Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Enantioselective Recognition of Chiral Α-Phenylethanol by Β-Cyclodextrin and Characterization of its Inclusion Behaviour based on 2D ROESY

Author(s): Jian Chen, Qiulin Li, Yawen Yang, Liang Qi, Xiang Han, Nan Zhang, Bin Zheng and Fuxin Chen*

Volume 20, Issue 2, 2024

Published on: 11 March, 2024

Page: [152 - 159] Pages: 8

DOI: 10.2174/0115734129285978240222103045

Price: $65

Abstract

Background: α-phenylethanol and its derivatives are important intermediates for the synthesis of a variety of chiral drugs.

Methods: The interaction mechanism of the two enantiomers of α-phenylethanol with β-cyclodextrin (β-CD) was investigated using 1H-NMR and ROESY. The loading of β-CD as the host with the chiral drug intermediate α-phenylethanol as the guest was investigated using high-resolution NMR in D2O and quantum chemical calculations.

Results: The results showed that both α-phenylethanol enantiomers were able to enter into the hydrophobic cavity of β-CD and undergo enantiospecific interactions, while the combination of 2D ROESY and quantum chemical calculations showed that the benzene ring of both R and S α- phenylethanol were inserted into the β-CD cavity toward the small-port end. However, the most stable poses of the two enantiomers were different, so the benzene ring of the S-enantiomer was more inclined to position the small-port end of β-CD than that of the R-enantiomer, which was reflected differently in the signals of 2D ROESY.

Conclusion: β-CD can enantioselectively recognize the α-phenylethanol enantiomers, and the 2D ROESY method is a direct and powerful tool in the recognition process of chiral host and guest research.

Graphical Abstract

[1]
Chao, L. Application of Epoxide Hydrolase In the Synthesis of Chiral Pharmaceutical Intermediates. Chemical Engineering Design Communications, 2018, 12, 44,198-224.
[2]
Patterson, A.K.; Elqarra, L.H.; Smith, D.K. Chirality-directed hydrogel assembly and interactions with enantiomers of an active pharmaceutical ingredient. Chem. Commun. (Camb.), 2022, 24(58), 3941-3944.
[3]
Kandula, J. S.; Rayala, V. P. K.; Pullapanthula, R. Chirality: An inescapable concept for the pharmaceutical, bio-pharmaceutical, food, and cosmetic industries. Sep. Sci. Plus., 2023, 6(4), 2200131.
[4]
Ni, B.; Clfen, H. Chirality communications between inorganic and organic compounds. SmartMat, 2021, 1(2), 17-32.
[5]
Neufeld, O.; Wengrowicz, O.; Peleg, O.; Rubio, A.; Cohen, O. Detecting multiple chiral centers in chiral molecules with high harmonic generation. Opt. Express, 2022, 30(3), 3729-3740.
[6]
Wang, Y.; Fang, Z.; Ahmed, A. Preparation and chromatographic application of β-cyclodextrin modified poly (styrene-divinylbenzene) microspheres. J. App. Pol. Sci., 2022, 139(47)
[http://dx.doi.org/10.1002/app.53180]
[7]
Luo, H.; Bai, X.; Liu, H. β-Cyclodextrin covalent organic framework modified-cellulose acetate membranes for enantioseparation of chiral drugs. Separ. Purif. Tech., 2022, 285, 120336.
[8]
Tang, B.; Wang, W.; Hou, H. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. Chin. Chem. Lett., 2022, 2(33), 898-902.
[9]
Uccello-Barretta, G.; Balzano, F. Chiral NMR solvating additives for differentiation of enantiomers. Top. Curr. Chem., 2013, 341, 69-131.
[10]
Ikuta, N.; Sugiyama, H.; Shimosegawa, H.; Nakane, R.; Ishida, Y.; Uekaji, Y.; Nakata, D.; Pallauf, K.; Rimbach, G.; Terao, K.; Matsugo, S. Analysis of the enhanced stability of R(+)-alpha lipoic acid by the complex formation with Cyclodextrins. Int. J. Mol. Sci., 2013, 14(2), 3639-3655.
[11]
Suzuki, R.; Inoue, Y.; Tsunoda, Y.; Murata, I.; Isshiki, Y.; Kondo, S.; Kanamoto, I. Effect of γ-cyclodextrin derivative complexation on the physicochemical properties and antimicrobial activity of hinokitiol. J. Incl. Phenom. Macro., 2015, 83, 177-186.
[12]
Rungrotmongkol, T.; Chakcharoensap, T.; Pongsawasdi, P.; Kungwan, N.; Wolschann, P. The inclusion complexation of daidzein with β-cyclodextrin and 2,6-dimethyl-β-cyclodextrin: a theoretical and experimental study. Monatsh. Chem., 2018, 149, 1739-1747.
[13]
Inoue, Y.; Shinohara, I.; Murat, I.; Kanamoto, I. Study on the molecular stability, solubility, and diffusibility of guaiazulene included in β- and γ-cyclodextrin. J. Mol. Struct., 2019, 1186, 50-59.
[14]
Nguyen, T.A.; Liu, B.; Zhao, J.; Thomas, D.S.; Hook, J.M. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem., 2013, 136, 186-192.
[15]
Zhu, Q.; Guo, T.; Xia, D.; Lia, X.; Zhua, C.; Lia, H.; Ouyangb, D.; Zhanga, J.; Gana, Y. Pluronic F127-modified liposome-containing tacrolimus-cyclodextrin inclusion complexes: improved solubility, cellular uptake and intestinal penetration. J. Pharmacol., 2004, 65, 1107-1117.
[16]
Zhang, Q.; Liu, Y. Molecular recognition study of some aliphatic chiral enantiomers and dyes with β-cyclodextrin and its eerivatives. Chem. J. Chin. Univ., 2013, 25, 73-76.
[17]
Gu, J.; Yang, J.L.; Lu, J.J.; Gao, Z.J.; Yang, J.; Su, L.J.; Tao, X.; Yang, L.; Yang, L.J. Study on inclusion behavior of sophocarpine with β-cyclodextrin and its derivatives. Chin. J. Anal. Chem., 2022, 50, 781-793.
[18]
Holzgrabe, U.; Mallwitz, H.; Branch, S.K.; Jefferies, T.M.; Wiese, M. Chiral discrimination by NMR spectroscopy of ephedrine and n-methyl- ephedrine induced by b-cyclodextrin, heptakis(2,3-di-o-acetyl)b-cyclodextrin, and heptakis(6-o-acetyl)b-cyclodextrin. Chirality, 1997, 9, 211-219.
[19]
Waibel, B.; Scheiber, J.; Meier, C.; Hammitzsch, M.; Baumann, K.; Scriba, G.K.E.; Holzgrabe, U. Comparison of cyclodextrin-dipeptide inclusion complexes in the absence and presence of urea by means of capillary electrophoresis, nuclear magnetic resonance and molecular modeling. Chemistry, 2007, 13, 2921-2930.
[20]
Guernelli, S.; Lagana, M.F.; Mezzina, E.; Ferroni, F.; Siani, G.; Spinelli, D. Supramolecular complex formation: a study of the interactions between b-cyclodextrin and some different classes of organic compounds by esims, surface tension measurements, and UV/vis and 1h NMR spectroscopy. Eur. J. Org. Chem., 2003, 4765-4776.
[21]
Cameron, K.S.; Fielding, L. NMR diffusion spectroscopy as a measure of host-guest complex association constants and as a probe of complex size. J. Org. Chem., 2001, 66, 6891-6895.
[22]
Simova, S.; Schneider, H-J. NMR analyses of cyclodextrin complexes with substituted benzoic acids and benzoate anions. J. Chem. Soc., Perkin Trans. 2, 2000, 1717-1722.
[23]
Estrada, E.; Perdomo-López, I.; Torres-Labandeira, J.J. Molecular modeling (mm2 and pm3) and experimental (NMR and thermal analysis) studies on the inclusion complex of salbutamol and -cyclodextrin. J. Org. Chem., 2000, 65, 8510-8517.
[24]
Schneider, H-J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev., 1998, 98, 1755-1785.
[25]
Ryo, K.; Kouta, I.; Koushiro, S.; Hiroki, O.; Toshiaki, H. Optical Sensing of Phenylurea Pesticides by Hydrogen Bonding with Carboxylate Dyess. Anal. Lett., 2022, 55, 2484-2494.
[26]
Betzenbichler, G.; Huber, L.; Kräh, S.; Morkos, M-L.K.; Siegle, A.F.; Trapp, O. Chiral stationary phases and applications in gas chromatography. Chirality, 2022, 34, 732-759.
[27]
Köhler, J.E.H.; Hohla, M.; Richters, M.; König, W.A. Cyclodextrin derivatives as chiral selectors-investigation of the interaction with (R,S)-methyl-2-chloropropionate by enantioselective gas chromatography, NMR spectroscopy, and molecular dynamics simulation. Angew. Chem. Int. Ed. Engl., 1992, 31, 319-320.
[28]
Salido-Fortuna, S.; Natalia, C.; María, C.; María, L.M. Use of choline chloride-D-sorbitol deep eutectic solvent as additive in cyclodextrin-electrokinetic chromatography for the enantiomeric separation of lacosamide. Microchem. J., 2021, 160, 105669.
[29]
Aguado, R Crosslinking of surface-sizing starch with cyclodextrin units enhances the performance of paper as essential oil carrier. Nord. Pulp Paper Res. J., 2022, 37(3), 413-421.
[30]
Zhang, J.; Liang, L.; Miao, Y. Open-tubular capillary electrochromatography with hydroxypropyl-β-cyclodextrin imprinted polymers: hybrid polyhedral oligomeric silsesquioxane as a coating for enantioseparation. RSC Advances, 2022, 12(16), 9637-9644.
[31]
Glöckler, D.; Christopher, W.; Martin, E.; Rani, B. Avoiding Interferences in Advance: Cyclodextrin Polymers to Enhance Selectivity in Extraction of Organic Micropollutants for Carbon Isotope Analysis. Anal. Chem., 2023, 95(20), 7839-7848.
[32]
Wang, S.; Zhou, R.; Du, K.; Shang, Y.; He, J.; Li, J.; Yao, Y.; Chang, Y.X. Simultaneous Separation and Determination of Nine Active Ingredients in Sanyetangzhiqing by Cyclodextrin-Modified Micellar Electrokinetic Capillary Electrophoresis-Diode Array Detector. J. Anal. Methods Chem., 2023, 2023, 4840457.
[33]
Mouna, C.; Rayenne, D.; Ammar, K.; Djameleddine, K. Dopamine family complexes with β-cyclodextrin: Molecular docking studies. Polycycl. Aromat. Compd., 2022, 42, 6033-6042.
[34]
Ayyappa., Suvardhan K., Parvesh S., Myalowenkosi I. S. and Krishna B. Determination of neotame by high-performance capillary electrophoresis using β-cyclodextrin as a chiral selector. Anal. Lett., 2014, 47, 2795-2812.
[35]
Tom, L.; Nirmal, C.R.; Dusthackeer, A. Formulation and evaluation of β-cyclodextrin-mediated inclusion complexes of isoniazid scaffolds: molecular docking and in vitro assessment of antitubercular properties. New J. Chem., 2020, 44(11), 4467-4477.
[36]
Jain, A.K.; Mishra, K.; Thareja, S. In Silico Docking of Anti Cancerous Drugs with β-Cyclodextrin polymer as a Prominent Approach to Improve the Bioavailability. Anticancer. Agents Med. Chem., 2021, 21(10), 1275-1283.
[37]
Prasheena, R.S.; Steiny, R.P.; Prema, K.J. Molecular Docking Study of α-Cyclodextrin With Psoralen: MDA-MB-231 Cancer Cell. Int. J. Pharm., 2021, 12(2), 978-981.
[38]
Li, T.; Guo, R.; Zong, Q. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym., 2022, 276, 118644.
[39]
Imam, S.S.; Sultan, A.; Mohammad, A.A.; Wael, A.M.; Wajhul, Q. Formulation of Silymarin-β Cyclodextrin-TPGS Inclusion Complex: Physicochemical Characterization, Molecular Docking, and Cell Viability Assessment against Breast Cancer Cell Lines. ACS Omega, 2023, 8(38), 34898-34907.
[40]
Ghosh, B.; Roy, N.; Roy, D. Exploring inclusion complex of an antithyroid drug (PTU) with α-Cyclodextrin for innovative applications by physicochemical approach optimized by molecular docking. J. Mol. Liq., 2023, 380, 121708.
[41]
Djilani, I.; Nouar, L.; Madi Fatiha, H. S.; Bouhadiba, A.; Khatmi, D. Inclusion complexes of ortho-anisidine and β-cyclodextrin: A quantum mechanical calculation. Comptes Rendus. Chimie., 2013, 16(8), 696-703.
[http://dx.doi.org/10.1016/j.crci.2013.02.009]
[42]
Yang, Z.; Zhou, D.; Fang, Y.; Ji, H. Shape-selective separation of geraniol and nerol via noncovalent interactionswith β-cyclodextrin. Sep. Sci. Technol., 2016, 51(1), 168-180.
[43]
Ignaczak, A.; Bartłomiej, P.; Sylwia, B. Quantum chemical study and isothermal titration calorimetry of β-cyclodextrin complexes with mianserin in aqueous solution. Org. Biomol. Chem., 2017, 15(5), 1209-1216.
[44]
El-Nahass, M.N.; Atlam, F.M. Diarylethylene guest anchored into a cyclodextrin molecular host: optical, quantum chemical studies and biological activity. Supramol. Chem., 2017, 29(4), 267-277.
[45]
Guendouzi, O.; Guendouzi, A.; Ouici, H.B. A quantum chemical study of encapsulation and stabilization of gallic acid in β -cyclodextrin as a drug delivery system. Can. J. Chem., 2020, 98, 204-214.
[46]
Mahmoudi, F S M Host-Guest interactions between nerve agent sarin and beta-Cyclodextrin: A theoretical investigation. J. Taiwan Inst. Chem. E., 2020, 116(1), 10.
[47]
Mahmoudi, F.; Shahraki, M. Encapsulating and decontaminating of sarin by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin: MD simulations and QM calculations. Mol. Syst. Des. Eng., 2021, 8, 643-653.
[48]
Pradhan, P.C.; Mandal, A.; Dutta, A. Delineating the behavior of Berberis anthocyanin/β-cyclodextrin inclusion complex in vitro: A molecular dynamics approach. Lebensm. Wiss. Technol., 2022, 157, 113090.
[49]
Avakyan, V.G.; Titov, S.V.; Nazarov, V.B. Long-lived room temperature phosphorescent system: Phenanthrene-beta-cyclodextrin-tert-butylbenzene. Spectra and structure computer simulations. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2022, 242, 118581.
[50]
Kumar, P.; Bhardwaj, V.K.; Purohit, R. Dispersion-corrected DFT calculations and umbrella sampling simulations to investigate stability of Chrysin-cyclodextrin inclusion complexes. Carbohydrate Polymers: Scientific & Technological Aspects of Industrially Important Polysaccharides, 2023, 319, 121162-11.
[51]
Wang, E.J.; Chen, G.Y.; Peng, M.S. NMR studies of chiral discrimination of ibuprofen enantiomers in β-cyclodextrin inclusion complexes. Chinese Journal of Magnetic Resonance, 2009, 26(02), 216-222.
[52]
Huang, S.H.; Bai, Z.W.; Feng, J.W. Enantiomeric discrimination of D/L-10-camphoric sulfonic acid by β-cyclodextrins studied by NMR spectroscopy. Chinese Journal of Magnetic Resonance, 2009, 26(04), 457-465.
[53]
Kazici, Hilal Production of precursors for anti-Alzheimer drugs: Asymmetric bioreduction in a packed-bed bioreactor using immobilized D. carota cells. Prep. Biochem. Biotechnol., 2017, 47(5), 67-73.
[54]
Mingbo, W.U.; Ying, Z.; Tianbing, Y. Optimization of condition for asymmetric synthesis of (R)-phenylethanol by Yarrowia lipolytica. China Measurement & Test, 2018, 8, 23-30.
[55]
Chanysheva, A.R.; Yunusova, G.V.; Vorobyova, T.E. Enantioselective synthesis of (S)-1-phenylethanol, a precursor to low-molecular-weight bioregulators. Russ. J. Gen. Chem., 2016, 13, 3021-3024.
[56]
Liu, J.; Wang, M.; Liang, C. Redox cascade reaction for kinetic resolution of racemic α-methylbenzylamine and biosynthesis of α-phenylethanol. Appl. Microbiol. Biotechnol., 2023, 107(1), 125-135.
[57]
Uccello-Barretta, G.; Balzano, F.; Martinelli, J.; Berni, M.G.; Villani, C.; Gasparrini, F. NMR enantiodiscrimination by cyclic tetraamidic chiral solvating agents. Tetrahedron Asymmetry, 2005, 16, 3746-3751.
[58]
Rama Chaudhari, S. Srinivasa and Suryaprakash, N. A versatile resolving agent for diffusion edited separation of enantiomers, complex mixtures and constitutional isomers. RSC Advances, 2012, 2, 8689-8692.
[59]
Motahareh, A.; Alireza, H.; Quang, H.L.; John, A. G. Λ-[Co((S,S)-dpen)3]3+ 2I–B(C6F5)4–: A second generation air- and water-stable chiral solvating agent for chirality sensing (dpen = NH2CHPhCHPhNH2). J. O. C., 2020, 85, 11250-11257.
[60]
George,G, Harrigan,. et al. Symplostatin 2: Dolastatin, A. 13 Analogue from the Marine Cyanobacterium Symploca hydnoides. J. Nat. Prod., 1999.
[61]
Smirnov, A; Fulton, D B; Andreotti, A Andreotti A, et al. Exploring Ground-State Heterogeneity of Hypericin and Hypocrellin A and B:  Dynamic and 2D ROESY NMR Study. J. Am. Chem. Soc., 1999, 121(35), 7981.
[62]
Liu, Y.H.; Wang, Y.F. Application of Nuclear Magnetic Resonance Spectroscopy in Polysaccharide Structure Analysis. Food and Drug, 2007, 08, 39-43.
[63]
Zhu, Q. Y.; Shen, H. M.; Ji, H.B. β-cyclodextrin derivatives induce asmmetric epoxidation of trans chalcone in H2O2 aqueoous phase. Chinese J. Org. Chem., 2016, 36(8), 1907-1914.
[64]
Sudha, N.; Israel, V.M.V. Enoch. Molecular encapsulation of Valganciclovir by β-cyclodextrin influences its binding to bovine serum albumin: a spectroscopic study. Phys. Chem. LIQ, 2019, 57, 43-54.
[65]
Suganthi, S.; Sivaraj, R.; Enoch, I.V.M.V. Molecular encapsulation of berberine by a modified β-cyclodextrin and binding of host: guest complex to G-quadruplex DNA, Nucleosides. Nucleos. Nucleot Nucl., 2019, 38, 858-873.
[66]
Y. H., Wang, S. H., Li, J. P. Lacquerin and β- Study on the Inclusion Behavior and Properties of Cyclodextrin Derivatives. Chin. Tradit. Herbal Drugs, 2021, 52(16), 4797-4810.
[67]
Stergiou, A.; Binou, P.; Igoumenidis, P.E. Host–guest inclusion complexes of hydroxytyrosol with cyclodextrins: Development of a potential functional ingredient for food application. JFS, 2022, 6, 87.
[68]
Yao, Y.; Yu, S.; Shen, Y. Facile synthesis of self-dispersed β-cyclodextrin-coupled cellulose microgel for sustained release of vanillin. Int. J. Biol. Macromol., 2022, 208, 70-79.
[69]
Tran, C.; Nargotra, P.; Pham, H. The effect of carboxymethyl cellulose and β-cyclodextrin as debittering agents on bitterness and physicochemical properties of bitter gourd extract. J. Food Sci. Technol., 2023, 60(5), 1521-1529.
[70]
Gu, J.; Yang, J.; Lu, J. Orange peel extract and β- Study on the Inclusion Behavior of Cyclodextrin and Its Derivatives. Yunnan Daxue Xuebao. Ziran Kexue Ban, 2023, 45(4), 904-910.
[71]
Khushboo, L.; Anuj, G. Inclusion Complex of Chrysin with Hydroxypropyl-β-cyclodextrin (HP-β-CD) Preparation, Characterization, and Dissolution Study. Bionanoscience, 2023, 12(2), 616-624.
[72]
Sharma, D.; Maheshwar, A. comparative study of inclusion complexes of flunarizine with alpha (α-CD) and beta-cyclodextrin (β-CD). J. Incl. Phenom. Macrocycl. Chem., 2010, 68(3), 453-459.
[73]
Srinivasan, K.; Stalin, T. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods. Spectrochimica Acta Part A, 2014, 130(1), 105-115.
[74]
Shi, J.H.; Ye, Y. Separation of enantiomers of sec-butyl carboxylicates on β-cyclodextrin derivatives and chiral recognization mechanism. Chin. J. Anal. Chem., 2010, 38, 7.

© 2025 Bentham Science Publishers | Privacy Policy