Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Short Communication

Supersaturation Behavior: Investigation of Polymers Impact on Nucleation Kinetic Profile for Rationalizing the Polymeric Precipitation Inhibitors

Author(s): Uditi Handa, Anuj Malik*, Kumar Guarve, Nidhi Rani* and Prerna Sharma

Volume 21, Issue 10, 2024

Published on: 27 October, 2023

Page: [1422 - 1432] Pages: 11

DOI: 10.2174/0115672018261505231018100329

Price: $65

Abstract

Background: Although nucleation kinetic data is quite important for the concept of supersaturation behavior, its part in rationalizing the crystallization inhibitor has not been well understood.

Objective: This study aimed to investigate the nucleation kinetic profile of Dextromethorphan HBr (as an ideal drug, BCS-II) by measuring liquid-liquid phase segregation, nucleation induction time, and Metastable Zone width.

Methods: Surfeit action was examined by a superfluity assay of the drug. The concentration was scrutinized by light scattering techniques (UV spectrum (novel method) and Fluorometer (CL 53)).

Results: The drug induction time was 20 min without polymer and 90 and 110 min with polymers, such as HPMC K15M and Xanthan Gum, respectively. Therefore, the order of the polymer's ability to inhibit nucleation was Xanthan Gum > HPMC K15M in the medium (7.4 pH). Similarly, the drug induction time was 30 min without polymer and 20, 110, and 90 min with polymers, such as Sodium CMC, HPMC K15M, and Xanthan Gum, respectively. Therefore, the order of the polymer's ability to inhibit nucleation was HPMC K15M > Xanthan Gum > Sodium CMC in SIFsp (6.8 pH), which synchronizes the polymer’s potentiality to interdict the drug precipitation.

Conclusion: The HPMC K15M and xanthan Gum showed the best crystallization inhibitor effect for the maintenance of superfluity conditions till the drug absorption time. The xanthan gum is based on the “glider” concept, and this shows the novelty of this preliminary research. The screening methodology used for rationalizing the best polymers used in the superfluity formulations development successfully.

Graphical Abstract

[1]
Kwong, A.D.; Kauffman, R.S.; Hurter, P.; Mueller, P. Discovery and development of telaprevir: An NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat. Biotechnol., 2011, 29(11), 993-1003.
[http://dx.doi.org/10.1038/nbt.2020] [PMID: 22068541]
[2]
Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.A.; Wong, B.; Tsang, G.; West, B.L.; Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K.Y.J.; Artis, D.R.; Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm, M.; Lin, P.S.; Lee, R.J.; Grippo, J.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; Chapman, P.B.; Flaherty, K.T.; Xu, X.; Nathanson, K.L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467(7315), 596-599.
[http://dx.doi.org/10.1038/nature09454] [PMID: 20823850]
[3]
Qian, K.; Stella, L.; Jones, D.S.; Andrews, G.P.; Du, H.; Tian, Y. Drug-rich phases induced by amorphous solid dispersion: Arbitrary or intentional goal in oral drug delivery? Pharmaceutics, 2021, 13(6), 889.
[http://dx.doi.org/10.3390/pharmaceutics13060889] [PMID: 34203969]
[4]
Simonelli, A.P.; Mehta, S.C.; Higuchi, W.I. Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J. Pharm. Sci., 1970, 59(5), 633-638.
[http://dx.doi.org/10.1002/jps.2600590512] [PMID: 5446418]
[5]
Vandecruys, R.; Peeters, J.; Verreck, G.; Brewster, M.E. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int. J. Pharm., 2007, 342(1-2), 168-175.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.006] [PMID: 17573214]
[6]
Maghsoodi, M.; Nokhodchi, A. Agglomeration of Celecoxib by quasi emulsion solvent diffusion method: Effect of stabilizer. Adv. Pharm. Bull., 2016, 6(4), 607-616.
[http://dx.doi.org/10.15171/apb.2016.075] [PMID: 28101468]
[7]
Lindfors, L.; Forssén, S.; Westergren, J.; Olsson, U. Nucleation and crystal growth in supersaturated solutions of a model drug. J. Colloid Interface Sci., 2008, 325(2), 404-413.
[http://dx.doi.org/10.1016/j.jcis.2008.05.034] [PMID: 18561941]
[8]
Alonzo, D.E.; Zhang, G.G.Z.; Zhou, D.; Gao, Y.; Taylor, L.S. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res., 2010, 27(4), 608-618.
[http://dx.doi.org/10.1007/s11095-009-0021-1] [PMID: 20151181]
[9]
Ilie, A.R.; Griffin, B.T.; Vertzoni, M.; Kuentz, M.; Kolakovic, R.; Prudic-Paus, A.; Malash, A.; Bohets, H.; Herman, J.; Holm, R. Exploring precipitation inhibitors to improve in vivo absorption of cinnarizine from supersaturated lipid-based drug delivery systems. Eur. J. Pharm. Sci., 2021, 159, 105691.
[http://dx.doi.org/10.1016/j.ejps.2020.105691] [PMID: 33359616]
[10]
Dai, W.G.; Dong, L.C.; Shi, X.; Nguyen, J.; Evans, J.; Xu, Y.; Creasey, A.A. Evaluation of drug precipitation of solubility‐enhancing liquid formulations using milligram quantities of a new molecular entity (NME). J. Pharm. Sci., 2007, 96(11), 2957-2969.
[http://dx.doi.org/10.1002/jps.20886] [PMID: 17705287]
[11]
Gao, P.; Akrami, A.; Alvarez, F.; Hu, J.; Li, L.; Ma, C.; Surapaneni, S. Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J. Pharm. Sci., 2009, 98(2), 516-528.
[http://dx.doi.org/10.1002/jps.21451] [PMID: 18543293]
[12]
Raghavan, S.L.; Trividic, A.; Davis, A.F.; Hadgraft, J. Crystallization of hydrocortisone acetate: influence of polymers. Int. J. Pharm., 2001, 212(2), 213-221.
[http://dx.doi.org/10.1016/S0378-5173(00)00610-4] [PMID: 11165079]
[13]
Xu, S.; Dai, W.G. Drug precipitation inhibitors in supersaturable formulations. Int. J. Pharm., 2013, 453(1), 36-43.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.013] [PMID: 23680727]
[14]
Raina, S.A.; Van Eerdenbrugh, B.; Alonzo, D.E.; Mo, H.; Zhang, G.G.Z.; Gao, Y.; Taylor, L.S. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. J. Pharm. Sci., 2015, 104(6), 1981-1992.
[http://dx.doi.org/10.1002/jps.24423] [PMID: 25808078]
[15]
Warren, D.B.; Bergström, C.A.S.; Benameur, H.; Porter, C.J.H.; Pouton, C.W. Evaluation of the structural determinants of polymeric precipitation inhibitors using solvent shift methods and principle component analysis. Mol. Pharm., 2013, 10(8), 2823-2848.
[http://dx.doi.org/10.1021/mp300576u] [PMID: 23631696]
[16]
Shiau, L.D. Comparison of the nucleation kinetics obtained from the cumulative distributions of the metastable zone width and induction time data. Molecules, 2022, 27(9), 3007.
[http://dx.doi.org/10.3390/molecules27093007] [PMID: 35566356]
[17]
Gan, Y.; Baak, J.P.A.; Chen, T.; Ye, H.; Liao, W.; Lv, H.; Wen, C.; Zheng, S. Supersaturation and precipitation applicated in drug delivery systems: Development strategies and evaluation approaches. Molecules, 2023, 28(5), 2212.
[http://dx.doi.org/10.3390/molecules28052212] [PMID: 36903470]
[18]
Anwar, J.; Boateng, P.K.; Tamaki, R.; Odedra, S. Mode of action and design rules for additives that modulate crystal nucleation. Angew. Chem. Int. Ed., 2009, 48(9), 1596-1600.
[http://dx.doi.org/10.1002/anie.200804553] [PMID: 19156794]
[19]
Joshi, P.; Sangamwar, A.T. Stabilizing supersaturated drug-delivery system through mechanism of nucleation and crystal growth inhibition of drugs. Ther. Deliv., 2018, 9(12), 873-885.
[http://dx.doi.org/10.4155/tde-2018-0031] [PMID: 30444454]
[20]
Raina, S.A.; Zhang, G.G.Z.; Alonzo, D.E.; Wu, J.; Zhu, D.; Catron, N.D.; Gao, Y.; Taylor, L.S. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J. Pharm. Sci., 2014, 103(9), 2736-2748.
[http://dx.doi.org/10.1002/jps.23826] [PMID: 24382592]
[21]
Ilevbare, G.A.; Liu, H.; Edgar, K.J.; Taylor, L.S. Maintaining supersaturation in aqueous drug solutions: Impact of different polymers on induction times. Cryst. Growth Des., 2013, 13(2), 740-751.
[http://dx.doi.org/10.1021/cg301447d]
[22]
Chen, Y.; Liu, C.; Chen, Z.; Su, C.; Hageman, M.; Hussain, M.; Haskell, R.; Stefanski, K.; Qian, F. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol. Pharm., 2015, 12(2), 576-589.
[http://dx.doi.org/10.1021/mp500660m] [PMID: 25535667]
[23]
Deng, Y.; Liang, Q.; Wang, Y.; Zhang, X.; Yan, C.; He, Y. The inhibiting role of hydroxypropylmethylcellulose acetate succinate on piperine crystallization to enhance its dissolution from its amorphous solid dispersion and permeability. RSC Adv., 2019, 9(67), 39523-39531.
[http://dx.doi.org/10.1039/C9RA08283B] [PMID: 35540632]
[24]
Ishigami, T.; Nii, Y.; Ohmukai, Y.; Rajabzadeh, S.; Matsuyama, H. Solidification behavior of polymer solution during membrane preparation by thermally induced phase separation. Membranes, 2014, 4(1), 113-122.
[http://dx.doi.org/10.3390/membranes4010113] [PMID: 24957124]
[25]
C, S.S.; Allena, R.T.; Getyala, A. Formulation and evaluation of dextromethorphan hydrobromide controlled release hollow microspheres using natural polymer. Indones. J. Pharm., 2014, 25(3), 181-188.
[http://dx.doi.org/10.14499/indonesianjpharm25iss3pp181]
[26]
Raina, S.A.; Zhang, G.G.Z.; Alonzo, D.E.; Wu, J.; Zhu, D.; Catron, N.D.; Gao, Y.; Taylor, L.S. Impact of solubilizing additives on supersaturation and membrane transport of drugs. Pharm. Res., 2015, 32(10), 3350-3364.
[http://dx.doi.org/10.1007/s11095-015-1712-4] [PMID: 26017301]
[27]
Brewster, M.E.; Vandecruys, R.; Verreck, G.; Peeters, J. Supersaturating drug delivery systems: Effect of hydrophilic cyclodextrins and other excipients on the formation and stabilization of supersaturated drug solutions. Pharmazie, 2008, 63(3), 217-220.
[PMID: 18444510]
[28]
Ilevbare, G.A.; Liu, H.; Edgar, K.J.; Taylor, L.S. Understanding polymer properties important for crystal growth inhibition:Impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst. Growth Des., 2012, 12(6), 3133-3143.
[http://dx.doi.org/10.1021/cg300325p]
[29]
Monschke, M.; Wagner, K.G. Impact of HPMCAS on the dissolution performance of polyvinyl alcohol Celecoxib amorphous solid dispersions. Pharmaceutics, 2020, 12(6), 541-558.
[http://dx.doi.org/10.3390/pharmaceutics12060541] [PMID: 32545270]
[30]
Li, Z.; Lenk, T.I.; Yao, L.J.; Bates, F.S.; Lodge, T.P. Maintaining hydrophobic drug supersaturation in a micelle corona reservoir. Macromolecules, 2018, 51(2), 540-551.
[http://dx.doi.org/10.1021/acs.macromol.7b02297]
[31]
Taylor, L.S.; Zhang, G.G.Z. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv. Drug Deliv. Rev., 2016, 101, 122-142.
[http://dx.doi.org/10.1016/j.addr.2016.03.006] [PMID: 27013254]
[32]
Elkhabaz, A.; Sarkar, S.; Dinh, J.K.; Simpson, G.J.; Taylor, L.S. Variation in supersaturation and phase behavior of ezetimibe amorphous solid dispersions upon dissolution in different biorelevant media. Mol. Pharm., 2018, 15(1), 193-206.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00814] [PMID: 29161509]
[33]
Ozaki, S.; Kushida, I.; Yamashita, T.; Hasebe, T.; Shirai, O.; Kano, K. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. J. Pharm. Sci., 2013, 102(7), 2273-2281.
[http://dx.doi.org/10.1002/jps.23588] [PMID: 23658029]
[34]
Shiau, L.D. Determination of the nucleation and growth kinetics for aqueous L-glycine solutions from the turbidity induction time data. Crystals, 2018, 8(11), 403.
[http://dx.doi.org/10.3390/cryst8110403]
[35]
Li, N.; Mosquera-Giraldo, L.I.; Borca, C.H.; Ormes, J.D.; Lowinger, M.; Higgins, J.D.; Slipchenko, L.V.; Taylor, L.S. A comparison of the crystallization inhibition properties of bile salts. Cryst. Growth Des., 2016, 16(12), 7286-7300.
[http://dx.doi.org/10.1021/acs.cgd.6b01470]
[36]
Bruijns, B.; Tiggelaar, R.; Gardeniers, H. Dataset of the absorption, emission and excitation spectra and fluorescence intensity graphs of fluorescent cyanine dyes for the quantification of low amounts of dsDNA. PlumX Metrics, 2021, 10, 132-143.
[http://dx.doi.org/10.1016/j.dib.2016.11.090]
[37]
Chen, Y.; Wang, S.; Wang, S.; Liu, C.; Su, C.; Hageman, M.; Hussain, M.; Haskell, R.; Stefanski, K.; Qian, F. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm. Res., 2016, 33(10), 2445-2458.
[http://dx.doi.org/10.1007/s11095-016-1969-2] [PMID: 27283830]
[38]
Yamashita, T.; Ozaki, S.; Kushida, I. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide. Int. J. Pharm., 2011, 419(1-2), 170-174.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.045] [PMID: 21840385]
[39]
Indulkar, A.S.; Lou, X.; Zhang, G.G.Z.; Taylor, L.S. Insights into the dissolution mechanism of ritonavir–copovidone amorphous solid dispersions: Importance of congruent release for enhanced performance. Mol. Pharm., 2019, 16(3), 1327-1339.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01261] [PMID: 30669846]
[40]
Chen, Y.; Pui, Y.; Chen, H.; Wang, S.; Serno, P.; Tonnis, W.; Chen, L.; Qian, F. Polymer-mediated drug supersaturation controlled by drug–polymer interactions persisting in an aqueous environment. Mol. Pharm., 2019, 16(1), 205-213.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00947] [PMID: 30452278]
[41]
Monschke, M.; Kayser, K.; Wagner, K.G. Processing of polyvinyl acetate phthalate in hot-melt extrusion—preparation of amorphous solid dispersions. Pharmaceutics, 2020, 12(4), 337.
[http://dx.doi.org/10.3390/pharmaceutics12040337] [PMID: 32283725]
[42]
Denninger, A.; Westedt, U.; Rosenberg, J.; Wagner, K.G. A rational design of a biphasic dissolution setup—modelling of biorelevant kinetics for a ritonavir hot-melt extruded amorphous solid dispersion. Pharmaceutics, 2020, 12(3), 237.
[http://dx.doi.org/10.3390/pharmaceutics12030237] [PMID: 32155962]
[43]
Ueda, K.; Higashi, K.; Moribe, K. Mechanistic elucidation of formation of drug-rich amorphous nanodroplets by dissolution of the solid dispersion formulation. Int. J. Pharm., 2019, 561, 82-92.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.034] [PMID: 30822504]
[44]
O’Dwyer, P.J.; Imanidis, G.; Box, K.J.; Reppas, C. On the usefulness of two small-scale in vitro setups in the evaluation of luminal precipitation of lipophilic weak bases in early formulation development. Pharmaceutics, 2020, 12(3), 272.
[http://dx.doi.org/10.3390/pharmaceutics12030272] [PMID: 32188116]
[45]
Bevernage, J.; Forier, T.; Brouwers, J.; Tack, J.; Annaert, P.; Augustijns, P. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol. Pharm., 2011, 8(2), 564-570.
[http://dx.doi.org/10.1021/mp100377m] [PMID: 21268663]
[46]
Pui, Y.; Chen, Y.; Chen, H.; Wang, S.; Liu, C.; Tonnis, W.; Chen, L.; Serno, P.; Bracht, S.; Qian, F. Maintaining supersaturation of nimodipine by pvp with or without the presence of sodium lauryl sulfate and sodium taurocholate. Mol. Pharm., 2018, 15(7), 2754-2763.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00253] [PMID: 29782805]
[47]
Brewster, M.E.; Vandecruys, R.; Peeters, J.; Neeskens, P.; Verreck, G.; Loftsson, T. Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: Phase-solubility behavior and stabilization of supersaturated drug solutions. Eur. J. Pharm. Sci., 2008, 34(2-3), 94-103.
[http://dx.doi.org/10.1016/j.ejps.2008.02.007] [PMID: 18420390]
[48]
Umemoto, Y.; Uchida, S.; Yoshida, T.; Shimada, K.; Kojima, H.; Takagi, A.; Tanaka, S.; Kashiwagura, Y.; Namiki, N. An effective polyvinyl alcohol for the solubilization of poorly water-soluble drugs in solid dispersion formulations. J. Drug Deliv. Sci. Technol., 2020, 55, 31501.
[http://dx.doi.org/10.1016/j.jddst.2019.101401]
[49]
Ilevbare, G.A.; Taylor, L.S. Liquid–liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: Implications for solubility enhancing formulations. Cryst. Growth Des., 2013, 13(4), 1497-1509.
[http://dx.doi.org/10.1021/cg301679h]
[50]
Handa, U.; Malik, A.; Kumar, G. A review on the concept of superfluity mechanism in solubility enhancement. Res. J. Pharm. Technol., 2022, 15, 3769-3775.
[http://dx.doi.org/10.52711/0974-360X.2022.00633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy