Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Volatile Oil of Magnolia biondii Pamp. for Transnasal Administration: Its Preparation, Characterization, and Mechanism of Action in the Treatment of Allergic Rhinitis

Author(s): Qiuting Guo, Xuan Wang, Yao Wang, Peijie Zhou and Xiaofei Zhang*

Volume 21, Issue 10, 2024

Published on: 01 March, 2024

Page: [1408 - 1421] Pages: 14

DOI: 10.2174/0115672018286048240229180813

Price: $65

Abstract

Background: Allergic Rhinitis (AR) is a common chronic nasal condition usually caused by allergens. The immune system overreacts when the body is exposed to allergens, releasing a lot of tissue chemicals that cause congestion, more secretions, and an inflammatory reaction in the nasal mucosa.

Method: In clinical practice, it remains a significant public health issue. Modern pharmacological studies have demonstrated that Magnolia Volatile Oil (MVO) has good anti-inflammatory, antibacterial, immunomodulatory, and other pharmacological effects. Previous research and literature reports have reported that MVO has good therapeutic effects on allergic rhinitis. However, due to the poor water solubility of Magnolia, its bioavailability is low. The purpose of this present work is to develop a new microemulsion formulation to improve the stability and bioavailability of MVO.

Results: The droplet size, PDI, and zeta potential of Magnolia volatile oil microemulsion (MVOME) were characterized along with its physical characteristics, and these values were found to be 14.270.03 nm, 0.09410.31, and -0.35850.12 mV, respectively, demonstrating the successful formation of microemulsion. In OVA-induced AR rats, MVO-ME dramatically reduced the serum levels of TNF-α, IL-1β, and IL-6 inflammatory factors. In addition, MVO-ME significantly inhibited the expression of protein levels of PPAR-γ and P65 in the nasal mucosa of AR rats. In this regard, we hypothesized that MVO-ME may play a therapeutic role in AR by activating the PPAR signaling pathway as well as inhibiting the activation of the NF/κB signaling pathway.

Conclusion: MVO-ME has systematic advantages, such as high solubility, bioavailability, etc. It is expected to be an efficient nano-drug delivery system for the clinical treatment of allergic rhinitis.

Graphical Abstract

[1]
Yun, L.; Ningning, Y. Epidemiologic survey of allergic rhinitis and its correlation with comorbid bronchial asthma. Nurs. Prac. Res., 2020, 17(16), 111-113.
[2]
Noguchi, E.; Shibasaki, M.; Arinami, T.; Takeda, K.; Maki, T.; Miyamoto, T.; Kawashima, T.; Kobayashi, K.; Hamaguchi, H. Evidence for linkage between asthma/atopy in childhood and chromosome 5q31-q33 in a Japanese population. Am. J. Respir. Crit. Care Med., 1997, 156(5), 1390-1393.
[http://dx.doi.org/10.1164/ajrccm.156.5.9702084] [PMID: 9372650]
[3]
Fen, D. Analysis of risk factors for allergic rhinitis in children based on living environment and dietary habits. Jiyinzuxue Yu Yingyong Shengwuxue, 2019, 38(06), 2911-2916.
[4]
Yuan, W.; Xiaolin, B. Effects of air pollution on allergic rhinitis. Med. Rev., 2015, 21(02), 279-281.
[5]
Chenxia, W.; Fang, Y. Effect of air pollution on the development of allergic rhinitis [J] Clinical Journal of Otolaryngology. Head Neck Surg., 2017, 31(18), 1455-1458.
[6]
Dan, L.; Liping, S.; Weiling, Y.; Dong, Y.; Neibo, L. Progress of research on the correlation between meteorological factors and the development of allergic rhinitis. Chin. J. Trad. Chin. Med., 2014, 29(07), 2287-2289.
[7]
Hongxing, W.; Shiming, Y. Mental and behavioral disorders in patients with allergic rhinitis cannot be ignored. Chin. Med. J., 2015, (9), 709-711.
[8]
Jing, Q. Application of psychological intervention in patients with allergic rhinitis and its effect on patients’ mental health status and quality of life. Chin. J. Health Psychol., 2018, 26(09), 1333-1337.
[9]
Meng, W.; Ming, Z.; Xiangdong, W.; Luo, Z. Progress in the epidemiology of allergic rhinitis in China. China Otorhinolaryngol. Head Neck Surg.., 2019, 26(08), 415-420.
[10]
Yuangeng, H. The etiology, treatment status and influencing factors of allergic rhinitis. Chinese Med. Innov., 2018, 15(11), 144-148.
[11]
Fengwei, S.; Yuanqiang, S.; Weihua, Y. Assessment of symptoms and quality of life in children with allergic conjunctivitis. China Modern Phys., 2021, 59(25), 85-88.
[12]
Xiuli, W. Analysis of the correlation between allergic rhinitis and bronchial asthma. J. Clin. Rat. Drug Use., 2019, 12(28), 123-124.
[13]
Yixi, X.; Bing, G. Progress of research on the correlation between secretory otitis media and allergic rhinitis. Chin. Med. Abstracts, 2021, 36(05), 140-143.
[14]
Le, Q.; Qiang, Z.; Yunna, O.; Yongxiang, G. Progress in the treatment of allergic rhinitis. Herbal Med. Clin., 2014, 5(04), 50-55.
[15]
Wang, R.; Yang, T.; Feng, Q.; Jiang, Y.; Yuan, X.; Zhao, L.; Liu, N.; Liu, Z.; Zhang, Y.; Wang, L.; Cheng, G.; Yao, J.; Sun, C.; Zhang, G.; Gu, Q. Integration of network pharmacology and proteomics to elucidate the mechanism and targets of traditional Chinese medicine Biyuan Tongqiao granule against allergic rhinitis in an ovalbumin-induced mice model. J. Ethnopharmacol., 2024, 318(Pt A), 116816.
[http://dx.doi.org/10.1016/j.jep.2023.116816] [PMID: 37414198]
[16]
Ping, W.; Haiyan, Z.; Yingmeng, L.; Zhong, P. Progress in the study of chemical composition, pharmacological effect and clinical application of the volatile oil of Eryngium acuminatum. China Pharm., 2022, 33(03), 378-384.
[17]
Phan, H.T.L.; Nam, Y.R.; Kim, H.J.; Woo, J.H.; NamKung, W.; Nam, J.H.; Kim, W.K. In-vitro and in-vivo anti-allergic effects of magnolol on allergic rhinitis via inhibition of ORAI1 and ANO1 channels. J. Ethnopharmacol., 2022, 289, 115061.
[http://dx.doi.org/10.1016/j.jep.2022.115061] [PMID: 35114342]
[18]
Shuying, C.; Daxing, Z. Anti-inflammatory and anti-allergic effects of the volatile oil of Eryngium maritimum. Modern Chin. Appl. Pharmacol., 1998, (02), 7-9.
[19]
Wenkui, W.; Yingjun, S.; Yun, Q.; Yiming, W. Anti-inflammatory effects of the volatile oil of Erythrorhiza glabra. China Veter. Sci. Technol., 2000, (09), 29-30.
[20]
Tianqin, X.; Xuhua, Q.; Yingjun, S. The effect and mechanism of volatile oil of Magnolia on guinea pigs with allergic rhinitis. Chinese Med. Pharmacol. Clin., 2006, (02), 24-26.
[21]
Zheng, G.; Xiaozhuo, M.; Guiyuan, L.; Wenfang, H.; Shuang, Q.; Shizhong, C. Effects of volatile oil of Xinyi on IL-12, IFN-γ and histamine in rats with allergic rhinitis. Chinese Med. Pharmacol. Clin., 2011, 27(02), 70-72.
[22]
Hou, H.; Li, Y.; Xu, Z.; Yu, Z.; Peng, B.; Wang, C.; Liu, W.; Li, W.; Ye, Z.; Zhang, G. Applications and research progress of Traditional Chinese medicine delivered via nasal administration. Biomed. Pharmacother., 2023, 157, 113933.
[http://dx.doi.org/10.1016/j.biopha.2022.113933] [PMID: 36399826]
[23]
Chen, H.; Feng, W.; Lu, Y.; Yang, Y.; Xin, Z.; Li, M.; Xin, L.; Gong, Y. Effects and mechanism of Chinese medicine Jiawei Yupingfeng in a mouse model of allergic rhinitis. J. Integr. Med., 2021, 19(4), 354-361.
[http://dx.doi.org/10.1016/j.joim.2021.01.012] [PMID: 33863693]
[24]
Chung, J.Y.; Park, N.; Kim, M.H.; Yang, W.M. Abies holophylla leaf essential oil alleviates allergic rhinitis based on network pharmacology. Pharmaceutics, 2023, 15(4), 1195.
[http://dx.doi.org/10.3390/pharmaceutics15041195] [PMID: 37111680]
[25]
Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm., 2007, 337(1-2), 1-24.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.025] [PMID: 17475423]
[26]
Costa, C.; Moreira, J.N.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J. Cont. Release, 2019, 295, 187-200.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.049] [PMID: 30610952]
[27]
Tanaka, A.; Furubayashi, T.; Enomura, Y.; Hori, T.; Shimomura, R.; Maeda, C.; Kimura, S.; Inoue, D.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Nasal drug absorption from powder formulations: Effect of fluid volume changes on the mucosal surface. Biol. Pharm. Bull., 2017, 40(2), 212-219.
[http://dx.doi.org/10.1248/bpb.b16-00787] [PMID: 28154262]
[28]
Juergens, L.J.; Racké, K.; Tuleta, I.; Stoeber, M.; Juergens, U.R. Anti-inflammatory effects of 1,8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma? Synergy, 2017, 5, 1-8.
[http://dx.doi.org/10.1016/j.synres.2017.08.001]
[29]
Nam, S.Y.; Chung, C.; Seo, J.H.; Rah, S.Y.; Kim, H.M.; Jeong, H.J. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int. Immunopharmacol., 2014, 23(1), 273-282.
[http://dx.doi.org/10.1016/j.intimp.2014.09.010] [PMID: 25242385]
[30]
Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett., 2019, 17(1), 129-143.
[http://dx.doi.org/10.1007/s10311-018-0783-y]
[31]
Wang, H.; Liu, Y.; Cai, K.; Zhang, B.; Tang, S.; Zhang, W.; Liu, W. Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burns Trauma, 2021, 9, tkab041.
[http://dx.doi.org/10.1093/burnst/tkab041] [PMID: 34988231]
[32]
Ou, Z. Studies on different extraction methods of the volatile oil of Cynanchum officinale. J. Mass Spectrom., 2007, (02), 106-113.
[33]
xiaoya, L.; Changzhao, J.; Wenyan, G.; Jincui, Y. Advances in microemulsion and microemulsion-based transdermal drug delivery formulations. Chinese J. Pharmaceut. Ind., 2020, 51(04), 442-449.
[34]
Dongsheng, Y.; Liqun, P. Application and current status of microemulsion preparation of traditional Chinese medicine. Liaoning J. Chin. Med., 2007, (08), 1172-1174.
[35]
Ran, Z.; Bing, Y.; Maoliang, L.; Jie, H.; Yutong, Z.; Fujun, Z. Preparation and evaluation of a self-microemulsion drug delivery system for dihydroartemisinin. Chin. Herb. Med., 2021, 52(05), 1291-1302.
[36]
Wang, X.; Zhou, P.; Shi, H.; Wang, W.; Li, T.; Tang, T.; Duan, J.; Li, J.; Xia, N.; Wang, J.; Chen, C.; Wang, J.; Zou, J.; Shi, Y.; Guo, D.; Wu, Z.; Yang, M.; Zhang, X.; Sun, J. Cinnamon essential oil based on NLRP3 inflammasome and renal uric acid transporters for hyperuricemia. Food Biosci., 2023, 56, 103285.
[http://dx.doi.org/10.1016/j.fbio.2023.103285]
[37]
Wang, Y.; Zhao, R.; Yu, L.; Zhang, Y.; He, Y.; Yao, J. Evaluation of cinnamon essential oil microemulsion and its vapor phase for controlling postharvest gray mold of pears (Pyrus pyrifolia). J Sci. Food Agricul., 2014, 94(5), 1000-1004.
[PMID: 22690913]
[38]
Farag, Y.; Al-Mahdy, DA. Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Nat. Prod. Res., 2013, 27(12), 1091-1097.
[PMID: 22690913]
[39]
Zhou, P.; Wang, X.; Zhao, Y.; She, X.; Jia, Y.; Wang, W.; Li, J.; Luo, X. Evaluation of the mechanism of action of rosemary volatile oil in the treatment of alzheimer’s disease using gas chromatography -mass spectrometry analysis and network pharmacology. Comb. Chem. High Throughput Screen., 2023, 26(13), 2321-2332.
[http://dx.doi.org/10.2174/1386207325666220930091758] [PMID: 36200249]
[40]
Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol., 2016, 54(10), 2320-2328.
[http://dx.doi.org/10.3109/13880209.2016.1155630] [PMID: 26986932]
[41]
Alankar, S.; Jitendra, S.; Gutch Pranav, K. Incompatibility studies between α, α-xylene-p-bis-3,3(hydroxyiminomethyl) pyridinium dibromide and 14 various commonly used excipients for the preparation of decontamination formulation against chemical warfare agents by thermoanalytical techniques. Curr. Pharm. Anal., 2012, 8(1)
[42]
Wu, H.; Lu, C.; Zhou, A.; Min, Z.; Zhang, Y. Enhanced oral bioavailability of puerarin using microemulsion vehicle. Drug Dev. Ind. Pharm., 2009, 35(2), 138-144.
[http://dx.doi.org/10.1080/03639040801973495] [PMID: 19040180]
[43]
Qi, J.; Ping, Q.; Wu, W.; Lu, Y.; Song, Y.; Zhang, Z.; Jia, J.; Ping, Q. Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A. Int. J. Nanomed., 2011, 6, 985-991.
[http://dx.doi.org/10.2147/IJN.S18821] [PMID: 21720510]
[44]
Yu, H.; Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem., 2012, 60(21), 5373-5379.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[45]
Gershanik, T.; Benita, S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm., 2000, 50(1), 179-188.
[http://dx.doi.org/10.1016/S0939-6411(00)00089-8] [PMID: 10840200]
[46]
Pires, P.C.; Fazendeiro, A.C.; Rodrigues, M.; Alves, G.; Santos, A.O. Nose-to-brain delivery of phenytoin and its hydrophilic prodrug fosphenytoin combined in a microemulsion - formulation development and in vivo pharmacokinetics. Eur. J. Pharm. Sci., 2021, 164, 105918.
[http://dx.doi.org/10.1016/j.ejps.2021.105918] [PMID: 34174414]
[47]
Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ. Chem. Lett., 2021, 19(2), 1153-1171.
[http://dx.doi.org/10.1007/s10311-020-01142-2]
[48]
Nyarko, M.S.; Danquah, C.A.; Antwi, A.O. Aurantio-obtusin alleviates allergic responses in ovalbumin-induced rhinitis. Sci. Am., 2024, 23, e02004.
[49]
Fadaei, R.; Bagheri, N.; Heidarian, E.; Nouri, A.; Hesari, Z.; Moradi, N.; Ahmadi, A.; Ahmadi, R. Serum levels of IL-32 in patients with type 2 diabetes mellitus and its relationship with TNF-α and IL-6. Cytokine, 2020, 125, 154832.
[http://dx.doi.org/10.1016/j.cyto.2019.154832] [PMID: 31479874]
[50]
Fu, S.; Cao, Z.; Huang, B.; Yin, T.; Huang, C.; Bi, Z.; Yao, Y.; Chang, X.; Zhuang, H.; Hua, Z-C. Tannic acid assisted anti-TNF-α nanobody assembly modulating the epithelial barrier dysregulation of allergic rhinitis. Nano Res., 2023, 16(7), 9781-9791.
[http://dx.doi.org/10.1007/s12274-023-5646-6]
[51]
Zhang, F.; Wu, J.; Shen, Q.; Chen, Z.; Qiao, Z. Investigating the mechanism of Tongqiao Huoxue decotion in the treatment of allergic rhinitis based on network pharmacology and molecular docking: A review. Medicine, 2023, 102(10), e33190.
[http://dx.doi.org/10.1097/MD.0000000000033190] [PMID: 36897696]
[52]
Zhao, Q.; Zhu, L.; Wang, S.; Gao, Y.; Jin, F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. J. Ethnopharmacol., 2023, 301, 115829.
[http://dx.doi.org/10.1016/j.jep.2022.115829] [PMID: 36252876]
[53]
Winnie, C.; Chengcai, Z.; Xiaoyan, D.; Cunli, Y. Correlation analysis of IL-4, PPAR-γ expression and allergic rhinitis disease activity. Mod. Med., 2021, 49(08), 969-974.
[54]
Fukui, N.; Honda, K.; Ito, E.; Ishikawa, K. Peroxisome proliferator-activated receptor γ negatively regulates allergic rhinitis in mice. Allergol. Int., 2009, 58(2), 247-253.
[http://dx.doi.org/10.2332/allergolint.08-OA-0047] [PMID: 19307774]
[55]
Baofeng, L.; Chi, L.L.; Fang, X.; Dongsheng, G.; Haibo, Z.; Xiao, H. Progress of peroxisome proliferator-activated receptor γ in regulating the inflammatory signaling pathway in the body. Chinese J. Animal Husbandry., 2022, 58(01), 32-37.
[56]
Zhu, X.; Sun, Y.; Yu, Q.; Wang, X.; Wang, Y.; Zhao, Y. Exosomal lncRNA GAS5 promotes M1 macrophage polarization in allergic rhinitis via restraining mTORC1/ULK1/ATG13-mediated autophagy and subsequently activating NF-кB signaling. Int. Immunopharmacol., 2023, 121, 110450.
[http://dx.doi.org/10.1016/j.intimp.2023.110450] [PMID: 37343372]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy