Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Safety Profile of Paxlovid in the Treatment of COVID-19

Author(s): Bing Lv, Xin Gao, Guoqiang Zeng, Hui Guo and Faping Li*

Volume 30, Issue 9, 2024

Published on: 20 February, 2024

Page: [666 - 675] Pages: 10

DOI: 10.2174/0113816128280987240214103432

Price: $65

Abstract

Background: With the urgent and widespread application of Paxlovid, a novel antiviral drug for Coronavirus Disease 2019 (COVID-19) in clinical practice, concerns regarding its actual efficacy and safety have emerged. In order to provide more evidence to support its clinical application, we sought to perform a descriptive analysis of cases who experienced at least one Paxlovid-related adverse event (AEs) and reported to the FDA Adverse Event Reporting System (FAERS) in the post-marketing period.

Methods: Individual adverse event reports between January 1, 2022 and September 30, 2022, were downloaded from the FAERS website. We completed a descriptive study about the safety of Paxlovid in the treatment of COVID-19. Further, we also analyzed the onset time of Paxlovid-related AEs.

Results: As of 30 September 2022, 16,529 de-duplicated cases were submitted to the FDA, and 5,860 (35.45%) were female. The average age was 58.38 years (S.D. 15.50). Most reports (12,390, 74.96%) were submitted by consumers and 1,436 (8.68%) concerned serious outcomes. The most frequently reported AEs were disease recurrence (7,724, 16.23%), dysgeusia (2,877, 6.05%), and diarrhoea (1,448, 3.04%). The median onset time of Paxlovid-related AEs was 8 days (interquartile range,1-10 days), and most of the cases (2,629, 19.12%) occurred on the day after Paxlovid initiation.

Conclusion: This study indicates that the most common AEs reported with Paxlovid in post-marketing experience are consistent with the safety assessment of antiviral drugs. Even without emerging apparent safety concerns, the incidence of serious outcomes was unexpectedly high, and a few cases of potential new AEs occurred.

[1]
Joshi TP, Duvic M. Granuloma annulare: An updated review of epidemiology, pathogenesis, and treatment options. Am J Clin Dermatol 2022; 23(1): 37-50.
[http://dx.doi.org/10.1007/s40257-021-00636-1] [PMID: 34495491]
[2]
Chen Y, Xu Z, Wang P, et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022; 165(4): 386-401.
[http://dx.doi.org/10.1111/imm.13443] [PMID: 34957554]
[3]
Tyrkalska SD, Candel S, Pedoto A, et al. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023; 47(1): fuac042.
[http://dx.doi.org/10.1093/femsre/fuac042] [PMID: 36323404]
[4]
Amit S, Beni SA, Biber A, Grinberg A, Leshem E, Regev-Yochay G. Postvaccination COVID-19 among healthcare workers, Israel. Emerg Infect Dis 2021; 27(4): 1220-2.
[http://dx.doi.org/10.3201/eid2704.210016] [PMID: 33522478]
[5]
Mistry P, Barmania F, Mellet J, et al. SARS-CoV-2 variants, vaccines, and host immunity. Front Immunol 2022; 12: 809244.
[http://dx.doi.org/10.3389/fimmu.2021.809244] [PMID: 35046961]
[6]
Gong W, Parkkila S, Wu X, Aspatwar A. SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies. Int Rev Immunol 2023; 42(6): 393-414.
[http://dx.doi.org/10.1080/08830185.2022.2079642] [PMID: 35635216]
[7]
Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023; 186(2): 279-286.e8.
[http://dx.doi.org/10.1016/j.cell.2022.12.018] [PMID: 36580913]
[8]
Singh D, Bogus M, Moskalenko V, et al. A phase 2 multiple ascending dose study of the inhaled pan-JAK inhibitor nezulcitinib (TD-0903) in severe COVID-19. Eur Respir J 2021; 58(4): 2100673.
[http://dx.doi.org/10.1183/13993003.00673-2021] [PMID: 34210790]
[9]
Liang Y, Fang D, Gao X, et al. Circulating microRNAs as emerging regulators of COVID-19. Theranostics 2023; 13(1): 125-47.
[http://dx.doi.org/10.7150/thno.78164] [PMID: 36593971]
[10]
Ren Z, Luo H, Yu Z, et al. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study. Adv Sci 2020; 7(19): 2001435.
[http://dx.doi.org/10.1002/advs.202001435] [PMID: 35403380]
[11]
Kandula UR, Tuji TS, Gudeta DB, et al. Effectiveness of COVID-19 convalescent plasma (CCP) during the pandemic era: A literature review. J Blood Med 2023; 14: 159-87.
[http://dx.doi.org/10.2147/JBM.S397722] [PMID: 36855559]
[12]
Chen Y, Xue Y, Yang J. Gilteritinib: Repurposing of AXL-targeting kinase inhibitors against COVID-19. J Med Virol 2023; 95(3): e28592.
[http://dx.doi.org/10.1002/jmv.28592] [PMID: 36806030]
[13]
Chen W, Liang B, Wu X, Li L, Wang C, Xing D. Advances And challenges in using nirmatrelvir and its derivatives against SARSCoV-2 infection. J Pharm Anal 2023; 13(3): 255-61.
[PMID: 36345404]
[14]
Hashemian SMR, Sheida A, Taghizadieh M, et al. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to COVID-19 therapy? Biomed Pharmacother 2023; 162: 114367.
[http://dx.doi.org/10.1016/j.biopha.2023.114367] [PMID: 37018987]
[15]
Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct Target Ther 2020; 5(1): 67.
[http://dx.doi.org/10.1038/s41392-020-0178-y] [PMID: 32388537]
[16]
Gammeltoft KA, Zhou Y, Ryberg LA, et al. Substitutions in SARS-CoV-2 Mpro selected by protease inhibitor boceprevir confer resistance to Nirmatrelvir. Viruses 2023; 15(9): 1970.
[http://dx.doi.org/10.3390/v15091970] [PMID: 37766376]
[17]
Zhang X, Yang Y, Shao S. Acquired reactive perforating collagenosis. Medicine 2020; 99(22): e20391.
[http://dx.doi.org/10.1097/MD.0000000000020391] [PMID: 32481426]
[18]
Sendi P, Razonable RR, Nelson SB, Soriano A, Gandhi RT. First- generation oral antivirals against SARS-CoV-2. Clin Microbiol Infect 2022; 28(9): 1230-5.
[http://dx.doi.org/10.1016/j.cmi.2022.04.015] [PMID: 35545195]
[19]
Loos NHC, Beijnen JH, Schinkel AH. The mechanism-based inactivation of CYP3A4 by ritonavir: What mechanism? Int J Mol Sci 2022; 23(17): 9866.
[http://dx.doi.org/10.3390/ijms23179866] [PMID: 36077262]
[20]
Molina JM, Squires K, Sax PE, et al. Doravirine versus ritonavir- boosted darunavir in antiretroviral-naive adults with HIV-1 (DRIVE-FORWARD): 96-week results of a randomised, double-blind, non-inferiority, phase 3 trial. Lancet HIV 2020; 7(1): e16-26.
[http://dx.doi.org/10.1016/S2352-3018(19)30336-4] [PMID: 31740348]
[21]
Casey B III, Vernick RC, Bahekar A, Patel D, Ncogo Alene I. Ranolazine toxicity secondary to paxlovid. Cureus 2023; 15(4): e37153.
[PMID: 37153311]
[22]
Chourasia P, Maringanti BS, Edwards-Fligner M, et al. Paxlovid (nirmatrelvir and ritonavir) use in pregnant and lactating woman: Current evidence and practice guidelines-a scoping review. Vaccines 2023; 11(1): 107.
[http://dx.doi.org/10.3390/vaccines11010107] [PMID: 36679952]
[23]
Michael S, Heilbronner R, Lloyd CM, Levitin HW. Paxlovid-induced tacrolimus toxicity in the treatment of COVID-19: A case report. Cureus 2023; 15(2): e35489.
[http://dx.doi.org/10.7759/cureus.35489] [PMID: 36999105]
[24]
Drożdżal S, Rosik J, Lechowicz K, et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59: 100794.
[http://dx.doi.org/10.1016/j.drup.2021.100794] [PMID: 34991982]
[25]
Anwar K, Nguyen L, Nagasaka M, Ou SHI, Chan A. Overview of drug-drug interactions between ritonavir-boosted nirmatrelvir (Paxlovid) and targeted therapy and supportive care for lung cancer. JTO Clin Res Rep 2023; 4(2): 100452.
[http://dx.doi.org/10.1016/j.jtocrr.2022.100452] [PMID: 36568522]
[26]
Khan ZA, Hu Y, Ghalandari B, et al. Pairwise synthetic cytotoxicity between Paxlovid and 100 frequently prescribed FDA-approved small molecule drugs on liver cells. Toxicol Appl Pharmacol 2023; 477: 116695.
[http://dx.doi.org/10.1016/j.taap.2023.116695] [PMID: 37739321]
[27]
Young C, Papiro T, Greenberg JH. Elevated tacrolimus levels after treatment with nirmatrelvir/ritonavir (Paxlovid) for COVID-19 infection in a child with a kidney transplant. Pediatr Nephrol 2023; 38(4): 1387-8.
[http://dx.doi.org/10.1007/s00467-022-05712-0] [PMID: 35982345]
[28]
Sindelar M, McCabe D, Carroll E. Tacrolimus drug–drug interaction with nirmatrelvir/ritonavir (Paxlovid™) managed with phenytoin. J Med Toxicol 2023; 19(1): 45-8.
[http://dx.doi.org/10.1007/s13181-022-00922-2] [PMID: 36536192]
[29]
Sagawa K, Lin J, Jaini R, Di L. Physiologically-based pharmacokinetic modeling of Paxlovid™ with first-order absorption kinetics. Pharm Res 2023; 40(8): 1927-38.
[http://dx.doi.org/10.1007/s11095-023-03538-5] [PMID: 37231296]
[30]
Miljković MD, Prasad V. Paxlovid: A regulatory gamble. Am J Med 2023; 136(4): 336-8.
[http://dx.doi.org/10.1016/j.amjmed.2022.12.017] [PMID: 36608747]
[31]
Harris E. FDA grants full approval to Paxlovid, COVID-19 antiviral treatment. JAMA 2023; 329(24): 2118.
[http://dx.doi.org/10.1001/jama.2023.9925] [PMID: 37285173]
[32]
Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med 2022; 386(15): 1397-408.
[http://dx.doi.org/10.1056/NEJMoa2118542] [PMID: 35172054]
[33]
