Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Exploring the Pharmacological Potential of Lobelia trigona and its Bioactive Compounds

Author(s): Ankita Moharana, Priyabati Choudhury, Snigdha Rani Behera, Pratik Kumar Vishwakarma, Shivendra Mani Tripathi* and Shobhit Prakash Srivastava*

Volume 5, 2024

Published on: 04 March, 2024

Article ID: e040324227605 Pages: 11

DOI: 10.2174/0126659786278190240214062949

Price: $65

Abstract

Aim: The aim of this in-depth review is to provide an overview of the pharmacological effects of Lobelia trigona and its bioactive components, highlighting its potential as a source of medicinal agents for various diseases.

Methods: This review involved a comprehensive analysis of existing literature and research studies on the pharmacological effects of Lobelia trigona and its bioactive compounds. A bibliography survey was carried out using various electronic databases like Google Scholar, ScienceDirect, Springer, Scopus, PubMed, Wiley, etc., and other offline as well as online academic libraries were also used for the bibliography survey and compilation of data.

Results: Lobelia trigona was found to exhibit diverse pharmacological effects, primarily mediated by bioactive alkaloids, such as lobeline, lobelanidine, and lobelanine. It demonstrated bronchodilator effects with potential applications in respiratory conditions, analgesic and antiinflammatory properties for treating painful and inflammatory conditions, and cardiovascular effects, including vasodilation and hypotensive effects. The alkaloid lobeline was reported to have promising anti-addictive effects, particularly in smoking cessation. Nanocarrier-based formulations have the potential to address limitations, improve dosing schedules, and enhance the pharmacological effects of Lobelia trigona.

Conclusion: Lobelia trigona demonstrates diverse pharmacological effects, primarily attributed to its bioactive alkaloids. It holds promise as a source of medicinal agents for a range of diseases. The potential synergy between the pharmacological effects of Lobelia trigona and nanocarrier technology highlights the significance of nanotechnology in improving Lobelia trigona-based therapeutics. However, further research is warranted to determine the clinical effectiveness, safety, biocompatibility, and long-term effects of nanocarrier-based Lobelia trigona formulations in different disease models.

[1]
Samdavid Thanapaul, R.J.R.; Manikandan, S.K.; Govindaraj, T.S.; Selvakumar, P.M.; Enoch, I.V.M.V.; Muthukumar Nadar, M.S.A. Lobelia trigona Roxb-based nanomedicine with enhanced biological applications: in vitro and in vivo approach. IET Nanobiotechnol., 2020, 14(8), 739-748.
[http://dx.doi.org/10.1049/iet-nbt.2020.0148 ] [PMID: 33108332]
[2]
Lobelia | Characteristics, Major Species, & Medicinal Uses | Britannica n.d. 2020. Available from : https://www.britannica.com/plant/Lobelia
[3]
Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy, 2023, 13(1), 220.
[http://dx.doi.org/10.3390/agronomy13010220]
[4]
Tefé-Silva, C. Evaluation of the lobelia inflata extract in the histopathological profile of melanoma in experimental model. Biomed. J. Sci. Tech. Res., 2020, 26(3)
[http://dx.doi.org/10.26717/BJSTR.2020.26.004348]
[5]
Cardinal flower | Description & Facts | Britannica n.d. 2020. Available from : https://www.britannica.com/plant/Lobelia-cardinalis
[6]
Nowicki, J; Murray, MT Bronchitis and pneumonia. Textbook of Natural Medicine., 2020, 1196-1201.
[http://dx.doi.org/10.1016/B978-0-323-43044-9.00155-2]
[7]
Serda, Maciej Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza. Uniw Śląski, 2013, 7, 343-354.
[http://dx.doi.org/10.2/JQUERY.MIN.JS]
[8]
Rauf, A.; Akram, M.; Semwal, P.; Mujawah, A.A.H.; Muhammad, N.; Riaz, Z.; Munir, N.; Piotrovsky, D.; Vdovina, I.; Bouyahya, A.; Adetunji, C.O.; Shariati, M.A.; Almarhoon, Z.M.; Mabkhot, Y.N.; Khan, H. Antispasmodic potential of medicinal plants: A comprehensive review. Oxid. Med. Cell. Longev., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/4889719 ] [PMID: 34804367]
[9]
Sarkar, D.; Walker-Swaney, J.; Shetty, K. Food diversity and indigenous food systems to combat diet-linked chronic diseases. Curr. Dev. Nutr., 2020, 4(Suppl. 1), 3-11.
[http://dx.doi.org/10.1093/cdn/nzz099] [PMID: 32258994]
[10]
Wanjohi, B.K.; Sudoi, V.; Njenga, E.W.; Kipkore, W.K. An ethnobotanical study of traditional knowledge and uses of medicinal wild plants among the marakwet community in kenya. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/3208634 ] [PMID: 32308704]
[11]
Dwoskin, L.P.; Crooks, P.A. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem. Pharmacol., 2002, 63(2), 89-98.
[http://dx.doi.org/10.1016/S0006-2952(01)00899-1 ] [PMID: 11841781]
[12]
Herbs, D.S.; Remedies, O. Pediatr; Environ; Heal, 2021, pp. 327-350.
[http://dx.doi.org/10.1542/9781610022194-part03-ch19]
[13]
Oyedemi, B.O.M.; Oyedemi, S.O.; Swain, S.S.; Prieto, J.M.; Stapleton, P. Bactericidal and antibiotic-modulation activities of methanol crude extracts of Ligustrum lucidum and Lobelia inflata against MRSA phenotypes: Molecular docking studies of some isolated compounds from both plants against DNA gyrase A. S. Afr. J. Bot., 2020, 130, 54-63.
[http://dx.doi.org/10.1016/j.sajb.2019.11.010]
[14]
Yarnell, E. Analgesic herbs. Altern. Complement. Ther., 2017, 23(6), 246-255.
[http://dx.doi.org/10.1089/act.2017.29135.eya]
[15]
Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13(1), 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x ] [PMID: 29692864]
[16]
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med., 2010, 8(1), 1-10.
[http://dx.doi.org/10.4314/ajtcam.v8i1.60483 ] [PMID: 22238476]
[17]
Ramraje, G.R.; Patil, S.D.; Patil, P.H.; Pawar, A.R. A brief review on: Separation techniques chromatography. Asian Journal of Pharmaceutical Analysis, 2020, 10(4), 231-238.
[http://dx.doi.org/10.5958/2231-5675.2020.00041.1]
[18]
Georgieva, K.; Popova, M.; Dimitrova, L.; Trusheva, B.; Thanh, L.N.; Phuong, D.T.L.; Lien, N.T.P.; Najdenski, H.; Bankova, V. Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS One, 2019, 14(4), e0216074.
[http://dx.doi.org/10.1371/journal.pone.0216074 ] [PMID: 31017965]
[19]
Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of biological activity of natural compounds: Current trends and methods. Molecules, 2022, 27(14), 4490.
[http://dx.doi.org/10.3390/molecules27144490 ] [PMID: 35889361]
[20]
Marion, D. An introduction to biological NMR spectroscopy. Mol. Cell. Proteomics, 2013, 12(11), 3006-3025.
[http://dx.doi.org/10.1074/mcp.O113.030239 ] [PMID: 23831612]
[21]
Zheng, Q.; Wang, Y.; Zhang, S. Beyond alkaloids: Novel bioactive natural products from lobelia species. Front. Pharmacol., 2021, 12, 638210.
[http://dx.doi.org/10.3389/fphar.2021.638210 ] [PMID: 33762957]
[22]
Brown, D.P.; Rogers, D.T.; Pomerleau, F.; Siripurapu, K.B.; Kulshrestha, M.; Gerhardt, G.A.; Littleton, J.M. Novel multifunctional pharmacology of lobinaline, the major alkaloid from Lobelia cardinalis. Fitoterapia, 2016, 111, 109-123.
[http://dx.doi.org/10.1016/j.fitote.2016.04.013 ] [PMID: 27105955]
[23]
Cao, Z.; Zheng, L.; Zhao, J.; Zhuang, Q.; Hong, Z.; Lin, W. Anti angiogenic effect of Livistona?chinensis seed extract in?vitro and in?vivo. Oncol. Lett., 2017, 14(6), 7565-7570.
[http://dx.doi.org/10.3892/ol.2017.7075 ] [PMID: 29250168]
[24]
Kuo, P.C.; Hwang, T.L.; Lin, Y.T.; Kuo, Y.C.; Leu, Y.L. Chemical constituents from Lobelia chinensis and their anti-virus and anti-inflammatory bioactivities. Arch. Pharm. Res., 2011, 34(5), 715-722.
[http://dx.doi.org/10.1007/s12272-011-0503-7 ] [PMID: 21656355]
[25]
Yadav, A.; Tiwari, N.N.; Srivastava, S.P.; Tripathi, S.M.; Mishra, S. Bioactive compound containing hepatoprotective activity. Curr. Bioact. Compd., 2023, 19(9), e110423215658.
[http://dx.doi.org/10.2174/1573407219666230411111304]
[26]
Stead, L.F.; Hughes, J.R. Lobeline for smoking cessation. Cochrane Libr., 2012, 2012(2), CD000124.
[http://dx.doi.org/10.1002/14651858.CD000124.pub2 ] [PMID: 22336780]
[27]
Zheng, G.; Crooks, P.A. Synthesis of Lobeline, Lobelane and their Analogues. A Review. Org. Prep. Proced. Int., 2015, 47(5), 317-337.
[http://dx.doi.org/10.1080/00304948.2015.1066642 ] [PMID: 26858465]
[28]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids); Recent Adv. Nat. Prod. Anal, 2020, pp. 505-567.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[29]
Ma, Y.; Wink, M. Lobeline, a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells. Phytomedicine, 2008, 15(9), 754-758.
[http://dx.doi.org/10.1016/j.phymed.2007.11.028 ] [PMID: 18222670]
[30]
Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res. Int., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/5445291 ] [PMID: 35707379]
[31]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750 ] [PMID: 24470791]
[32]
Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications. Int. J. Mol. Sci., 2022, 23(23), 15054.
[http://dx.doi.org/10.3390/ijms232315054 ] [PMID: 36499380]
[33]
Qattan, M.Y.; Khan, M.I.; Alharbi, S.H.; Verma, A.K.; Al-Saeed, F.A.; Abduallah, A.M.; Al Areefy, A.A. Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways. Molecules, 2022, 27(24), 8864.
[http://dx.doi.org/10.3390/molecules27248864] [PMID: 36557997]
[34]
Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules, 2019, 24(21), 3961.
[http://dx.doi.org/10.3390/molecules24213961] [PMID: 31683764]
[35]
Raphael, T.J.; Kuttan, G. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine, 2003, 10(6-7), 483-489.
[http://dx.doi.org/10.1078/094471103322331421] [PMID: 13678231]
[36]
Hooker, W.J. LOBELIA TRIGONA. Roxb; Icones Plant, 2014, pp. 58-58.
[http://dx.doi.org/10.1017/CBO9781139107686.056]
[37]
Cui, X.; Gu, X.; Kang, W. Antioxidant activity in vitro and hepatoprotective effects in vivo of compound Lobelia. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(5), 114-122.
[http://dx.doi.org/10.21010/ajtcam.v13i5.15] [PMID: 28487901]
[38]
Yang, S.; Shen, T.; Zhao, L.; Li, C.; Zhang, Y.; Lou, H.; Ren, D. Chemical constituents of Lobelia chinensis. Fitoterapia, 2014, 93, 168-174.
[http://dx.doi.org/10.1016/j.fitote.2014.01.007] [PMID: 24444893]
[39]
Wang, J.; Chen, L.; Qu, L.; Li, K.; Zhao, Y.; Wang, Z.; Li, Y.; Zhang, X.; Jin, Y.; Liang, X. Isolation and bioactive evaluation of flavonoid glycosides from Lobelia chinensis Lour using two-dimensional liquid chromatography combined with label-free cell phenotypic assays. J. Chromatogr. A, 2019, 1601, 224-231.
[http://dx.doi.org/10.1016/j.chroma.2019.04.073] [PMID: 31101464]
[40]
Chen, M.W.; Chen, W.R.; Zhang, J.M.; Long, X.Y.; Wang, Y.T. Lobelia chinensis: Chemical constituents and anticancer activity perspective. Chin. J. Nat. Med., 2014, 12(2), 103-107.
[http://dx.doi.org/10.1016/S1875-5364(14)60016-9] [PMID: 24636059]
[41]
Rex Jeya Rajkumar, S.; Kuruppilakathmanikandan, S.; Muthukumar Nadar, M.S.A. Qualitative phytoconstituent profile of Lobelia trigona Roxb extracts. Int. J. Pharm. Tech. Res., 2015, 8, 47-50.
[42]
Kausik, S.B. The life-history ofLobelia trigona Roxb. with special reference to the nutrition of the embryo-sac. Proc. Indian Acad. Sci. Sect. B Biol. Sci., 1935, 2(4), 410-418.
[http://dx.doi.org/10.1007/BF03050874]
[43]
Asnaashari, S.; Dastmalchi, S.; Javadzadeh, Y. Gastroprotective effects of herbal medicines (roots). Int. J. Food Prop., 2018, 21(1), 902-920.
[http://dx.doi.org/10.1080/10942912.2018.1473876]
[44]
Prasad, B.; Wei, A.D.B. Pharmacology of Traditional Herbal Medicines and Their Active Principles Used in the Treatment of Peptic Ulcer, Diarrhoea and Inflammatory Bowel Disease; New Adv Basic Clin Gastroenterol, 2012.
[http://dx.doi.org/10.5772/34107]
[45]
Stansbury, J.; Saunders, P.R.; Zampieron, E.R. The use of lobelia in the treatment of asthma and respiratory illness. J. Restor. Med., 2013, 2(1), 94-100.
[http://dx.doi.org/10.14200/jrm.2013.2.0109]
[46]
Timofeev, A. A side effect of lobeline. Kazan medical journal, 1926, 22(1), 107.
[http://dx.doi.org/10.17816/kazmj50406]
[47]
Cambar, P.J.; Shore, S.R.; Aviado, D.M. Bronchopulmonary and gastrointestinal effects of lobeline. Arch. Int. Pharmacodyn. Ther., 1969, 177(1), 1-27.
[PMID: 5353877]
[48]
Korczyn, A.D.; Bruderman, I.; Braun, K. Cardiovascular effects of lobeline. Arch. Int. Pharmacodyn. Ther., 1969, 182(2), 370-375.
[PMID: 5371188]
[49]
Kulkarni, A.M.; Rampogu, S.; Lee, K.W. Computer-aided drug discovery identifies alkaloid inhibitors of parkinson’s disease associated protein, prolyl oligopeptidase. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6687572] [PMID: 33897801]
[50]
Máthé, Á. Indian tobacco. Medicinal and Aromatic Plants of North America, 2020, 159-186.
[http://dx.doi.org/10.1007/978-3-030-44930-8_7]
[51]
Murthy, N.K.; Pushpalatha, K.C.; Joshi, C.G. Antioxidant activity and phytochemical analysis of endophytic fungi isolated from Lobelia nicotianifolia. J. Chem. Pharm. Res., 2011, 3, 218-225.
[52]
da Costa e Silva, L.D.; Pereira, P.; Regner, G.G.; Boaretto, F.B.M.; Hoffmann, C.; Pflüger, P.; da Silva, L.L.; Steffens, L.R.; Morás, A.M.; Moura, D.J.; Picada, J.N. DNA damage and oxidative stress induced by seizures are decreased by anticonvulsant and neuroprotective effects of lobeline, a candidate to treat alcoholism. Metab. Brain Dis., 2018, 33(1), 53-61.
[http://dx.doi.org/10.1007/s11011-017-0130-1] [PMID: 29032429]
[53]
Zimare, S.B.; Mankar, G.D.; Barmukh, R.B. Optimization of ultrasound-assisted extraction of total phenolics and flavonoids from the leaves of Lobelia nicotianifolia and their radical scavenging potential. Current Research in Green and Sustainable Chemistry, 2021, 4, 100109.
[http://dx.doi.org/10.1016/j.crgsc.2021.100109]
[54]
Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 2021, 26(13), 4021.
[http://dx.doi.org/10.3390/molecules26134021] [PMID: 34209338]
[55]
Nnadiukwu, U.C.; Onyeike, E.N.; Ikewuchi, C.C.; Patrick-Iwuanyanwu, K.C. Phytochemical and nutrient composition of rice husks. Tropical Journal of Natural Product Research, 2023, 7(2), 2457-2463.
[http://dx.doi.org/10.26538/tjnpr/v7i2.24]
[56]
Andrew, J. Observations on the use of the lobelia inflata, in asthma and other spasmodic diseases. Glasg. Med. J., 1828, 1(2), 177-179.
[PMID: 30431783]
[57]
Folquitto, D.G.; Swiech, J.N.D.; Pereira, C.B.; Bobek, V.B.; Halila Possagno, G.C.; Farago, P.V.; Miguel, M.D.; Duarte, J.L.; Miguel, O.G. Biological activity, phytochemistry and traditional uses of genus Lobelia (Campanulaceae): A systematic review. Fitoterapia, 2019, 134, 23-38.
[http://dx.doi.org/10.1016/j.fitote.2018.12.021] [PMID: 30664918]
[58]
Liu, B.; Bai, M.; Peng, M.; Miao, M. Anti-inflammatory effect and the effect on acute pharyngitis rats model of compound Lobelia oral liquid. Saudi J. Biol. Sci., 2019, 26(3), 577-581.
[http://dx.doi.org/10.1016/j.sjbs.2018.11.018] [PMID: 30899174]
[59]
Joshi, S.; Mishra, D.; Bisht, G.; Khetwal, K.S. Essential oil composition and antimicrobial activity of Lobelia pyramidalis Wall. EXCLI J., 2011, 10, 274-279.
[PMID: 29033708]
[60]
Nagananda, G.S.; Krishnamoorthy, A.; Das, A.; Bhattacharya, S. Phytochemical screening and evaluation of antimicrobial activities of in vitro and in vivo grown plant extracts of Lobelia Inflata L. Int. J. Pharma Bio Sci., 2012, 3.
[61]
Garima, S.; Ajit Kumar, P.; Marcy, D.M.; Sakthivel, R.; Bhim Pratap, S.; Nachimuthu Senthil, K. Ethnobotanical survey of medicinal plants used in the management of cancer and diabetes. J. Tradit. Chin. Med., 2020, 40(6), 1007-1017.
[PMID: 33258353]
[62]
Ling, B.; Michel, D.; Sakharkar, M.; Yang, J. Evaluating the cytotoxic effects of the water extracts of four anticancer herbs against human malignant melanoma cells. Drug Des. Devel. Ther., 2016, 10, 3563-3572.
[http://dx.doi.org/10.2147/DDDT.S119214] [PMID: 27843296]
[63]
Vinu, K.; Krishnappa, M.; Krishna, V. Molecular characterization and antibacterial properties of endophytic fungi Lasidiplodia theobromae in Lobelia nicotianifolia Roth ex Schult. of central Western Ghats of Karnataka, India. J. Appl. Biol. Biotechnol., 2022, 10, 77-85.
[http://dx.doi.org/10.7324/JABB.2022.100411]
[64]
Sc, M.; Phil, M. Biological activities and structural characterisation of polysaccharides from three presented by PQDT - Glob. 2017.
[65]
Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 2021, 9, 705886.
[http://dx.doi.org/10.3389/fbioe.2021.705886] [PMID: 34568298]
[66]
Joseph, D.; Drège, E. The chemistry of lobelia alkaloids. Strategies and Tactics in Organic Synthesis, 2017, 13, 1-34.
[http://dx.doi.org/10.1016/B978-0-12-811790-3.00001-8]
[67]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[68]
Byun, M.J.; Lim, J.; Kim, S.N.; Park, D.H.; Kim, T.H.; Park, W.; Park, C.G. Advances in nanoparticles for effective delivery of RNA therapeutics. Biochip J., 2022, 16(2), 128-145.
[http://dx.doi.org/10.1007/s13206-022-00052-5] [PMID: 35261724]
[69]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[70]
Yadav, N.; Khatak, S.; Singh Sara, U.V. Solid lipid nanoparticles- A review. Int J Appl Pharm, 2013, 5, 8-18.
[http://dx.doi.org/10.9790/3013-26103444]
[71]
Martin, C.A.; Nuzzo, P.A.; Ranseen, J.D.; Kleven, M.S.; Guenthner, G.; Williams, Y.; Walsh, S.L.; Dwoskin, L.P. Lobeline effects on cognitive performance in adult ADHD. J. Atten. Disord., 2018, 22(14), 1361-1366.
[http://dx.doi.org/10.1177/1087054713497791] [PMID: 23966351]
[72]
Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5, 123-127.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[73]
Chauhan, A. Dendrimers for drug delivery. Molecules, 2018, 23(4), 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[74]
Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Igne Ferreira, E.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm., 2020, 573, 118814.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118814] [PMID: 31759101]
[75]
Bober, Z.; Bartusik-Aebisher, D.; Aebisher, D. Application of dendrimers in anticancer diagnostics and therapy. Molecules, 2022, 27(10), 3237.
[http://dx.doi.org/10.3390/molecules27103237] [PMID: 35630713]
[76]
Singh, P. Carbon nanotube and their biomedical applications: A review. Chalcogenide Lett., 2010, 7, 389-396.
[77]
Ménard-Moyon, C. Applications of Carbon Nanotubes in the Biomedical Field; Smart Nanoparticles Biomed, 2018, pp. 83-101.
[http://dx.doi.org/10.1016/B978-0-12-814156-4.00006-9]
[78]
Uzair, M.; Arshad, M.; Abbasi, S.S.; Arshad, A.; Khattak, J.Z.; Tabassum, S.; Zakaria, U.B. Review: Biomedical applications of carbon nanotubes. Nano Biomed. Eng., 2021, 13(1), 82-93.
[http://dx.doi.org/10.5101/nbe.v13i1.p82-93]
[79]
Tadege, G.; Alebachew, Y.; Hymete, A.; Tadesse, S. Identification of lobetyolin as a major antimalarial constituent of the roots of Lobelia giberroa Hemsl. Int. J. Parasitol. Drugs Drug Resist., 2022, 18, 43-51.
[http://dx.doi.org/10.1016/j.ijpddr.2022.01.002] [PMID: 35092864]
[80]
He, W.; Tao, W.; Zhang, F.; Jie, Q.; He, Y.; Zhu, W.; Tan, J.; Shen, W.; Li, L.; Yang, Y.; Cheng, H.; Sun, D. Lobetyolin induces apoptosis of colon cancer cells by inhibiting glutamine metabolism. J. Cell. Mol. Med., 2020, 24(6), 3359-3369.
[http://dx.doi.org/10.1111/jcmm.15009] [PMID: 31990147]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy