Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Viral MicroRNAs in Herpes Simplex Virus 1 Pathobiology

Author(s): Raza Ali Naqvi, Araceli Valverde, Tejabhiram Yadavalli, Fatima Ismail Bobat, Kristelle J. Capistrano, Deepak Shukla* and Afsar R. Naqvi*

Volume 30, Issue 9, 2024

Published on: 12 February, 2024

Page: [649 - 665] Pages: 17

DOI: 10.2174/0113816128286469240129100313

Price: $65

Abstract

Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.

Next »
[1]
James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull World Health Organ 2020; 98(5): 315-29.
[http://dx.doi.org/10.2471/BLT.19.237149] [PMID: 32514197]
[2]
Wald A, Corey L. HSV: Persistence in the population: Epidemiology, transmission. Human Herpesviruses. Cambridge University Press 2007; pp. 656-72.
[http://dx.doi.org/10.1017/CBO9780511545313.037]
[3]
Ramchandani M, Kong M, Tronstein E, et al. Herpes simplex virus type 1 shedding in tears and nasal and oral mucosa of healthy adults. Sex Transm Dis 2016; 43(12): 756-60.
[http://dx.doi.org/10.1097/OLQ.0000000000000522] [PMID: 27835628]
[4]
Johnston C, Walker A. Epidemiology, clinical manifestations, and diagnosis of herpes simplex virus type 1 infection. UpToDate 2023. Available from: uptodate.com/contents/epidemiology-clinical-manifestations-and-diagnosis-of-herpes-simplex-virus-type-1-infection
[5]
Van Wagoner N, Qushair F, Johnston C. Genital herpes infection. Infect Dis Clin North Am 2023; 37(2): 351-67.
[http://dx.doi.org/10.1016/j.idc.2023.02.011] [PMID: 37105647]
[6]
Möckel M, De La Cruz NC, Rübsam M, et al. Herpes simplex virus 1 can bypass impaired epidermal barriers upon ex vivo infection of skin from atopic dermatitis patients. J Virol 2022; 96(17): e00864-922.
[7]
Wilson EK, deWeber K, Berry JW, Wilckens JH. Cutaneous infections in wrestlers. Sports Health 2013; 5(5): 423-37.
[http://dx.doi.org/10.1177/1941738113481179] [PMID: 24427413]
[8]
Betz D, Fane K. Herpetic whitlow. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[9]
Saleh D, Yarrarapu SNS, Sharma S. Herpes simplex type 1. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[10]
Franco AR, Mendo R, Barosa R, Figueiredo P. HSV-1 hepatitis in an immunocompetent patient – Act before you know. IDCases 2022; 30: e01605.
[http://dx.doi.org/10.1016/j.idcr.2022.e01605] [PMID: 36061138]
[11]
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17(1): 40-9.
[http://dx.doi.org/10.1016/j.jtos.2018.10.002] [PMID: 30317007]
[12]
St Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local immune control of latent herpes simplex virus type 1 in ganglia of mice and man. Front Immunol 2021; 12: 723809.
[http://dx.doi.org/10.3389/fimmu.2021.723809] [PMID: 34603296]
[13]
Farooq AV, Shukla D. Corneal latency and transmission of herpes simplex virus-1. Future Virol 2011; 6(1): 101-8.
[http://dx.doi.org/10.2217/fvl.10.74] [PMID: 21436960]
[14]
Theil D, Derfuss T, Paripovic I, et al. Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 2003; 163(6): 2179-84.
[http://dx.doi.org/10.1016/S0002-9440(10)63575-4] [PMID: 14633592]
[15]
Jeshvaghani ZS, Soleimani M, Asgharpour S, Arefian E. Latency-associated transcript-derived micrornas in herpes simplex virus type 1 target SMAD3 and SMAD4 in TGF-\upbeta/Smad signaling pathway. Iran Biomed J 2021; 25(3): 169-79.
[http://dx.doi.org/10.52547/ibj.25.3.169] [PMID: 33546553]
[16]
Everett RD. Biology and life cycle. Methods in Molecular Biology. Springer New York 2014; pp. 1-17.
[http://dx.doi.org/10.1007/978-1-4939-0428-0_1]
[17]
De Mello CPP, Bloom DC, Paixão ICNP. Herpes simplex virus type-1: Replication, latency, reactivation and its antiviral targets. Antivir Ther 2016; 21(4): 277-86.
[http://dx.doi.org/10.3851/IMP3018] [PMID: 26726828]
[18]
Bagga B, Kate A, Joseph J, Dave VP. Herpes simplex infection of the eye: An introduction. Community Eye Health 2020; 33(108): 68-70.
[PMID: 32395028]
[19]
Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv Ophthalmol 2012; 57(5): 448-62.
[http://dx.doi.org/10.1016/j.survophthal.2012.01.005] [PMID: 22542912]
[20]
Sugar A. Herpes simplex keratitis. UpToDate 2022. Available from: uptodate.com/contents/herpes-simplex-keratitis
[21]
Valerio GS, Lin CC. Ocular manifestations of herpes simplex virus. Curr Opin Ophthalmol 2019; 30(6): 525-31.
[http://dx.doi.org/10.1097/ICU.0000000000000618] [PMID: 31567695]
[22]
Issiaka M, Abounaceur A, Aitlhaj J, et al. Chronic unilateral anterior scleritis, think about a herpetic origin: A case report. Ann Med Surg 2021; 68: 102611.
[http://dx.doi.org/10.1016/j.amsu.2021.102611] [PMID: 34381600]
[23]
Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76(3): 405-19.
[http://dx.doi.org/10.1007/s00018-018-2938-1] [PMID: 30327839]
[24]
Moshirfar M, Murri MS, Shah TJ, et al. A review of corneal endotheliitis and endotheliopathy: Differential diagnosis, evaluation, and treatment. Ophthalmol Ther 2019; 8(2): 195-213.
[http://dx.doi.org/10.1007/s40123-019-0169-7] [PMID: 30859513]
[25]
Semeraro F, Forbice E, Romano V, et al. Neurotrophic keratitis. Ophthalmologica 2014; 231(4): 191-7.
[http://dx.doi.org/10.1159/000354380] [PMID: 24107451]
[26]
Mannis MJ, Holland EJ. Cornea. Elsevier Health Sciences 2016.
[27]
Remeijer L, Maertzdorf J, Doornenbal P, Verjans GMGM, Osterhaus ADME. Herpes simplex virus 1 transmission through corneal transplantation. Lancet 2001; 357(9254): 442.
[http://dx.doi.org/10.1016/S0140-6736(00)04011-3] [PMID: 11273067]
[28]
Borderie VM, Méritet JF, Chaumeil C, et al. Culture-proven herpetic keratitis after penetrating keratoplasty in patients with no previous history of herpes disease. Cornea 2004; 23(2): 118-24.
[http://dx.doi.org/10.1097/00003226-200403000-00003] [PMID: 15075879]
[29]
Fan Q, Kopp S, Connolly SA, Muller WJ, Longnecker R. Mapping sites of herpes simplex virus type 1 glycoprotein D that permit insertions and impact gD and gB receptors usage. Sci Rep 2017; 7(1): 43712.
[http://dx.doi.org/10.1038/srep43712] [PMID: 28255168]
[30]
Akhtar J, Tiwari V, Oh MJ, et al. HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest Ophthalmol Vis Sci 2008; 49(9): 4026-35.
[http://dx.doi.org/10.1167/iovs.08-1807] [PMID: 18502984]
[31]
Zhu S, Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021; 12(1): 2670-702.
[http://dx.doi.org/10.1080/21505594.2021.1982373] [PMID: 34676800]
[32]
Edwards RG, Kopp SJ, Ifergan I, et al. Murine corneal inflammation and nerve damage after infection With HSV-1 are promoted by HVEM and ameliorated by immune-modifying nanoparticle therapy. Invest Ophthalmol Vis Sci 2017; 58(1): 282-91.
[http://dx.doi.org/10.1167/iovs.16-20668] [PMID: 28114589]
[33]
Tiwari V, Clement C, Xu D, et al. Role for 3-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 2006; 80(18): 8970-80.
[http://dx.doi.org/10.1128/JVI.00296-06] [PMID: 16940509]
[34]
Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA. Herpes simplex virus evasion of early host antiviral responses. Front Cell Infect Microbiol 2019; 9: 127.
[http://dx.doi.org/10.3389/fcimb.2019.00127] [PMID: 31114761]
[35]
Amin I, Vajeeha A, Younas S, et al. HSV-1 infection: Role of viral proteins and cellular receptors. Crit Rev Eukaryot Gene Expr 2019; 29(5): 461-9.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025561] [PMID: 32422002]
[36]
Pan D, Li G, Morris-Love J, et al. Herpes simplex virus 1 lytic infection blocks microRNA (miRNA) biogenesis at the stage of nuclear export of pre-miRNAs. mBio 2019; 10(1): 10-128.
[http://dx.doi.org/10.1128/mBio.02856-18]
[37]
Cui C, Griffiths A, Li G, et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 2006; 80(11): 5499-508.
[http://dx.doi.org/10.1128/JVI.00200-06] [PMID: 16699030]
[38]
Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs alter host cell miRNA profiles and modulate innate immune responses. Front Immunol 2018; 9: 433.
[http://dx.doi.org/10.3389/fimmu.2018.00433] [PMID: 29559974]
[39]
Zheng K, Liu Q, Wang S, et al. HSV-1-encoded microRNA miR-H1 targets Ubr1 to promote accumulation of neurodegeneration-associated protein. Virus Genes 2018; 54(3): 343-50.
[http://dx.doi.org/10.1007/s11262-018-1551-6] [PMID: 29541932]
[40]
Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454(7205): 780-3.
[http://dx.doi.org/10.1038/nature07103] [PMID: 18596690]
[41]
Cokarić Brdovčak M, Zubković A, Jurak I. Herpes simplex virus 1 deregulation of host microRNAs. Noncoding RNA 2018; 4(4): 36.
[http://dx.doi.org/10.3390/ncrna4040036] [PMID: 30477082]
[42]
Piedade D, Azevedo-Pereira J. The role of micrornas in the pathogenesis of herpesvirus infection. Viruses 2016; 8(6): 156.
[http://dx.doi.org/10.3390/v8060156] [PMID: 27271654]
[43]
Duan F, Liao J, Huang Q, Nie Y, Wu K. HSV-1 miR-H6 inhibits HSV-1 replication and IL-6 expression in human corneal epithelial cells in vitro. Clin Dev Immunol 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/192791] [PMID: 22550533]
[44]
Zou W, Zhou X, Wang L, Zhou GG, Chen X. Degradation of herpes simplex virus-1 viral miRNA H11 by vaccinia virus protein VP55 attenuates viral replication. Front Microbiol 2020; 11: 717.
[http://dx.doi.org/10.3389/fmicb.2020.00717] [PMID: 32390978]
[45]
Wu W, Guo Z, Zhang X, et al. A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes. Sci China Life Sci 2013; 56(4): 373-83.
[http://dx.doi.org/10.1007/s11427-013-4458-4] [PMID: 23512275]
[46]
Han Z, Liu X, Chen X, et al. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc Natl Acad Sci USA 2016; 113(7): E894-901.
[http://dx.doi.org/10.1073/pnas.1525674113] [PMID: 26831114]
[47]
Wilcox DR, Longnecker R. The herpes simplex virus neurovirulence factor\upgamma34.5: Revealing virus–host interactions. PLOS Pathog 2016; 12(3): e1005449.
[48]
Cohen JI. Herpesvirus latency. J Clin Invest 2020; 130(7): 3361-9.
[http://dx.doi.org/10.1172/JCI136225] [PMID: 32364538]
[49]
Roizman B, Knipe DM, Whitley R. Herpes Simplex Viruses. (6th ed.), Philadelphia: Fields Virology 2013.
[50]
Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 2008; 6(3): 211-21.
[http://dx.doi.org/10.1038/nrmicro1794] [PMID: 18264117]
[51]
Herrera FJ, Triezenberg SJ. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 2004; 78(18): 9689-96.
[http://dx.doi.org/10.1128/JVI.78.18.9689-9696.2004] [PMID: 15331701]
[52]
Oh J, Fraser NW. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol 2008; 82(7): 3530-7.
[http://dx.doi.org/10.1128/JVI.00586-07] [PMID: 18160436]
[53]
Cliffe AR, Garber DA, Knipe DM. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 2009; 83(16): 8182-90.
[http://dx.doi.org/10.1128/JVI.00712-09] [PMID: 19515781]
[54]
Kwiatkowski DL, Thompson HW, Bloom DC. The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 2009; 83(16): 8173-81.
[http://dx.doi.org/10.1128/JVI.00686-09] [PMID: 19515780]
[55]
Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci USA 2005; 102(44): 16055-9.
[http://dx.doi.org/10.1073/pnas.0505850102] [PMID: 16247011]
[56]
Cullen BR. Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25(18): 1881-94.
[http://dx.doi.org/10.1101/gad.17352611] [PMID: 21896651]
[57]
Kincaid RP, Sullivan CS. Virus-encoded microRNAs: An overview and a look to the future. PLoS Pathog 2012; 8(12): e1003018.
[58]
Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. VIRmiRNA: A comprehensive resource for experimentally validated viral miRNAs and their targets. Database 2014; 2014: bau103.
[http://dx.doi.org/10.1093/database/bau103] [PMID: 25380780]
[59]
Grey F. Role of microRNAs in herpesvirus latency and persistence. J Gen Virol 2015; 96(4): 739-51.
[http://dx.doi.org/10.1099/vir.0.070862-0] [PMID: 25406174]
[60]
Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 2005; 102(15): 5570-5.
[http://dx.doi.org/10.1073/pnas.0408192102] [PMID: 15800047]
[61]
Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2(4): 269-76.
[http://dx.doi.org/10.1038/nmeth746] [PMID: 15782219]
[62]
Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005; 435(7042): 682-6.
[http://dx.doi.org/10.1038/nature03576] [PMID: 15931223]
[63]
Jurak I, Griffiths A, Coen DM. Mammalian alphaherpesvirus miRNAs. Biochim Biophys Acta BBA - Gene Regul Mech 1809; 1809(11–12): 641-53.
[64]
Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304(5671): 734-6.
[http://dx.doi.org/10.1126/science.1096781] [PMID: 15118162]
[65]
Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA 2008; 105(31): 10931-6.
[http://dx.doi.org/10.1073/pnas.0801845105] [PMID: 18678906]
[66]
Tang S, Patel A, Krause PR. Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J Virol 2009; 83(3): 1433-42.
[http://dx.doi.org/10.1128/JVI.01723-08] [PMID: 19019961]
[67]
Kramer MF, Jurak I, Pesola JM, Boissel S, Knipe DM, Coen DM. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 2011; 417(2): 239-47.
[http://dx.doi.org/10.1016/j.virol.2011.06.027] [PMID: 21782205]
[68]
Du T, Han Z, Zhou G, Roizman B. Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation. Proc Natl Acad Sci USA 2015; 112(1): E49-55.
[http://dx.doi.org/10.1073/pnas.1422657112] [PMID: 25535379]
[69]
Held K, Junker A, Dornmair K, et al. Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J Virol 2011; 85(19): 9680-5.
[http://dx.doi.org/10.1128/JVI.00874-11] [PMID: 21795359]
[70]
Samols MA, Hu J, Skalsky RL, Renne R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 2005; 79(14): 9301-5.
[http://dx.doi.org/10.1128/JVI.79.14.9301-9305.2005] [PMID: 15994824]
[71]
Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 2009; 83(20): 10677-83.
[http://dx.doi.org/10.1128/JVI.01185-09] [PMID: 19656888]
[72]
Fu M, Gao Y, Zhou Q, et al. Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 2014; 536(2): 272-8.