Mahase E. COVID-19: Pfizer’s Paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021; 375(2713): n2713.
[http://dx.doi.org/10.1136/bmj.n2713] [PMID: 34750163]
[34]
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7(1): 387.
[http://dx.doi.org/10.1038/s41392-022-01249-8] [PMID: 36464706]
[35]
Brooks JK, Song JH, Sultan AS. Paxlovid-associated dysgeusia. Oral Dis 2023; 29(7): 2980-1.
[http://dx.doi.org/10.1111/odi.14312] [PMID: 35830268]
[36]
Chen Y, Wan W, Yao X, Guan Y. Drug-drug interaction between Paxlovid and Tacrolimus in a patient with myasthenia gravis and SARS-CoV-2 infection. J Neuroimmunol 2023; 385: 578245.
[http://dx.doi.org/10.1016/j.jneuroim.2023.578245] [PMID: 37992586]
[37]
Saravolatz LD, Depcinski S, Sharma M. Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral drugs. Clin Infect Dis 2023; 76(1): 165-71.
[http://dx.doi.org/10.1093/cid/ciac180] [PMID: 35245942]
[38]
Cao Z, Gao W, Bao H, et al. VV116 versus nirmatrelvir-ritonavir for oral treatment of COVID-19. N Engl J Med 2022.
[PMID: 36577095]
[39]
Antonelli G, Focosi D, Turriziani O, et al. Virological and clinical rebounds of COVID-19 soon after nirmatrelvir/ritonavir discontinuation. Clin Microbiol Infect 2022; 28(12): 1657-8.
[http://dx.doi.org/10.1016/j.cmi.2022.06.029] [PMID: 35792281]
[40]
Epling BP, Rocco JM, Boswell KL, et al. COVID-19 redux: Clinical, virologic, and immunologic evaluation of clinical rebound after nirmatrelvir/ritonavir. medRxiv 2022.
[http://dx.doi.org/10.1101/2022.06.16.22276392]
[41]
Amani B, Amani B. Efficacy and safety of nirmatrelvir/ritonavir (Paxlovid) for COVID-19: A rapid review and meta-analysis. J Med Virol 2023; 95(2): e28441.
[http://dx.doi.org/10.1002/jmv.28441] [PMID: 36576379]
[42]
Perelson AS, Ribeiro RM, Phan T. An explanation for SARSCoV-2 rebound after Paxlovid treatment. medRxiv 2023.
[http://dx.doi.org/10.1101/2023.05.30.23290747]
[43]
Chew LS, Lim XJ, Chang CT, et al. Effectiveness of nirmatrelvir/ritonavir (Paxlovid®) in preventing hospitalisation and death among COVID-19 patients: A prospective cohort study. Med J Malaysia 2023; 78(5): 602-8.
[PMID: 37775486]
[44]
Bihan K, Lipszyc L, Lemaitre F, et al. Nirmatrelvir/ritonavir (Paxlovid®): French pharmacovigilance survey 2022. Therapie 2023; 78(5): 531-47.
[http://dx.doi.org/10.1016/j.therap.2023.03.001] [PMID: 37012153]
[45]
Böhm R, Bulin C, Waetzig V, Cascorbi I, Klein HJ, Herdegen T. Pharmacovigilance-based drug repurposing: The search for inverse signals via OpenVigil identifies putative drugs against viral respiratory infections. Br J Clin Pharmacol 2021; 87(11): 4421-31.
[http://dx.doi.org/10.1111/bcp.14868] [PMID: 33871897]
[46]
Tian F, Chen Z, Feng Q. Nirmatrelvir-ritonavir compared with other antiviral drugs for the treatment of COVID-19 patients: A systematic review and meta-analysis. J Med Virol 2023; 95(4): e28732.
[http://dx.doi.org/10.1002/jmv.28732] [PMID: 37183808]
[47]
Liu J, Pan X, Zhang S, et al. Efficacy and safety of Paxlovid in severe adult patients with SARS-CoV-2 infection: A multicenter randomized controlled study. Lancet Reg Health - West Pac 2023; 33: 100694.
[http://dx.doi.org/10.1016/j.lanwpc.2023.100694] [PMID: 36777445]
[48]
Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of paxlovid in reducing severe COVID-19 and mortality in high risk patients. Clin Infect Dis 2023; 11: 1174879.
[49]
Ganatra S, Dani SS, Ahmad J, et al. Oral nirmatrelvir and ritonavir in non-hospitalized vaccinated patients with coronavirus disease 2019. Clin Infect Dis 2023; 76(4): 563-72.
[50]
Reis S, Metzendorf MI, Kuehn R, et al. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database Syst Rev 2022; 9(9): CD015395.
[PMID: 36126225]
[51]
Bandello F, Staurenghi G, Ricci F, et al. Safety and tolerability of ranibizumab in uni/bilateral neovascular age-related macular degeneration: 12-month TWEYEs study. Br J Ophthalmol 2020; 104(1): 64-73.
[http://dx.doi.org/10.1136/bjophthalmol-2019-313907] [PMID: 31079057]
[52]
Prosperini L, Haggiag S, Tortorella C, Galgani S, Gasperini C. Age-related adverse events of disease-modifying treatments for multiple sclerosis: A meta-regression. Mult Scler 2021; 27(9): 1391-402.
[http://dx.doi.org/10.1177/1352458520964778] [PMID: 33104449]
[53]
Lohan L, Marin G, Faucanie M, et al. Frequency, characteristics, and predictive factors of adverse drug events in an adult emergency department according to age: A cross-sectional study. J Clin Med 2022; 11(19): 5731.
[http://dx.doi.org/10.3390/jcm11195731] [PMID: 36233599]
[54]
Goetz MP, Okera M, Wildiers H, et al. Safety and efficacy of abemaciclib plus endocrine therapy in older patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: An age-specific subgroup analysis of MONARCH 2 and 3 trials. Breast Cancer Res Treat 2021; 186(2): 417-28.
[http://dx.doi.org/10.1007/s10549-020-06029-y] [PMID: 33392835]
[55]
Wang J, Tong Y, Li D, Li J, Li Y. The impact of age difference on the efficacy and safety of COVID-19 vaccines: A systematic review and meta-analysis. Front Immunol 2021; 12: 758294.
[http://dx.doi.org/10.3389/fimmu.2021.758294] [PMID: 34938287]
[56]
Lalovic BB, Shireman L, Shen DD, Cherrier MM. Model-based analysis of the influence of alcohol use and age on pharmacokinetics-pharmacodynamics of oral oxycodone in middle-age and older community-dwelling adults. J Clin Pharmacol 2022; 62(9): 1177-90.
[http://dx.doi.org/10.1002/jcph.2058] [PMID: 35394079]
[57]
Lamb YN. Nirmatrelvir plus ritonavir: First approval. Drugs 2022; 82(5): 585-91.
[http://dx.doi.org/10.1007/s40265-022-01692-5] [PMID: 35305258]
[58]
Wang Y, Chen X, Liu X, Zhao D, Feng L. Nirmatrelvir-ritonavir might only be effective in elderly patients. J Med Virol 2023; 95(1): e28418.
[http://dx.doi.org/10.1002/jmv.28418] [PMID: 36541710]
[59]
Arbel R, Wolff Sagy Y, Hoshen M, et al. Nirmatrelvir use and severe COVID-19 outcomes during the omicron surge. N Engl J Med 2022; 387(9): 790-8.
[http://dx.doi.org/10.1056/NEJMoa2204919] [PMID: 36001529]
[60]
Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin Infect Dis 2023; 76(3): e342-9.
[http://dx.doi.org/10.1093/cid/ciac443] [PMID: 35653428]
[61]
Dryden-Peterson S, Kim A, Kim AY, et al. Nirmatrelvir plus ritonavir for early COVID-19 in a large U.S. health system. Ann Intern Med 2023; 176(1): 77-84.
[http://dx.doi.org/10.7326/M22-2141] [PMID: 36508742]
[62]
Santi Laurini G, Montanaro N, Motola D. Safety profile of molnupiravir in the treatment of COVID-19: A descriptive study based on FAERS data. J Clin Med 2022; 12(1): 34.
[http://dx.doi.org/10.3390/jcm12010034] [PMID: 36614834]
[63]
Malden DE, Hong V, Lewin BJ, et al. Hospitalization and emergency department encounters for COVID-19 after paxlovid treatment — california, december 2021–may 2022. MMWR Morb Mortal Wkly Rep 2022; 71(25): 830-3.
[http://dx.doi.org/10.15585/mmwr.mm7125e2] [PMID: 35737591]
[64]
Dryden-Peterson S, Kim A, Kim AY, et al. Nirmatrelvir plus ritonavir for early COVID-19 and hospitalization in a large US health system. medRxiv 2022.
[http://dx.doi.org/10.1101/2022.06.14.22276393]
[65]
Chang CT, Ong SY, Lim XJ, Chew LS, Rajan P. Managing nirmatrelvir/ritonavir during COVID-19: Pharmacists’ experiences from the Perak state of Malaysia. J Pharm Policy Pract 2022; 15(1): 70.
[http://dx.doi.org/10.1186/s40545-022-00469-1] [PMID: 36274169]
[66]
Cvancara DJ, Baertsch HC, Lehmann AE, et al. Postmarketing reporting of paxlovid-related dysgeusia: A real-world pharmacovigilance study. Otolaryngol Head Neck Surg 2023; 169(1): 55-61.
[http://dx.doi.org/10.1002/ohn.278] [PMID: 36821807]
[67]
Caronia L, Xi R, Margolskee RF, Jiang P. Paxlovid mouth likely is mediated by activation of the TAS2R1 bitter receptor by nirmatrelvir. Biochem Biophys Res Commun 2023; 682: 138-40.
[http://dx.doi.org/10.1016/j.bbrc.2023.10.001] [PMID: 37806252]
[68]
Yang DW, Ju MJ, Wang H, et al. Proxalutamide for the treatment of COVID-19 rebound following Paxlovid treatment: Report of four cases and review of the literature. J Clin Lab Anal 2023; 37(7): e24880.
[http://dx.doi.org/10.1002/jcla.24880] [PMID: 37088868]
[69]
Caso JM, Fernández-Ruiz M, López-Medrano F, et al. Nirmatrelvir/ritonavir for the treatment of immunocompromised adult patients with early-stage symptomatic COVID-19: A real-life experience. J Med Virol 2023; 95(9): e29082.
[http://dx.doi.org/10.1002/jmv.29082] [PMID: 37671852]
[70]
Rutherford CL, Barker S, Romics L. A systematic review of oncoplastic volume replacement breast surgery: Oncological safety and cosmetic outcome. Ann R Coll Surg Engl 2022; 104(1): 5-17.
[http://dx.doi.org/10.1308/rcsann.2021.0012] [PMID: 34767472]
[71]
Tiseo G, Barbieri C, Galfo V, et al. Efficacy and safety of nirmatrelvir/ritonavir, molnupiravir, and remdesivir in a real-world cohort of outpatients with COVID-19 at high risk of progression: The PISA outpatient clinic experience. Infect Dis Ther 2023; 12(1): 257-71.
[http://dx.doi.org/10.1007/s40121-022-00729-2] [PMID: 36441485]
[72]
Long B, Carius BM, Chavez S, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med 2022; 54: 46-57.
[http://dx.doi.org/10.1016/j.ajem.2022.01.028] [PMID: 35121478]
[73]
Henderson LA, Canna SW, Friedman KG, et al. American college of rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: Version 3. Arthritis Rheumatol 2022; 74(4): e1-e20.
[http://dx.doi.org/10.1002/art.42062] [PMID: 35118829]
[74]
COVID-19 updates: NIH outpatient treatment guidelines. Med Lett Drugs Ther 2022; 64(1644): 32.
[PMID: 35171899]
[75]
Katona L, Bitter I, Czobor P. A meta-analysis of effectiveness of real-world studies of antipsychotics in schizophrenia: Are the results consistent with the findings of randomized controlled trials? Transl Psychiatry 2021; 11(1): 510.
[http://dx.doi.org/10.1038/s41398-021-01636-9] [PMID: 34615850]
[76]
Gusmanov A, Zhakhina G, Yerdessov S, et al. Review of the research databases on population-based Registries of Unified electronic Healthcare system of Kazakhstan (UNEHS): Possibilities and limitations for epidemiological research and real-world evidence. Int J Med Inform 2023; 170: 104950.
[http://dx.doi.org/10.1016/j.ijmedinf.2022.104950] [PMID: 36508752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy