; Oh, J.; Bae, S.; Lee, S.; Hong, I.S.; Kim, S.H. Ion release kinetics and ecotoxicity effects of silver nanoparticles. Environ. Toxicol. Chem., 2012, 31(1), 155-159.
[http://dx.doi.org/10.1002/etc.717] [PMID: 22012883]
[27]
Yuan, Z.; Li, J.; Cui, L.; Xu, B.; Zhang, H.; Yu, C.P. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere, 2013, 90(4), 1404-1411.
[http://dx.doi.org/10.1016/j.chemosphere.2012.08.032] [PMID: 22985593]
[28]
Forough, M.; Farhadi, K. Biological and green synthesis of silver nanoparticles. Turk. J. Eng. Environ. Sci., 2010, 34(4), 281-287.
[29]
Liu, J.; Sonshine, D.A.; Shervani, S.; Hurt, R.H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano, 2010, 4(11), 6903-6913.
[http://dx.doi.org/10.1021/nn102272n] [PMID: 20968290]
[30]
Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol., 2011, 45(10), 4422-4428.
[http://dx.doi.org/10.1021/es104205a] [PMID: 21513312]
[31]
Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19(4), 1357-1361.
[http://dx.doi.org/10.1021/la020835i]
[32]
Mondal, N.K.; Chowdhury, A.; Dey, U.; Mukhopadhya, P.; Chatterjee, S.; Das, K.; Datta, J.K. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac. J. Trop. Dis., 2014, 4, S204-S210.
[http://dx.doi.org/10.1016/S2222-1808(14)60440-0]
[33]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; De, S.P.; Misra, A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp., 2009, 339(1-3), 134-139.
[http://dx.doi.org/10.1016/j.colsurfa.2009.02.008]
[34]
Lin, Z.; Wu, J.; Xue, R.; Yang, Y. Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(4), 761-765.
[http://dx.doi.org/10.1016/j.saa.2004.03.029] [PMID: 15649812]
[35]
Vidhu, V.K.; Aromal, S.A.; Philip, D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 83(1), 392-397.
[http://dx.doi.org/10.1016/j.saa.2011.08.051] [PMID: 21920808]
[36]
Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.A.; Rashid, U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci., 2012, 13(8), 9923-9941.
[http://dx.doi.org/10.3390/ijms13089923] [PMID: 22949839]
[37]
Singh, A.; Jain, D.; Upadhyay, M.K.; Khandelwal, N.; Verma, H.N. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct., 2010, 5(2), 483-489.
[38]
Jain, A.S.; Pawar, P.S.; Sarkar, A.; Junnuthula, V.; Dyawanapelly, S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci., 2021, 22(21), 11993.
[http://dx.doi.org/10.3390/ijms222111993]
[39]
Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1272-1291.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[40]
Srikar, S.K.; Giri, D.D.; Pal, D.B.; Mishra, P.K.; Upadhyay, S.N. Green synthesis of silver nanoparticles: A review. Green Sustain. Chem., 2016, 6(1), 34-56.
[http://dx.doi.org/10.4236/gsc.2016.61004]
[41]
Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 310-315.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
[42]
Vilchis-Nestor, A.R.; Sánchez-Mendieta, V.; Camacho-López, M.A.; Gómez-Espinosa, R.M.; Camacho-López, M.A.; Arenas-Alatorre, J.A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett., 2008, 62(17-18), 3103-3105.
[http://dx.doi.org/10.1016/j.matlet.2008.01.138]
[43]
Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem., 2009, 44(10), 1133-1138.
[http://dx.doi.org/10.1016/j.procbio.2009.06.005]
[44]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[45]
Dubey, S.P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B Biointerfaces, 2010, 80(1), 26-33.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.024] [PMID: 20620889]
[46]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp., 2010, 364(1-3), 34-41.
[http://dx.doi.org/10.1016/j.colsurfa.2010.04.023]
[47]
Das, S.K.; Liang, J.; Schmidt, M.; Laffir, F.; Marsili, E. Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS Nano, 2012, 6(7), 6165-6173.
[http://dx.doi.org/10.1021/nn301502s] [PMID: 22708541]
[48]
Ahluwalia, V.; Kumar, J.; Sisodia, R.; Shakil, N.A.; Walia, S. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod., 2014, 55, 202-206.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.026]
[49]
Liu, L.; Liu, T.; Tade, M.; Wang, S.; Li, X.; Liu, S. Less is more, greener microbial synthesis of silver nanoparticles. Enzyme Microb. Technol., 2014, 67, 53-58.
[http://dx.doi.org/10.1016/j.enzmictec.2014.09.003] [PMID: 25442949]
[50]
Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 2019, 9(5), 2673-2702.
[http://dx.doi.org/10.1039/C8RA08982E] [PMID: 35520490]
[51]
Otari, S.V.; Patil, R.M.; Ghosh, S.J.; Thorat, N.D.; Pawar, S.H. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 1175-1180.
[http://dx.doi.org/10.1016/j.saa.2014.10.003] [PMID: 25456659]
[52]
Singh, D; Rathod, V; Ninganagouda, S; Hiremath, J; Singh, AK; Mathew, J Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014, 2014.
[53]
Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res., 2016, 32(2), 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[54]
Mondal, A.H.; Yadav, D.; Mitra, S.; Mukhopadhyay, K. Biosynthesis of silver nanoparticles using culture supernatant of Shewanella sp. ARY1 and their antibacterial activity. Int. J. Nanomedicine, 2020, 15, 8295-8310.
[http://dx.doi.org/10.2147/IJN.S274535] [PMID: 33149577]
[55]
Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518.
[http://dx.doi.org/10.1016/j.bcab.2020.101518]
[56]
Oladipo, I.C.; Lateef, A.; Elegbede, J.A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Gueguim-Kana, E.B.; Beukes, L.S.; Oluyide, T.O.; Atanda, O.R. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. J. Photochem. Photobiol. B, 2017, 173, 250-257.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.003] [PMID: 28601037]
[57]
Karthik, L.; Kumar, G.; Kirthi, A.V.; Rahuman, A.A.; Bhaskara Rao, K.V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng., 2014, 37(2), 261-267.
[http://dx.doi.org/10.1007/s00449-013-0994-3] [PMID: 23771163]
[58]
Golinska, P.; Wypij, M.; Ingle, A.P.; Gupta, I.; Dahm, H.; Rai, M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl. Microbiol. Biotechnol., 2014, 98(19), 8083-8097.
[http://dx.doi.org/10.1007/s00253-014-5953-7] [PMID: 25158833]
[59]
Gudikandula, K.; Vadapally, P.; Singara Charya, M.A. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano, 2017, 2, 64-78.
[http://dx.doi.org/10.1016/j.onano.2017.07.002]
[60]
Marshall, M.J.; Beliaev, A.S.; Dohnalkova, A.C.; Kennedy, D.W.; Shi, L.; Wang, Z.; Boyanov, M.I.; Lai, B.; Kemner, K.M.; McLean, J.S.; Reed, S.B.; Culley, D.E.; Bailey, V.L.; Simonson, C.J.; Saffarini, D.A.; Romine, M.F.; Zachara, J.M.; Fredrickson, J.K. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol., 2006, 4(8), e268.
[http://dx.doi.org/10.1371/journal.pbio.0040268] [PMID: 16875436]
[61]
Ober, C.K. Self-assembly. Persistence pays off. Science, 2002, 296(5569), 859-861.
[http://dx.doi.org/10.1126/science.1071399] [PMID: 11988559]
[62]
Wei, X.; Luo, M.; Li, W.; Yang, L.; Liang, X.; Xu, L.; Kong, P.; Liu, H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol., 2012, 103(1), 273-278.
[http://dx.doi.org/10.1016/j.biortech.2011.09.118] [PMID: 22019398]
[63]
Liu, L.; Cañizares, M.C.; Monger, W.; Perrin, Y.; Tsakiris, E.; Porta, C.; Shariat, N.; Nicholson, L.; Lomonossoff, G.P. Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine, 2005, 23(15), 1788-1792.
[http://dx.doi.org/10.1016/j.vaccine.2004.11.006] [PMID: 15734042]
[64]
Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/682749]
[65]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1(10), 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[66]
Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Ganash Magdah, A.; Helmy, E.A.M.; Mabrouk, A.S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. Bionanoscience, 2018, 8(1), 5-16.
[http://dx.doi.org/10.1007/s12668-017-0413-3]
[67]
Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Paralikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 2007, 61(6), 1413-1418.
[http://dx.doi.org/10.1016/j.matlet.2006.07.042]
[68]
Fayaz, M.; Tiwary, C.S.; Kalaichelvan, P.T.; Venkatesan, R. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf. B Biointerfaces, 2010, 75(1), 175-178.
[http://dx.doi.org/10.1016/j.colsurfb.2009.08.028] [PMID: 19783414]
[69]
Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces, 2003, 28(4), 313-318.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[70]
Honary, S.; Barabadi, H.; Gharaei-Fathabad, E.; Naghibi, F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop. J. Pharm. Res., 2013, 12(1), 7-11.
[http://dx.doi.org/10.4314/tjpr.v12i1.2]
[71]
Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.B.; Prabhakar, B.K.; Venkataraman, A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces, 2009, 68(1), 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[72]
Korbekandi, H.; Mohseni, S.; Mardani Jouneghani, R.; Pourhossein, M.; Iravani, S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 235-239.
[http://dx.doi.org/10.3109/21691401.2014.937870] [PMID: 25101816]
[73]
Abdeen, S.; Geo, S.; Praseetha, PK.; Dhanya, RP. Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications; Research Gate, 2014.
[74]
Chauhan, R.; Kumar, A.; Abraham, J. A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci. Pharm., 2013, 81(2), 607-621.
[http://dx.doi.org/10.3797/scipharm.1302-02] [PMID: 23833724]
[75]
Anil Kumar, S.; Abyaneh, M.K.; Gosavi, S.W.; Kulkarni, S.K.; Pasricha, R.; Ahmad, A.; Khan, M.I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett., 2007, 29(3), 439-445.
[http://dx.doi.org/10.1007/s10529-006-9256-7] [PMID: 17237973]
[76]
Shao, Y.; Wu, C.; Wu, T.; Yuan, C.; Chen, S.; Ding, T.; Ye, X.; Hu, Y. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol., 2018, 111, 1281-1292.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.012] [PMID: 29307808]
[77]
Malassis, L.; Dreyfus, R.; Murphy, R.J.; Hough, L.A.; Donnio, B.; Murray, C.B. One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Advances, 2016, 6(39), 33092-33100.
[http://dx.doi.org/10.1039/C6RA00194G]
[78]
Ahmad, N.; Sharma, S.; Singh, VN.; Shamsi, SF.; Fatma, A.; Mehta, BR Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol. Res. Int., 2011, 2011, 454090.
[http://dx.doi.org/10.4061/2011/454090]
[79]
Shin, S.; Song, I.; Um, S. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 2015, 5(3), 1351-1365.
[http://dx.doi.org/10.3390/nano5031351] [PMID: 28347068]
[80]
Fahmy, T.Y.A.; Mobarak, F. Green nanotechnology: A short cut to beneficiation of natural fibers. Int. J. Biol. Macromol., 2011, 48(1), 134-136.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.010] [PMID: 20974169]
[81]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[82]
Nath, D.; Banerjee, P. Green nanotechnology – A new hope for medical biology. Environ. Toxicol. Pharmacol., 2013, 36(3), 997-1014.
[http://dx.doi.org/10.1016/j.etap.2013.09.002] [PMID: 24095717]
[83]
Skoog, DA.; James, F. Principles of instrumental analysis. Science, 2017.
[84]
Paulkumar, K; Gnanajobitha, G; Vanaja, M; Rajeshkumar, S; Malarkodi, C; Pandian, K; Annadurai, G Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci. World J. 2014, 2014.
[85]
Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine, 2015, 11(7), 1603-1611.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[86]
Gurunathan, S.; Han, J.W.; Kim, E.; Park, J.H.; Kim, J.H. Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomedicine, 2015, 10, 2951-2969.
[http://dx.doi.org/10.2147/IJN.S79879] [PMID: 25931821]
[87]
Liz-Marzán, L. Ed.; Colloidal synthesis of plasmonic nanometals; CRC Press, 2020.
[http://dx.doi.org/10.1201/9780429295188]
[88]
Singh, T.; Jyoti, K.; Patnaik, A.; Singh, A.; Chauhan, R.; Chandel, S.S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J. Genet. Eng. Biotechnol., 2017, 15(1), 31-39.
[http://dx.doi.org/10.1016/j.jgeb.2017.04.005] [PMID: 30647639]
[89]
Ramalingmam, P.; Muthukrishnan, S.; Thangaraj, P. Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoeng., 2015, 1(4), 241-247.
[90]
Muniz, F.T.L.; Miranda, M.A.R.; Morilla dos Santos, C.; Sasaki, J.M. The scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A Found. Adv., 2016, 72(3), 385-390.
[http://dx.doi.org/10.1107/S205327331600365X] [PMID: 27126115]
[91]
Goldstein, JI; Newbury, DE; Michael, JR; Ritchie, NW; Scott, JH; Joy, DC Scanning electron microscopy and X-ray microanalysis springer, 2017.
[92]
Suresh, G.; Gunasekar, P.H.; Kokila, D.; Prabhu, D.; Dinesh, D.; Ravichandran, N.; Ramesh, B.; Koodalingam, A.; Vijaiyan Siva, G. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 127, 61-66.
[http://dx.doi.org/10.1016/j.saa.2014.02.030] [PMID: 24632157]
[93]
Reimer, L. Transmission electron microscopy: Physics of image formation and microanalysis Springer 2013.
[94]
Giannini, C.; Ladisa, M.; Altamura, D.; Siliqi, D.; Sibillano, T.; De Caro, L. X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals, 2016, 6(8), 87.
[http://dx.doi.org/10.3390/cryst6080087]
[95]
Smiechowicz, E.; Niekraszewicz, B.; Kulpinski, P. Optimisation of AgNP synthesis in the production and modification of antibacterial cellulose fibres. Materials, 2021, 14(15), 4126.
[http://dx.doi.org/10.3390/ma14154126] [PMID: 34361322]
[96]
Ahmed, S.; Ahmad, M.; Swami, BL; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[97]
Okafor, F.; Janen, A.; Kukhtareva, T.; Edwards, V.; Curley, M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int. J. Environ. Res. Public Health, 2013, 10(10), 5221-5238.
[http://dx.doi.org/10.3390/ijerph10105221] [PMID: 24157517]
[98]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[99]
Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 2016, 4, e2589.
[http://dx.doi.org/10.7717/peerj.2589] [PMID: 27781173]
[100]
Gopinath, V. MubarakAli, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces, 2012, 96, 69-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.023] [PMID: 22521683]
[101]
Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 2017, 18(3), 569.
[http://dx.doi.org/10.3390/ijms18030569] [PMID: 28272303]
[102]
Thomson, E.J. Ethical issues in research involving human participants. In: National Library of Medicine; National Human Genome Research Institute; , 1998.
[103]
Wagner, C.; Graninger, W.; Presterl, E.; Joukhadar, C. The echinocandins: Comparison of their pharmacokinetics, pharmacodynamics and clinical applications. Pharmacology, 2006, 78(4), 161-177.
[http://dx.doi.org/10.1159/000096348] [PMID: 17047411]
[104]
Kristanc, L.; Božič, B.; Jokhadar, ŠZ.; Dolenc, MS; Gomišček, G. The pore-forming action of polyenes: From model membranes to living organisms. Biochimica et Biophysica Acta (BBA)- Biomembranes, 2019 Feb 1;1861(2), 418-430.
[105]
Borgers, M. Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Reviews of infectious diseases., 1980 Jul 1;2(4), 520-534.
[106]
Guo, Y.; Li, J.; Shi, J.; Mi, L.; Zhang, J.; Han, S.; Liu, W.; Cheng, D.; Qiang, S.; Kalaji, H.M.; Chen, S Griseofulvin Inhibits Root Growth by Targeting Microtubule-Associated Proteins Rather Tubulins in Arabidopsis. International Journal of Molecular Sciences., 2023 May 12;24(10), 8692.
[107]
Baran, R.; Hay, R.J.; Garduno, J.I. Review of antifungal therapy and the severity index for assessing onychomycosis: Part I. J. Dermatolog. Treat., 2008, 19(2), 72-81.
[http://dx.doi.org/10.1080/09546630701243418] [PMID: 18484426]
[108]
Kim, K.J.; Sung, W.S.; Suh, B.K.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 2009, 22(2), 235-242.
[http://dx.doi.org/10.1007/s10534-008-9159-2] [PMID: 18769871]
[109]
Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Taj, R.; Khan, A.U.; Hameed, M.U.; Yuan, Q. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb. Pathog., 2016, 99, 271-281.
[http://dx.doi.org/10.1016/j.micpath.2016.08.031] [PMID: 27591110]
[110]
Rajakumar, G.; Abdul Rahuman, A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop., 2011, 118(3), 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[111]
Wypij, M.; Czarnecka, J.; Dahm, H.; Rai, M.; Golinska, P. Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. J. Basic Microbiol., 2017, 57(9), 793-800.
[http://dx.doi.org/10.1002/jobm.201700121] [PMID: 28670763]
[112]
Santhoshkumar, T.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A.A.; Elango, G.; Kamaraj, C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res., 2011, 108(3), 693-702.
[http://dx.doi.org/10.1007/s00436-010-2115-4] [PMID: 20978795]
[113]
de Vries, H.J.C.; Reedijk, S.H.; Schallig, H.D.F.H. Cutaneous leishmaniasis: Recent developments in diagnosis and management. Am. J. Clin. Dermatol., 2015, 16(2), 99-109.
[http://dx.doi.org/10.1007/s40257-015-0114-z] [PMID: 25687688]
[114]
Allahverdiyev, A.; Abamor, E.Ş; Bagirova, M.; Ustundag, C.B.; Kaya, C.; Kaya, F.; Rafailovich, M Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomedicine, 2011, 6, 2705-2714.
[http://dx.doi.org/10.2147/IJN.S23883] [PMID: 22114501]
[115]
Duarte, R.R. In silico prediction and partial characterization of bacteriocins from Xylella fastidiosa Doctoral dissertation, University of São Paulo, 2012.
[http://dx.doi.org/10.11606/D.46.2013.tde-23042013-085922]
[116]
Sundar, S.; Chakravarty, J. Investigational drugs for visceral leishmaniasis. Expert Opin. Investig. Drugs, 2015, 24(1), 43-59.
[http://dx.doi.org/10.1517/13543784.2014.954035] [PMID: 25409760]
[117]
Sundar, S.; Chakravarty, J. An update on pharmacotherapy for leishmaniasis. Expert Opin. Pharmacother., 2015, 16(2), 237-252.
[http://dx.doi.org/10.1517/14656566.2015.973850] [PMID: 25346016]
[118]
Arang, J-M. Garbarg. M.; Schwartz J-C.Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5909), 832-835.
[PMID: 6188956]
[119]
Lo Vecchio, A.; Dias, J.A.; Berkley, J.A.; Boey, C.; Cohen, M.B.; Cruchet, S.; Liguoro, I.; Salazar Lindo, E.; Sandhu, B.; Sherman, P.; Shimizu, T.; Guarino, A. Comparison of recommendations in clinical practice guidelines for acute gastroenteritis in children. J. Pediatr. Gastroenterol. Nutr., 2016, 63(2), 226-235.
[http://dx.doi.org/10.1097/MPG.0000000000001133] [PMID: 26835905]
[120]
Bridgford, JL.; Xie, SC.; Cobbold, SA.; Pasaje, CF.; Herrmann, S.; Yang, T.; Gillett, DL.; Dick, LR.; Ralph, SA.; Dogovski, C.; Spillman, NJ. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nature communications., 2018 Sep 18;9(1), 3801.
[121]
(a) Khan, N.T.; Mushtaq, M. Determination of antifungal activity of silver nanoparticles produced from Aspergillus Niger. Biol. Med., 2017, 9(1), 1. http://dx.doi.org/10.4172/0974-8369.1000363;
b) Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis., 2009, 93(10), 1037-1043.
[http://dx.doi.org/10.1094/PDIS-93-10-1037] [PMID: 30754381]
[122]
Kumar, V.; Yadav, S.K. Synthesis of stable, polyshaped silver, and gold nanoparticles using leaf extract of Lonicera japonica L. Int. J. Green Nanotechnol., 2011, 3(4), 281-291.
[http://dx.doi.org/10.1080/19430892.2011.633474]
[123]
Ali, S.M.; Yousef, N.M.; Nafady, N.A. Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J. Nanomater., 2015, 2015, 1-0.
[124]
Scorzoni, L. de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 36.
[http://dx.doi.org/10.3389/fmicb.2017.00036] [PMID: 28167935]
[125]
Ahmad, A.; Syed, F.; Shah, A.; Khan, Z.; Tahir, K.; Khan, A.U.; Yuan, Q. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advances, 2015, 5(90), 73793-73806.
[http://dx.doi.org/10.1039/C5RA13206A]
[126]
Hammer, K.; Hammer, J.; Oesterreicher, C.; Pötzi, R. Advanced distal colonic lesions as predictors of advanced lesions in the proximal colon. Medicine., 2000 May 1;79(3), 127-134.
[127]
Ahmad, Z.,; Azhar, B.A.,; Fatima, N., et al. (2018). Silver Nanoparticles: A Potential Antileishmanial Agent. Nanomaterials (Basel, Switzerland), 8(11), 904.
[http://dx.doi.org/10.3390/nano8110904]
[128]
Adem, F.,; Terefe, G.,; Girma, Z., et al. (2019). Silver nanoparticles synthesized using Moringa oleifera extract improves cutaneous lesions in a murine model of leishmaniasis. Journal of Nanobiotechnology, 17(1), 74.
[http://dx.doi.org/10.1186/s12951-019-0514-1]

© 2025 Bentham Science Publishers | Privacy Policy