[http://dx.doi.org/10.1016/j.gene.2013.12.012] [PMID: 24361963]
[73]
Meshesha MK, Bentwich Z, Solomon SA, Avni YS. In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. Gene 2016; 575(1): 101-7.
[http://dx.doi.org/10.1016/j.gene.2015.08.040] [PMID: 26302752]
[74]
Mikell I, Crawford LB, Hancock MH, et al. HCMV miR-US22 down-regulation of EGR-1 regulates CD34\mathplus hematopoietic progenitor cell proliferation and viral reactivation. PLOS Pathog 2019; 15(11): e1007854.
[75]
Tuddenham L, Jung JS, Chane-Woon-Ming B, Dölken L, Pfeffer S. Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol 2012; 86(3): 1638-49.
[http://dx.doi.org/10.1128/JVI.05911-11] [PMID: 22114334]
[76]
Nukui M, Mori Y, Murphy EA. A human herpesvirus 6a-encoded microRNA: Role in viral lytic replication. J Virol 2015; 89(5): 2615-27.
[77]
Barrozo ER, Nakayama S, Singh P, et al. Deletion of herpes simplex virus 1 MicroRNAs miR-H1 and miR-H6 impairs reactivation. J Virol 2020; 94(15): 10-128.
[http://dx.doi.org/10.1128/JVI.00639-20]
[78]
Hancock MH, Mitchell J, Goodrum FD, Nelson JA. Human cytomegalovirus miR-US5-2 downregulation of GAB1 regulates cellular proliferation and \lessi\greaterul138\less/i\greater expression through modulation of epidermal growth factor receptor signaling pathways. mSphere . 2020; 5.(4)
[http://dx.doi.org/10.1128/mSphere.00582-20]
[79]
Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010; 64(1): 123-41.
[http://dx.doi.org/10.1146/annurev.micro.112408.134243] [PMID: 20477536]
[80]
Alekseev O, Donegan WE, Donovan KR, Limonnik V, Azizkhan- Clifford J. HSV-1 hijacks the host DNA damage response in corneal epithelial cells through ICP4-mediated activation of ATM. Invest Ophthalmol Vis Sci 2020; 61(6): 39.
[http://dx.doi.org/10.1167/iovs.61.6.39] [PMID: 32543665]
[81]
Banerjee A, Kulkarni S, Mukherjee A. Herpes simplex virus: The hostile guest that takes over your home. Front Microbiol 2020; 11: 733.
[http://dx.doi.org/10.3389/fmicb.2020.00733] [PMID: 32457704]
[82]
Zhao H, Zhang C, Hou G, Song J. MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells. Int J Clin Exp Med 2015; 8(5): 7526-34.
[PMID: 26221296]
[83]
Chen S, Deng Y, Pan D. MicroRNA regulation of human herpesvirus latency. Viruses 2022; 14(6): 1215.
[http://dx.doi.org/10.3390/v14061215] [PMID: 35746686]
[84]
Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW. Retraction note: Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2008; 451(7178): 600-0.
[http://dx.doi.org/10.1038/nature06621] [PMID: 18235505]
[85]
Enk J, Levi A, Weisblum Y, et al. HSV1 microRNA modulation of GPI anchoring and downstream immune evasion. Cell Rep 2016; 17(4): 949-56.
[http://dx.doi.org/10.1016/j.celrep.2016.09.077] [PMID: 27760325]
[86]
Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in cellular metabolism and immune responses. Front Microbiol 2017; 8: 1318.
[http://dx.doi.org/10.3389/fmicb.2017.01318] [PMID: 28769892]
[87]
Mishra R, Kumar A, Ingle H, Kumar H. The interplay between viral-derived mirnas and host immunity during infection. Front Immunol 2020; 10: 3079.
[http://dx.doi.org/10.3389/fimmu.2019.03079] [PMID: 32038626]
[88]
Duan Y, Zeng J, Fan S, et al. Herpes simplex virus type 1–encoded miR-H2-3p manipulates cytosolic DNA–stimulated antiviral innate immune response by targeting DDX41. Viruses 2019; 11(8): 756.
[http://dx.doi.org/10.3390/v11080756] [PMID: 31443275]
[89]
Paludan SR, Bowie AG, Horan KA, Fitzgerald KA. Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 2011; 11(2): 143-54.
[http://dx.doi.org/10.1038/nri2937] [PMID: 21267015]
[90]
Conwell SE, White AE, Harper JW, Knipe DM. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0. J Virol 2015; 89(1): 220-9.
[91]
Kurt-Jones EA, Orzalli MH, Knipe DM. Innate immune mechanisms and herpes simplex virus infection and disease. Cell Biology of Herpes Viruses. Springer International Publishing 2017; pp. 49-75.
[http://dx.doi.org/10.1007/978-3-319-53168-7_3]
[92]
Crameri M, Bauer M, Caduff N, et al. MxB is an interferon-induced restriction factor of human herpesviruses. Nat Commun 2018; 9(1): 1980.
[http://dx.doi.org/10.1038/s41467-018-04379-2] [PMID: 29773792]
[93]
Ku CC, Che XB, Reichelt M, et al. Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication. Immunol Cell Biol 2011; 89(2): 173-82.
[http://dx.doi.org/10.1038/icb.2010.83] [PMID: 20603636]
[94]
Staeheli P, Haller O. Human MX2/MxB: A potent interferon-induced postentry inhibitor of herpesviruses and HIV-1. J Virol 2018; 92(24): 10-128.
[http://dx.doi.org/10.1128/JVI.00709-18]
[95]
Domke-Opitz I, Straub P, Kirchner H. Effect of interferon on replication of herpes simplex virus types 1 and 2 in human macrophages. J Virol 1986; 60(1): 37-42.
[http://dx.doi.org/10.1128/jvi.60.1.37-42.1986] [PMID: 3018299]
[96]
Rosato PC, Leib DA. Intrinsic innate immunity fails to control herpes simplex virus and vesicular stomatitis virus replication in sensory neurons and fibroblasts. J Virol 2014; 88(17): 9991-10001.
[http://dx.doi.org/10.1128/JVI.01462-14]
[97]
Sainz B Jr, Halford WP. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 2002; 76(22): 11541-50.
[http://dx.doi.org/10.1128/JVI.76.22.11541-11550.2002] [PMID: 12388715]
[98]
Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999; 189(4): 663-72.
[http://dx.doi.org/10.1084/jem.189.4.663] [PMID: 9989981]
[99]
Luker GD, Prior JL, Song J, Pica CM, Leib DA. Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J Virol 2003; 77(20): 11082-93.
[http://dx.doi.org/10.1128/JVI.77.20.11082-11093.2003] [PMID: 14512556]
[100]
Xie Y, He S, Wang J. MicroRNA-373 facilitates HSV-1 replication through suppression of type I IFN response by targeting IRF1. Biomed Pharmacother 2018; 97: 1409-16.
[http://dx.doi.org/10.1016/j.biopha.2017.11.071] [PMID: 29156530]
[101]
Sharma N, Wang C, Kessler P, Sen GC. Herpes simplex virus 1 evades cellular antiviral response by inducing microRNA-24, which attenuates STING synthesis. PLOS Pathog 2021; 17(9): e1009950.
[http://dx.doi.org/10.1371/journal.ppat.1009950]
[102]
Liang D, Gao Y, Lin X, et al. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKɛ. Cell Res 2011; 21(5): 793-806.
[http://dx.doi.org/10.1038/cr.2011.5] [PMID: 21221132]
[103]
Chen M, Sun F, Han L, Qu Z. Kaposi’s sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling. Oncotarget 2016; 7(22): 33363-73.
[http://dx.doi.org/10.18632/oncotarget.9221] [PMID: 27166260]
[104]
Ehtisham S, Sunil-Chandra NP, Nash AA. Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 1993; 67(9): 5247-52.
[http://dx.doi.org/10.1128/jvi.67.9.5247-5252.1993] [PMID: 8394447]
[105]
Kägi D, Ledermann B, Bürki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369(6475): 31-7.
[http://dx.doi.org/10.1038/369031a0] [PMID: 8164737]
[106]
Walsh CM, Matloubian M, Liu CC, et al. Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 1994; 91(23): 10854-8.
[http://dx.doi.org/10.1073/pnas.91.23.10854] [PMID: 7526382]
[107]
Müllbacher A, Hla RT, Museteanu C, Simon MM. Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J Virol 1999; 73(2): 1665-7.
[http://dx.doi.org/10.1128/JVI.73.2.1665-1667.1999] [PMID: 9882377]
[108]
Snyder HL, Yewdell JW, Bennink JR. Trimming of antigenic peptides in an early secretory compartment. J Exp Med 1994; 180(6): 2389-94.
[http://dx.doi.org/10.1084/jem.180.6.2389] [PMID: 7964513]
[109]
Craiu A, Akopian T, Goldberg A, Rock KL. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 1997; 94(20): 10850-5.
[http://dx.doi.org/10.1073/pnas.94.20.10850] [PMID: 9380723]
[110]
Neefjes JJ, Momburg F, Hämmerling GJ. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 1993; 261(5122): 769-71.
[http://dx.doi.org/10.1126/science.8342042] [PMID: 8342042]
[111]
Bukur J, Jasinski S, Seliger B. The role of classical and non-classical HLA class I antigens in human tumors. Semin Cancer Biol 2012; 22(4): 350-8.
[http://dx.doi.org/10.1016/j.semcancer.2012.03.003] [PMID: 22465194]
[112]
York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 1994; 77(4): 525-35.
[http://dx.doi.org/10.1016/0092-8674(94)90215-1] [PMID: 8187174]
[113]
Røder G, Geironson L, Bressendorff I, Paulsson K. Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82(17): 8246-52.
[http://dx.doi.org/10.1128/JVI.00207-08] [PMID: 18448533]
[114]
Hislop AD, Ressing ME, van Leeuwen D, et al. A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in old world primates. J Exp Med 2007; 204(8): 1863-73.
[http://dx.doi.org/10.1084/jem.20070256] [PMID: 17620360]
[115]
Zuo J, Currin A, Griffin BD, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 2009; 5(1): e1000255.
[116]
Abendroth A, Lin I, Slobedman B, Ploegh H, Arvin AM. Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol 2001; 75(10): 4878-88.
[http://dx.doi.org/10.1128/JVI.75.10.4878-4888.2001] [PMID: 11312359]
[117]
Quinn LL, Williams LR, White C, Forrest C, Zuo J, Rowe M. The missing link in epstein-barr virus immune evasion: The BDLF3 Gene induces ubiquitination and downregulation of major histocompatibility complex class I (MHC-I) and MHC-II. J Virol 2016; 90(1): 356-67.
[118]
Furman MH, Dey N, Tortorella D, Ploegh HL. The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 2002; 76(22): 11753-6.
[http://dx.doi.org/10.1128/JVI.76.22.11753-11756.2002] [PMID: 12388737]
[119]
Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996; 84(5): 769-79.
[http://dx.doi.org/10.1016/S0092-8674(00)81054-5] [PMID: 8625414]
[120]
Hudson AW, Blom D, Howley PM, Ploegh HL. The ER-lumenal domain of the HHV-7 immunoevasin U21 directs class I MHC molecules to lysosomes. Traffic 2003; 4(12): 824-37.
[http://dx.doi.org/10.1046/j.1398-9219.2003.0137.x] [PMID: 14617346]
[121]
Coscoy L, Ganem D. Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci USA 2000; 97(14): 8051-6.
[http://dx.doi.org/10.1073/pnas.140129797] [PMID: 10859362]
[122]
Stern-Ginossar N, Elefant N, Zimmermann A, et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317(5836): 376-81.
[http://dx.doi.org/10.1126/science.1140956] [PMID: 17641203]
[123]
Nachmani D, Lankry D, Wolf DG, Mandelboim O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 2010; 11(9): 806-13.
[http://dx.doi.org/10.1038/ni.1916] [PMID: 20694010]
[124]
Esteso G, Luzón E, Sarmiento E, et al. Altered microRNA expression after infection with human cytomegalovirus leads to TIMP3 downregulation and increased shedding of metalloprotease substrates, including MICA. J Immunol 2014; 193(3): 1344-52.
[http://dx.doi.org/10.4049/jimmunol.1303441] [PMID: 24973455]
[125]
Mylin LM, Schell TD, Roberts D, et al. Quantitation of CD8(+) T- lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 2000; 74(15): 6922-34.
[http://dx.doi.org/10.1128/JVI.74.15.6922-6934.2000] [PMID: 10888631]
[126]
Lo AKF, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 2007; 104(41): 16164-9.
[http://dx.doi.org/10.1073/pnas.0702896104] [PMID: 17911266]
[127]
Lung RWM, Tong JHM, Sung YM, et al. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 2009; 11(11): 1174-IN17.
[http://dx.doi.org/10.1593/neo.09888] [PMID: 19881953]
[128]
Grégoire C, Chasson L, Luci C, et al. The trafficking of natural killer cells. Immunol Rev 2007; 220(1): 169-82.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00563.x] [PMID: 17979846]
[129]
Lanier LL, Ruitenberg JJ, Phillips JH. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 1988; 141(10): 3478-85.
[http://dx.doi.org/10.4049/jimmunol.141.10.3478] [PMID: 2903193]
[130]
Fehniger TA, Shah MH, Turner MJ, et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: Implications for the innate immune response. J Immunol 1999; 162(8): 4511-20.
[http://dx.doi.org/10.4049/jimmunol.162.8.4511] [PMID: 10201989]
[131]
Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol 2006; 118(1): 1-10.
[http://dx.doi.org/10.1016/j.clim.2005.10.011] [PMID: 16337194]
[132]
Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol 2004; 173(6): 3716-24.
[http://dx.doi.org/10.4049/jimmunol.173.6.3716] [PMID: 15356117]
[133]
Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13(1): 251-76.
[http://dx.doi.org/10.1146/annurev.iy.13.040195.001343] [PMID: 7612223]
[134]
SEKIYAMA KD, YOSHIBA M, THOMSON AW. Circulating proinflammatory cytokines (IL-1\upbeta, TNF-\upalpha, and IL-6) and IL-1 receptor antagonist (IL-1Ra) in fulminant hepatic failure and acute hepatitis. Clin Exp Immunol 1994; 98(1): 71-7.
[PMID: 7923888]
[135]
Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999; 103(1): 11-24.
[http://dx.doi.org/10.1016/S0091-6749(99)70518-X] [PMID: 9893178]
[136]
Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC. Interleukin-23: A key cytokine in inflammatory diseases. Ann Med 2011; 43(7): 503-11.
[http://dx.doi.org/10.3109/07853890.2011.577093] [PMID: 21585245]
[137]
Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012; 36(5): 705-16.
[http://dx.doi.org/10.1016/j.immuni.2012.05.008] [PMID: 22633458]
[138]
Mogensen TH, Melchjorsen J, Malmgaard L, Casola A, Paludan SR. Suppression of proinflammatory cytokine expression by herpes simplex virus type 1. J Virol 2004; 78(11): 5883-90.
[http://dx.doi.org/10.1128/JVI.78.11.5883-5890.2004] [PMID: 15140986]
[139]
Morrison TE, Mauser A, Wong A, Ting JPY, Kenney SC. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 2001; 15(5): 787-99.
[http://dx.doi.org/10.1016/S1074-7613(01)00226-6] [PMID: 11728340]
[140]
Nok-hei MW. Suppression of IFN-β production by Epstein-Barr virus lytic transactivator Zta. J Immunol 2017; 198(1_Supplement): 214-5.
[http://dx.doi.org/10.5353/th_991044040583503414]
[141]
Chuang HC, Lay JD, Chuang SE, Hsieh WC, Chang Y, Su IJ. Epstein-barr virus (EBV) latent membrane protein-1 down-regulates tumor necrosis factor-α (TNF-α) receptor-1 and confers resistance to TNF-α-induced apoptosis in T cells. Am J Pathol 2007; 170(5): 1607-17.
[http://dx.doi.org/10.2353/ajpath.2007.061026] [PMID: 17456766]
[142]
Miller DM, Zhang Y, Rahill BM, Waldman WJ, Sedmak DD. Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-alpha signal transduction. J Immunol 1999; 162(10): 6107-13.
[http://dx.doi.org/10.4049/jimmunol.162.10.6107] [PMID: 10229853]
[143]
Choi H jin, Park A, Kang S, Lee TA, Ra EA. Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nat Commun 2018; 9(1): 125.
[http://dx.doi.org/10.1038/s41467-017-02624-8]
[144]
Baillie J, Sahlender DA, Sinclair JH. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor. J Virol 2003; 77(12): 7007-16.
[http://dx.doi.org/10.1128/JVI.77.12.7007-7016.2003] [PMID: 12768019]
[145]
Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood 1996; 87(7): 2918-29.
[http://dx.doi.org/10.1182/blood.V87.7.2918.bloodjournal8772918] [PMID: 8639912]
[146]
Qin Z, Kearney P, Plaisance K, Parsons CH. Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol 2009; 87(1): 25-34.
[http://dx.doi.org/10.1189/jlb.0409251] [PMID: 20052801]
[147]
Abend JR, Uldrick T, Ziegelbauer JM. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi’s sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol 2010; 84(23): 12139-51.
[http://dx.doi.org/10.1128/JVI.00884-10] [PMID: 20844036]
[148]
Dölken L, Krmpotic A, Kothe S, et al. Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 2010; 6(10): e1001150.
[http://dx.doi.org/10.1371/journal.ppat.1001150]
[149]
Xia T, O’Hara A, Araujo I, et al. EBV MicroRNAs in primary lymphomas and targeting of \lessi\greaterCXCL-11\less/i\greater by ebv-mir-BHRF1-3. Cancer Res 2008; 68(5): 1436-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5126] [PMID: 18316607]
[150]
Bhela S, Rouse BT. Are miRNAs critical determinants in herpes simplex virus pathogenesis? Microbes Infect 2018; 20(9-10): 461-5.
[http://dx.doi.org/10.1016/j.micinf.2017.12.007] [PMID: 29287990]
[151]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[152]
Yang H, Yang X, Wang Y, Zheng X, Zhang Y, Shao Y. Comparative analysis of the tear protein profile in herpes simplex virus type 1 epithelial keratitis. BMC Ophthalmol 2020; 20(1): 355.
[http://dx.doi.org/10.1186/s12886-020-01626-3] [PMID: 32867704]
[153]
Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411(2): 325-43.
[http://dx.doi.org/10.1016/j.virol.2011.01.002] [PMID: 21277611]
[154]
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82: 100829.
[http://dx.doi.org/10.1016/j.jbior.2021.100829] [PMID: 34560402]
[155]
Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368(18): 1685-94.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[156]
van der Ree MH, de Vree JM, Stelma F, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial. Lancet 2017; 389(10070): 709-17.
[http://dx.doi.org/10.1016/S0140-6736(16)31715-9] [PMID: 28087069]
[157]
Yun SJ, Jeong P, Kang HW, et al. Urinary MicroRNAs of prostate cancer: Virus-encoded hsv1-miRH18 and hsv2-miR-H9-5p could be valuable diagnostic markers. Int Neurourol J 2015; 19(2): 74-84.
[http://dx.doi.org/10.5213/inj.2015.19.2.74] [PMID: 26126436]
[158]
McNally CJ, Ruddock MW, Moore T, McKenna DJ. Biomarkers that differentiate benign prostatic hyperplasia from prostate cancer: A literature review. Cancer Manag Res 2020; 12: 5225-41.
[http://dx.doi.org/10.2147/CMAR.S250829] [PMID: 32669872]
[159]
Tahamtan A, Inchley CS, Marzban M, et al. The role of microRNAs in respiratory viral infection: Friend or foe? Rev Med Virol 2016; 26(6): 389-407.
[http://dx.doi.org/10.1002/rmv.1894] [PMID: 27373545]
[160]
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The function and therapeutic potential of epstein-barr virus-encoded MicroRNAs in cancer. Mol Ther Nucleic Acids 2019; 17: 657-68.
[http://dx.doi.org/10.1016/j.omtn.2019.07.002] [PMID: 31400608]
[161]
Cai L, Li J, Zhang X, et al. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget 2015; 6(10): 7838-50.
[http://dx.doi.org/10.18632/oncotarget.3046] [PMID: 25691053]
[162]
Pan Y, Wang N, Zhou Z, et al. Circulating human cytomegalovirus-encoded HCMV-miR-US4-1 as an indicator for predicting the efficacy of IFNα treatment in chronic hepatitis B patients. Sci Rep 2016; 6(1): 23007.
[http://dx.doi.org/10.1038/srep23007] [PMID: 26961899]
[163]
Wood AJJ, Whitley RJ, Gnann JW Jr. Acyclovir: A decade later. N Engl J Med 1992; 327(11): 782-9.
[http://dx.doi.org/10.1056/NEJM199209103271108] [PMID: 1288525]
[164]
Elion GB. Acyclovir: Discovery, mechanism of action, and selectivity. J Med Virol 1993; 41(S1) (Suppl. 1): 2-6.
[http://dx.doi.org/10.1002/jmv.1890410503] [PMID: 8245887]
[165]
Elion GB. Mechanism of action and selectivity of acyclovir. Am J Med 1982; 73(1): 7-13.
[http://dx.doi.org/10.1016/0002-9343(82)90055-9] [PMID: 6285736]
[166]
Clark K, Plater L, Peggie M, Cohen P. Use of the Pharmacological Inhibitor BX795 to Study the Regulation and Physiological Roles of TBK1 and IκB Kinase ϵ: A distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 2009; 284(21): 14136-46.
[http://dx.doi.org/10.1074/jbc.M109.000414] [PMID: 19307177]
[167]
Jaishankar D, Yakoub AM, Yadavalli T, et al. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med 2018; 10(428): eaan5861.
[http://dx.doi.org/10.1126/scitranslmed.aan5861] [PMID: 29444978]
[168]
Cheshenko N, Trepanier JB, Stefanidou M, et al. HSV activates Akt to trigger calcium release and promote viral entry: Novel candidate target for treatment and suppression. FASEB J 2013; 27(7): 2584-99.
[http://dx.doi.org/10.1096/fj.12-220285] [PMID: 23507869]
[169]
Chuluunbaatar U, Roller R, Feldman ME, Brown S, Shokat KM, Mohr I. Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication. Genes Dev 2010; 24(23): 2627-39.
[http://dx.doi.org/10.1101/gad.1978310] [PMID: 21123650]
[170]
Gopinath SCB, Hayashi K, Kumar PKR. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 2012; 86(12): 6732-44.
[http://dx.doi.org/10.1128/JVI.00377-12] [PMID: 22514343]
[171]
Moore MD, Escudero-Abarca BI, Suh SH, Jaykus LA. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 2015; 209: 41-9.
[http://dx.doi.org/10.1016/j.jbiotec.2015.06.389] [PMID: 26080079]
[172]
Yadavalli T, Agelidis A, Jaishankar D, et al. Targeting herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection. Mol Ther Nucleic Acids 2017; 9: 365-78.
[http://dx.doi.org/10.1016/j.omtn.2017.10.009] [PMID: 29246315]
[173]
Park PJ, Antoine TE, Farooq AV, Valyi-Nagy T, Shukla D. An investigative peptide-acyclovir combination to control herpes simplex virus type 1 ocular infection. Invest Ophthalmol Vis Sci 2013; 54(9): 6373-81.
[http://dx.doi.org/10.1167/iovs.13-12832] [PMID: 23989188]
[174]
Roehm PC, Shekarabi M, Wollebo HS, et al. Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 2016; 6(1): 23146.
[http://dx.doi.org/10.1038/srep23146] [PMID: 27064617]
[175]
van Diemen FR, Kruse EM, Hooykaas MJG, et al. CRISPR/Cas9- mediated genome editing of herpesviruses limits productive and latent infections. PLOS Pathog 2016; 12(6): e1005701.
[176]
Agelidis AM, Hadigal SR, Jaishankar D, Shukla D. Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Rep 2017; 20(2): 439-50.
[http://dx.doi.org/10.1016/j.celrep.2017.06.041] [PMID: 28700944]
[177]
Courtney SM, Hay PA, Buck RT, et al. Furanyl-1,3-thiazol-2-yl and benzoxazol-5-yl acetic acid derivatives: Novel classes of heparanase inhibitor. Bioorg Med Chem Lett 2005; 15(9): 2295-9.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.014] [PMID: 15837312]
[178]
Dhanushkodi NR, Srivastava R, Coulon PGA, et al. Healing of ocular herpetic disease following treatment with an engineered FGF-1 is associated with increased corneal anti-inflammatory M2 macrophages. Front Immunol 2021; 12: 673763.
[http://dx.doi.org/10.3389/fimmu.2021.673763] [PMID: 34054858]
[179]
Moghim S, Shabani M, Nasr Esfahani B, et al. Inhibition of herpes simplex virus type 1 replication by novel hsa-miR-7704 in vitro. Res Pharm Sci 2019; 14(2): 167-74.
[http://dx.doi.org/10.4103/1735-5362.253364] [PMID: 31620193]
[180]
Pan D, Pesola JM, Li G, McCarron S, Coen DM. Mutations inactivating herpes simplex virus 1 MicroRNA miR-H2 do not detectably increase ICP0 gene expression in infected cultured cells or mouse trigeminal ganglia. J Virol 2017; 91(2): e02001-16.
[http://dx.doi.org/10.1128/JVI.02001-16] [PMID: 27847363]
[181]
Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC. Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 2013; 87(12): 6589-603.
[182]
Bultmann H, Busse JS, Brandt CR. Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J Virol 2001; 75(6): 2634-45.
[http://dx.doi.org/10.1128/JVI.75.6.2634-2645.2001] [PMID: 11222686]
[183]
Jaishankar D, Buhrman JS, Valyi-Nagy T, Gemeinhart RA, Shukla D. Extended release of an anti–heparan sulfate peptide from a contact lens suppresses corneal herpes simplex virus-1 infection. Invest Ophthalmol Vis Sci 2016; 57(1): 169-80.
[http://dx.doi.org/10.1167/iovs.15-18365] [PMID: 26780322]
[184]
Bauer D, Alt M, Dirks M, et al. A therapeutic antiviral antibody inhibits the anterograde directed neuron-to-cell spread of herpes simplex virus and protects against ocular disease. Front Microbiol 2017; 8: 2115.
[http://dx.doi.org/10.3389/fmicb.2017.02115] [PMID: 29163407]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy