Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Diabetes Pharmacotherapy and its effects on the Skeletal Muscle Energy Metabolism

Author(s): Baowen Yu, Dong Wang, Junming Zhou, Rong Huang, Tingting Cai, Yonghui Hu, Yunting Zhou* and Jianhua Ma*

Volume 24, Issue 16, 2024

Published on: 16 February, 2024

Page: [1470 - 1480] Pages: 11

DOI: 10.2174/0113895575299439240216081711

Price: $65

Abstract

The disorders of skeletal muscle metabolism in patients with Type 2 diabetes mellitus (T2DM), such as mitochondrial defection and glucose transporters (GLUTs) translocation dysfunctions, are not uncommon. Therefore, when anti-diabetic drugs were used in various chronic diseases associated with hyperglycemia, the impact on skeletal muscle should not be ignored. However, current studies mainly focus on muscle mass rather than metabolism or functions. Anti-diabetic drugs might have a harmful or beneficial impact on skeletal muscle. In this review, we summarize the upto- date studies on the effects of anti-diabetic drugs and some natural compounds on skeletal muscle metabolism, focusing primarily on emerging data from pre-clinical to clinical studies. Given the extensive use of anti-diabetic drugs and the common sarcopenia, a better understanding of energy metabolism in skeletal muscle deserves attention in future studies.

Graphical Abstract

[1]
Sever, B.; Altıntop, M.D.; Demir, Y.; Çiftçi, A.G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[2]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[3]
Ling, C.; Bacos, K.; Rönn, T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat. Rev. Endocrinol., 2022, 18(7), 433-448.
[http://dx.doi.org/10.1038/s41574-022-00671-w] [PMID: 35513492]
[4]
International Diabetes Federation In: IDF Diabetes Atlas, 10th ed; International Diabetes Federation: Brussels, Belgium, 2021.
[5]
Dibai, B.D.; de-Araújo, S.A.D.; Filho, D.A.V.; de Azevedo, L.F.S.; Goulart, C.L.; Luz, G.C.P.; Burke, P.R.; Araújo, G.A.S.; Silva, B.A. Rehabilitation of individuals with diabetes mellitus: Focus on diabetic myopathy. Front. Endocrinol., 2022, 13, 869921.
[http://dx.doi.org/10.3389/fendo.2022.869921] [PMID: 35498435]
[6]
Al-Ozairi, E.; Alsaeed, D.; Alroudhan, D.; Voase, N.; Hasan, A.; Gill, J.M.R.; Sattar, N.; Welsh, P.; Gray, C.M.; Boonpor, J.; Morales, C.C.; Gray, S.R. Skeletal muscle and metabolic health: How do we increase muscle mass and function in people with type 2 diabetes? J. Clin. Endocrinol. Metab., 2021, 106(2), 309-317.
[http://dx.doi.org/10.1210/clinem/dgaa835] [PMID: 33336682]
[7]
Posa, D.K.; Baba, S.P. Intracellular pH regulation of skeletal muscle in the milieu of insulin signaling. Nutrients, 2020, 12(10), 2910.
[http://dx.doi.org/10.3390/nu12102910] [PMID: 32977552]
[8]
Sylow, L.; Tokarz, V.L.; Richter, E.A.; Klip, A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab., 2021, 33(4), 758-780.
[http://dx.doi.org/10.1016/j.cmet.2021.03.020] [PMID: 33826918]
[9]
Merz, K.E.; Thurmond, D.C. Role of skeletal muscle in insulin resistance and glucose uptake. Compr. Physiol., 2020, 10(3), 785-809.
[http://dx.doi.org/10.1002/cphy.c190029] [PMID: 32940941]
[10]
DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 2009, 32(S2), S157-S163.
[http://dx.doi.org/10.2337/dc09-S302]
[11]
Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest., 2017, 127(1), 43-54.
[http://dx.doi.org/10.1172/JCI88880] [PMID: 28045398]
[12]
Zhang, X.; Li, H.; He, M.; Wang, J.; Wu, Y.; Li, Y. Immune system and sarcopenia: Presented relationship and future perspective. Exp. Gerontol., 2022, 164, 111823.
[http://dx.doi.org/10.1016/j.exger.2022.111823] [PMID: 35504482]
[13]
D’Erchia, A.M.; Atlante, A.; Gadaleta, G.; Pavesi, G.; Chiara, M.; De Virgilio, C.; Manzari, C.; Mastropasqua, F.; Prazzoli, G.M.; Picardi, E.; Gissi, C.; Horner, D.; Reyes, A.; Sbisà, E.; Tullo, A.; Pesole, G. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion, 2015, 20, 13-21.
[http://dx.doi.org/10.1016/j.mito.2014.10.005] [PMID: 25446395]
[14]
Miotto, P.M.; LeBlanc, P.J.; Holloway, G.P. High-fat diet causes mitochondrial dysfunction as a result of impaired ADP sensitivity. Diabetes, 2018, 67(11), 2199-2205.
[http://dx.doi.org/10.2337/db18-0417] [PMID: 29980534]
[15]
Chen, D.; Li, X.; Zhang, L.; Zhu, M.; Gao, L. A high‐fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. J. Cell. Biochem., 2018, 119(11), 9602.
[http://dx.doi.org/10.1002/jcb.27068] [PMID: 30171706]
[16]
Severinsen, M.C.K.; Pedersen, B.K. Muscle–organ crosstalk: The emerging roles of myokines. Endocr. Rev., 2020, 41(4), 594-609.
[http://dx.doi.org/10.1210/endrev/bnaa016] [PMID: 32393961]
[17]
Tiano, J.P.; Springer, D.A.; Rane, S.G. SMAD3 negatively regulates serum irisin and skeletal muscle FNDC5 and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) during exercise. J. Biol. Chem., 2015, 290(12), 7671-7684.
[http://dx.doi.org/10.1074/jbc.M114.617399] [PMID: 25648888]
[18]
Lim, S.; Choi, S.H.; Koo, B.K.; Kang, S.M.; Yoon, J.W.; Jang, H.C.; Choi, S.M.; Lee, M.G.; Lee, W.; Shin, H.; Kim, Y.B.; Lee, H.K.; Park, K.S. Effects of aerobic exercise training on C1q tumor necrosis factor α-related protein isoform 5 (myonectin): Association with insulin resistance and mitochondrial DNA density in women. J. Clin. Endocrinol. Metab., 2012, 97(1), E88-E93.
[http://dx.doi.org/10.1210/jc.2011-1743] [PMID: 22031510]
[19]
James, D.E.; Brown, R.; Navarro, J.; Pilch, P.F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature, 1988, 333(6169), 183-185.
[http://dx.doi.org/10.1038/333183a0] [PMID: 3285221]
[20]
Lee, H.Y.; Lee, G.H.; Hoang, T.H.; Park, S.A.; Lee, J.; Lim, J.; Sa, S.; Kim, G.E.; Han, J.S.; Kim, J.; Chae, H.J. D -allulose ameliorates hyperglycemia through IRE1α sulfonation-RIDD- sirt1 decay axis in the skeletal muscle. Antioxid. Redox Signal., 2022, 37(4-6), 229-245.
[http://dx.doi.org/10.1089/ars.2021.0207] [PMID: 35166127]
[21]
Whelan, S.A.; Dias, W.B.; Thiruneelakantapillai, L.; Lane, M.D.; Hart, G.W. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked β-N-acetylglucosamine in 3T3-L1 adipocytes. J. Biol. Chem., 2010, 285(8), 5204-5211.
[http://dx.doi.org/10.1074/jbc.M109.077818] [PMID: 20018868]
[22]
Love, K.M.; Liu, J.; Regensteiner, J.G.; Reusch, J.E.B.; Liu, Z. GLP ‐1 and insulin regulation of skeletal and cardiac muscle microvascular perfusion in type 2 diabetes. J. Diabetes, 2020, 12(7), 488-498.
[http://dx.doi.org/10.1111/1753-0407.13045] [PMID: 32274893]
[23]
Akdağ, M.; Özçelik, A.B.; Demir, Y.; Beydemir, Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J. Mol. Struct., 2022, 1258, 132675.
[http://dx.doi.org/10.1016/j.molstruc.2022.132675]
[24]
Tokalı, F.S.; Demir, Y.; Türkeş, C.; Dinçer, B.; Beydemir, Ş. Novel acetic acid derivatives containing quinazolin‐4(3 H)‐one ring: Synthe-sis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev. Res., 2023, 84(2), 275-295.
[http://dx.doi.org/10.1002/ddr.22031] [PMID: 36598092]
[25]
Kaneto, H.; Kimura, T.; Obata, A.; Shimoda, M.; Kaku, K. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history. Int. J. Mol. Sci., 2021, 22(5), 2596.
[http://dx.doi.org/10.3390/ijms22052596] [PMID: 33807522]
[26]
Cheng, J.; Xu, L.; Yu, Q.; Lin, G.; Ma, X. Li, M Metformin alleviates long-term high-fructose diet-induced skeletal muscle insulin resistance in rats by regulating purine nucleotide cycle. Eur. J. Pharmacol., 2022, 933, 175234.
[http://dx.doi.org/10.1016/j.ejphar.2022.175234]
[27]
Mestareehi, A.; Zhang, X.; Seyoum, B.; Msallaty, Z.; Mallisho, A.; Burghardt, K.J.; Kowluru, A.; Yi, Z. Metformin increases protein phosphatase 2a activity in primary human skeletal muscle cells derived from lean healthy participants. J. Diabetes Res., 2021, 2021, 1-6.
[http://dx.doi.org/10.1155/2021/9979234] [PMID: 34368369]
[28]
Panfoli, I.; Puddu, A.; Bertola, N.; Ravera, S.; Maggi, D. The hormetic effect of metformin: “Less is more”? Int. J. Mol. Sci., 2021, 22(12), 6297.
[http://dx.doi.org/10.3390/ijms22126297] [PMID: 34208371]
[29]
Kang, M.J.; Moon, J.W.; Lee, J.O.; Kim, J.H.; Jung, E.J.; Kim, S.J.; Oh, J.Y.; Wu, S.W.; Lee, P.R.; Park, S.H.; Kim, H.S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J. Cachexia Sarcopenia Muscle, 2022, 13(1), 605-620.
[http://dx.doi.org/10.1002/jcsm.12833] [PMID: 34725961]
[30]
Konopka, A.R.; Laurin, J.L.; Schoenberg, H.M.; Reid, J.J.; Castor, W.M.; Wolff, C.A.; Musci, R.V.; Safairad, O.D.; Linden, M.A.; Biela, L.M.; Bailey, S.M.; Hamilton, K.L.; Miller, B.F. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell, 2019, 18(1), e12880.
[http://dx.doi.org/10.1111/acel.12880] [PMID: 30548390]
[31]
Herbst, A.; Hoang, A.; Kim, C.; Aiken, J.M.; McKenzie, D.; Goldwater, D.S.; Wanagat, J. Metformin treatment in old rats and effects on mitochondrial integrity. Rejuvenation Res., 2021, 24(6), 434-440.
[http://dx.doi.org/10.1089/rej.2021.0052] [PMID: 34779265]
[32]
McKenzie, A.I.; Mahmassani, Z.S.; Petrocelli, J.J.; de Hart, NMM.P.; Fix, D.K. Ferrara, PJ Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H2O2 emission and production in healthy, older adults: A randomized controlled trial. Exp. Gerontol., 2022, 163, 111804.
[http://dx.doi.org/10.1016/j.exger.2022.111804]
[33]
Kulkarni, A.S.; Gubbi, S.; Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab., 2020, 32(1), 15-30.
[http://dx.doi.org/10.1016/j.cmet.2020.04.001] [PMID: 32333835]
[34]
Cui, J.; Song, L.; Wang, R.; Hu, S.; Yang, Z.; Zhang, Z.; Sun, B.; Cui, W. Maternal metformin treatment during gestation and lactation im-proves skeletal muscle development in offspring of rat dams fed high-fat diet. Nutrients, 2021, 13(10), 3417.
[http://dx.doi.org/10.3390/nu13103417] [PMID: 34684418]
[35]
Cervantes, L.S.P.; Sánchez, N.S.; Calahorra, M.; Montes, M.B.; Vázquez, P.G.; Álvarez, H.D. Moderate exercise combined with metformin-treatment improves mitochondrial bioenergetics of the quadriceps muscle of old female Wistar rats. Arch. Gerontol. Geriatr., 2022, 102, 104717.
[http://dx.doi.org/10.1016/j.archger.2022.104717]
[36]
Kane, D.A.; Anderson, E.J.; Price, J.W., III; Woodlief, T.L.; Lin, C.T.; Bikman, B.T.; Cortright, R.N.; Neufer, P.D. Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic. Biol. Med., 2010, 49(6), 1082-1087.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.06.022] [PMID: 20600832]
[37]
Pavlovic, K.; Jakovljevic, K.N.; Isakovic, A.M.; Ivanovic, T.; Markovic, I. Lalic, NM Therapeutic vs. suprapharmacological metformin concentrations: Different effects on energy metabolism and mitochondrial function in skeletal muscle cells in vitro. Front. Pharmacol., 2022, 13, 930308.
[http://dx.doi.org/10.3389/fphar.2022.930308]
[38]
Bharath, L.P.; Agrawal, M.; McCambridge, G.; Nicholas, D.A.; Hasturk, H.; Liu, J.; Jiang, K.; Liu, R.; Guo, Z.; Deeney, J.; Apovian, C.M.; Cappione, S.J.; Hawk, G.S.; Fleeman, R.M.; Pihl, R.M.F.; Thompson, K.; Belkina, A.C.; Cui, L.; Proctor, E.A.; Kern, P.A.; Nikolajczyk, B.S. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab., 2020, 32(1), 44-55.e6.
[http://dx.doi.org/10.1016/j.cmet.2020.04.015] [PMID: 32402267]
[39]
Xian, H.; Liu, Y.; Nilsson, R.A.; Gatchalian, R.; Crother, T.R.; Tourtellotte, W.G.; Zhang, Y.; Muench, A.G.R.; Lewis, G.; Chen, W.; Kang, S.; Luevanos, M.; Trudler, D.; Lipton, S.A.; Soroosh, P.; Teijaro, J.; de la Torre, J.C.; Arditi, M.; Karin, M.; Sanchez-Lopez, E. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54(7), 1463-1477.e11.
[http://dx.doi.org/10.1016/j.immuni.2021.05.004] [PMID: 34115964]
[40]
Kulkarni, A.S.; Brutsaert, E.F.; Anghel, V.; Zhang, K.; Bloomgarden, N.; Pollak, M.; Mar, J.C.; Hawkins, M.; Crandall, J.P.; Barzilai, N. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell, 2018, 17(2), e12723.
[http://dx.doi.org/10.1111/acel.12723] [PMID: 29383869]
[41]
Mahmassani, Z.S.; McKenzie, A.I.; Petrocelli, J.J.; de Hart, N.M.; Reidy, P.T.; Fix, D.K.; Ferrara, P.J.; Funai, K.; Drummond, M.J. Short-term metformin ingestion by healthy older adults improves myoblast function. Am. J. Physiol. Cell Physiol., 2021, 320(4), C566-C576.
[http://dx.doi.org/10.1152/ajpcell.00469.2020] [PMID: 33406027]
[42]
Glossmann, H.H.; Lutz, O.M.D. Metformin and aging: A review. Gerontology, 2019, 65(6), 581-590.
[http://dx.doi.org/10.1159/000502257] [PMID: 31522175]
[43]
Martin-Montalvo, A.; Mercken, E.M.; Mitchell, S.J.; Palacios, H.H.; Mote, P.L.; Scheibye-Knudsen, M.; Gomes, A.P.; Ward, T.M.; Minor, R.K.; Blouin, M.J.; Schwab, M.; Pollak, M.; Zhang, Y.; Yu, Y.; Becker, K.G.; Bohr, V.A.; Ingram, D.K.; Sinclair, D.A.; Wolf, N.S.; Spindler, S.R.; Bernier, M.; de Cabo, R. Metformin improves healthspan and lifespan in mice. Nat. Commun., 2013, 4(1), 2192.
[http://dx.doi.org/10.1038/ncomms3192] [PMID: 23900241]
[44]
Soukas, A.A.; Hao, H.; Wu, L. Metformin as anti-aging therapy: Is it for everyone? Trends Endocrinol. Metab., 2019, 30(10), 745-755.
[http://dx.doi.org/10.1016/j.tem.2019.07.015] [PMID: 31405774]
[45]
Witham, M.D.; Granic, A.; Pearson, E.; Robinson, S.M.; Sayer, A.A. Repurposing drugs for diabetes mellitus as potential pharmacological treatments for sarcopenia – A narrative review. Drugs Aging, 2023, 40(8), 703-719.
[http://dx.doi.org/10.1007/s40266-023-01042-4] [PMID: 37486575]
[46]
Zeng, Z.; Huang, S.Y.; Sun, T. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Ther., 2020, 11(11), 2521-2538.
[http://dx.doi.org/10.1007/s13300-020-00922-x] [PMID: 32930968]
[47]
Tricarico, D.; Selvaggi, M.; Passantino, G.; De Palo, P.; Dario, C.; Centoducati, P. ATP sensitive potassium channels in the skeletal muscle function: Involvement of the KCNJ11(Kir6.2) gene in the determination of mechanical warner bratzer shear force. Front. Physiol., 2016, 7, 167.
[http://dx.doi.org/10.3389/fphys.2016.00167]
[48]
Tricarico, D.; Mele, A.; Camerino, G.M.; Bottinelli, R.; Brocca, L.; Frigeri, A.; Svelto, M.; George, A.L., Jr; Camerino, D.C. The K ATP channel is a molecular sensor of atrophy in skeletal muscle. J. Physiol., 2010, 588(5), 773-784.
[http://dx.doi.org/10.1113/jphysiol.2009.185835] [PMID: 20064856]
[49]
Mele, A.; Calzolaro, S.; Cannone, G.; Cetrone, M.; Conte, D.; Tricarico, D. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides‐induced atrophy in skeletal muscle. Pharmacol. Res. Perspect., 2014, 2(1), e00028.
[http://dx.doi.org/10.1002/prp2.28] [PMID: 25505577]
[50]
McClelland, T.J.; Fowler, A.J.; Davies, T.W.; Pearse, R.; Prowle, J.; Puthucheary, Z. Can pioglitazone be used for optimization of nutrition in critical illness? A systematic review. JPEN J. Parenter. Enteral Nutr., 2023, 47(4), 459-475.
[http://dx.doi.org/10.1002/jpen.2481] [PMID: 36700419]
[51]
Schoonjans, K.; Auwerx, J. Thiazolidinediones: An update. Lancet, 2000, 355(9208), 1008-1010.
[http://dx.doi.org/10.1016/S0140-6736(00)90002-3] [PMID: 10768450]
[52]
Mathieu-Costello, O.; Kong, A.; Ciaraldi, T.P.; Cui, L.; Ju, Y.; Chu, N.; Kim, D.; Mudaliar, S.; Henry, R.R. Regulation of skeletal muscle morphology in type 2 diabetic subjects by troglitazone and metformin: Relationship to glucose disposal. Metabolism, 2003, 52(5), 540-546.
[http://dx.doi.org/10.1053/meta.2002.50108] [PMID: 12759881]
[53]
Meshkani, R.; Sadeghi, A.; Taheripak, G.; Zarghooni, M.; Nejad, G.S.; Bakhtiyari, S. Rosiglitazone, a PPARγ agonist, ameliorates palmitate-induced insulin resistance and apoptosis in skeletal muscle cells. Cell Biochem. Funct., 2014, 32(8), 683-691.
[http://dx.doi.org/10.1002/cbf.3072]
[54]
Remels, A.H.V.; Langen, R.C.J.; Gosker, H.R.; Russell, A.P.; Spaapen, F.; Voncken, J.W.; Schrauwen, P.; Schols, A.M.W.J. PPARγ inhibits NF-κB-dependent transcriptional activation in skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2009, 297(1), E174-E183.
[http://dx.doi.org/10.1152/ajpendo.90632.2008] [PMID: 19417127]
[55]
Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem., 2019, 166, 502-513.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.067] [PMID: 30739829]
[56]
Rabøl, R.; Boushel, R.; Almdal, T.; Hansen, C.N.; Ploug, T.; Haugaard, S.B.; Prats, C.; Madsbad, S.; Dela, F. Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes. Diabetes Obes. Metab., 2010, 12(9), 806-814.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01237.x] [PMID: 20649633]
[57]
Mushtaq, A.; Azam, U.; Mehreen, S.; Naseer, M.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur. J. Med. Chem., 2023, 249, 115119.
[58]
Jenkins, D.J.A.; Taylor, R.H.; Goff, D.V.; Fielden, H.; Misiewicz, J.J.; Sarson, D.L.; Bloom, S.R.; Alberti, K.G.M.M. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes, 1981, 30(11), 951-954.
[http://dx.doi.org/10.2337/diab.30.11.951] [PMID: 7028548]
[59]
Ledwig, D.; Müller, H.; Bischoff, H.; Eckel, J. Early acarbose treatment ameliorates resistance of insulin-regulated GLUT4 trafficking in obese Zucker rats. Eur. J. Pharmacol., 2002, 445(1-2), 141-148.
[http://dx.doi.org/10.1016/S0014-2999(02)01714-4] [PMID: 12065205]
[60]
Jiang, L.; Xu, X.; Luo, M.; Wang, H.; Ding, B.; Yan, R.; Hu, Y.; Ma, J. Association of acarbose with decreased muscle mass and function in patients with type 2 diabetes: A retrospective, cross-sectional study. Diabetes Ther., 2021, 12(11), 2955-2969.
[http://dx.doi.org/10.1007/s13300-021-01151-6] [PMID: 34542866]
[61]
op den Kamp, Y.J.M.; Gemmink, A.; de Ligt, M.; Dautzenberg, B.; Kornips, E.; Jorgensen, J.A.; Schaart, G.; Esterline, R.; Pava, D.A.; Hoeks, J.; Hinderling, S.V.B.; Kersten, S.; Havekes, B.; Koves, T.R.; Muoio, D.M.; Hesselink, M.K.C.; Oscarsson, J.; Phielix, E.; Schrauwen, P. Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. Mol. Metab., 2022, 66, 101620.
[http://dx.doi.org/10.1016/j.molmet.2022.101620] [PMID: 36280113]
[62]
Stella, M.; Biassoni, E.; Fiorillo, C.; Grandis, M.; Mattioli, F.; Del Sette, M. A case of anti-HMGCR myopathy triggered by sodium/glucose co-transporter 2 (SGLT2) inhibitors. Neurol. Sci., 2022, 43(7), 4567-4570.
[http://dx.doi.org/10.1007/s10072-022-06046-3] [PMID: 35391603]
[63]
Lv, X.; Cong, X.; Nan, J.; Lu, X.; Zhu, Q.; Shen, J.; Wang, B.; Wang, Z.; Zhou, R.; Chen, W.; Su, L.; Chen, X.; Li, Z.; Lin, Y. Anti-diabetic drug canagliflozin hinders skeletal muscle regeneration in mice. Acta Pharmacol. Sin., 2022, 43(10), 2651-2665.
[http://dx.doi.org/10.1038/s41401-022-00878-7] [PMID: 35217814]
[64]
Luo, L.; Han, J.; Wu, S.; Kasim, V. Intramuscular injection of sotagliflozin promotes neovascularization in diabetic mice through enhancing skeletal muscle cells paracrine function. Acta Pharmacol. Sin., 2022, 43(10), 2636-2650.
[http://dx.doi.org/10.1038/s41401-022-00889-4] [PMID: 35292769]
[65]
Han, J.; Luo, L.; Wang, Y.; Miyagishi, M.; Kasim, V.; Wu, S. SGLT2 inhibitor empagliflozin promotes revascularization in diabetic mouse hindlimb ischemia by inhibiting ferroptosis. Acta Pharmacol. Sin., 2023, 44(6), 1161-1174.
[http://dx.doi.org/10.1038/s41401-022-01031-0] [PMID: 36509902]
[66]
Winzer, E.B.; Schauer, A.; Langner, E.; Augstein, A.; Goto, K.; Männel, A.; Barthel, P.; Jannasch, A.; Labeit, S.; Mangner, N.; Linke, A.; Adams, V. Empagliflozin preserves skeletal muscle function in a HFpEF rat model. Int. J. Mol. Sci., 2022, 23(19), 10989.
[http://dx.doi.org/10.3390/ijms231910989] [PMID: 36232292]
[67]
Otsuka, H.; Yokomizo, H.; Nakamura, S.; Izumi, Y.; Takahashi, M.; Obara, S.; Nakao, M.; Ikeda, Y.; Sato, N.; Sakamoto, R.; Miyachi, Y.; Miyazawa, T.; Bamba, T.; Ogawa, Y. Differential effect of canagliflozin, a sodium–glucose cotransporter 2 (SGLT2) inhibitor, on slow and fast skeletal muscles from nondiabetic mice. Biochem. J., 2022, 479(3), 425-444.
[http://dx.doi.org/10.1042/BCJ20210700] [PMID: 35048967]
[68]
Katano, S.; Yano, T.; Kouzu, H.; Nagaoka, R.; Numazawa, R.; Yamano, K.; Fujisawa, Y.; Ohori, K.; Nagano, N.; Fujito, T.; Nishikawa, R.; Ohwada, W.; Katayose, M.; Sato, T.; Kuno, A.; Furuhashi, M. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in heart failure patients with type 2 diabetes receiving sodium-glucose cotransporter 2 inhibitors. Cardiovasc. Diabetol., 2022, 21(1), 285.
[http://dx.doi.org/10.1186/s12933-022-01727-x] [PMID: 36539818]
[69]
MacDonald, T.L.; Pattamaprapanont, P.; Cooney, E.M.; Nava, R.C.; Mitri, J.; Hafida, S.; Lessard, S.J. Canagliflozin prevents hyperglycemia-associated muscle extracellular matrix accumulation and improves the adaptive response to aerobic exercise. Diabetes, 2022, 71(5), 881-893.
[http://dx.doi.org/10.2337/db21-0934] [PMID: 35108373]
[70]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[71]
Bouchi, R.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Dipeptidyl peptidase 4 inhibitors attenuates the decline of skeletal muscle mass in patients with type 2 diabetes. Diabetes Metab. Res. Rev., 2018, 34(2), e2957.
[http://dx.doi.org/10.1002/dmrr.2957] [PMID: 29054111]
[72]
Sato, H.; Kubota, N.; Kubota, T.; Takamoto, I.; Iwayama, K.; Tokuyama, K.; Moroi, M.; Sugi, K.; Nakaya, K.; Goto, M.; Jomori, T.; Kadowaki, T. Anagliptin increases insulin-induced skeletal muscle glucose uptake via an NO-dependent mechanism in mice. Diabetologia, 2016, 59(11), 2426-2434.
[http://dx.doi.org/10.1007/s00125-016-4071-8] [PMID: 27525648]
[73]
Nahon, K.J.; Doornink, F.; Straat, M.E. Effect of sitagliptin on energy metabolism and brown adipose tissue in overweight individuals with prediabetes: A randomised placebo-controlled trial. Diabetologia, 2018, 61(11), 2386-2397.
[74]
Neidert, L.E.; Al-Tarhuni, M.; Goldman, D.; Kluess, H.A.; Jackson, D.N. Endogenous dipeptidyl peptidase IV modulates skeletal muscle arteriolar diameter in rats. Physiol. Rep., 2018, 6(2), e13564.
[http://dx.doi.org/10.14814/phy2.13564] [PMID: 29380955]
[75]
Rizzo, M.R.; Barbieri, M.; Fava, I.; Desiderio, M.; Coppola, C.; Marfella, R.; Paolisso, G. Sarcopenia in elderly diabetic patients: Role of dipeptidyl peptidase 4 inhibitors. J. Am. Med. Dir. Assoc., 2016, 17(10), 896-901.
[http://dx.doi.org/10.1016/j.jamda.2016.04.016] [PMID: 27262494]
[76]
Giannocco, G.; Oliveira, K.C.; Crajoinas, R.O.; Venturini, G.; Salles, T.A.; Alaniz, F.M.H.; Maciel, R.M.B.; Girardi, A.C.C. Dipeptidyl peptidase IV inhibition upregulates GLUT4 translocation and expression in heart and skeletal muscle of spontaneously hypertensive rats. Eur. J. Pharmacol., 2013, 698(1-3), 74-86.
[http://dx.doi.org/10.1016/j.ejphar.2012.09.043] [PMID: 23051671]
[77]
Takada, S.; Masaki, Y.; Kinugawa, S.; Matsumoto, J.; Furihata, T.; Mizushima, W.; Kadoguchi, T.; Fukushima, A.; Homma, T.; Takahashi, M.; Harashima, S.; Matsushima, S.; Yokota, T.; Tanaka, S.; Okita, K.; Tsutsui, H. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc. Res., 2016, 111(4), 338-347.
[http://dx.doi.org/10.1093/cvr/cvw182] [PMID: 27450980]
[78]
Wu, H.; Sui, C.; Xu, H.; Xia, F.; Zhai, H.; Zhang, H.; Weng, P.; Han, B.; Du, S.; Lu, Y. The GLP-1 analogue exenatide improves hepatic and muscle insulin sensitivity in diabetic rats: Tracer studies in the basal state and during hyperinsulinemic-euglycemic clamp. J. Diabetes Res., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/524517] [PMID: 25580440]
[79]
Wu, L.; Zhou, M.; Li, T.; Dong, N.; Yi, L.; Zhang, Q.; Mi, M. GLP-1 regulates exercise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(9), 119300.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119300] [PMID: 35636559]
[80]
Ren, Q.; Chen, S.; Chen, X.; Niu, S.; Yue, L.; Pan, X.; Li, Z.; Chen, X. An effective glucagon-like peptide-1 receptor agonists, semaglutide, improves sarcopenic obesity in obese mice by modulating skeletal muscle metabolism. Drug Des. Devel. Ther., 2022, 16, 3723-3735.
[http://dx.doi.org/10.2147/DDDT.S381546] [PMID: 36304787]
[81]
Ji, W.; Chen, X.; Lv, J.; Wang, M.; Ren, S.; Yuan, B.; Wang, B.; Chen, L. Liraglutide exerts antidiabetic effect via PTP1B and PI3K/Akt2 signaling pathway in skeletal muscle of KKAy mice. Int. J. Endocrinol., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/312452] [PMID: 25183970]
[82]
Jeon, J.; Choi, S.E.; Ha, E.; Lee, H.; Kim, T.; Han, S.; Kim, H.; Kim, D.; Kang, Y.; Lee, K.W. GLP 1 improves palmitate induced insulin resistance in human skeletal muscle via SIRT1 activity. Int. J. Mol. Med., 2019, 44(3), 1161-1171.
[http://dx.doi.org/10.3892/ijmm.2019.4272] [PMID: 31524229]
[83]
Li, Z.; Zhu, Y.; Li, C.; Tang, Y.; Jiang, Z.; Yang, M.; Ni, C.L.; Li, D.; Chen, L.; Niu, W. Liraglutide ameliorates palmitate-induced insulin resistance through inhibiting the IRS-1 serine phosphorylation in mouse skeletal muscle cells. J. Endocrinol. Invest., 2018, 41(9), 1097-1102.
[http://dx.doi.org/10.1007/s40618-018-0836-x] [PMID: 29374854]
[84]
Liu, J.; Hu, Y.; Zhang, H.; Xu, Y.; Wang, G. Exenatide treatment increases serum irisin levels in patients with obesity and newly diagnosed type 2 diabetes. J. Diabetes Complicat., 2016, 30(8), 1555-1559.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.020]
[85]
Chai, W.; Fu, Z.; Aylor, K.W.; Barrett, E.J.; Liu, Z. Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats. Am. J. Physiol. Endocrinol. Metab., 2016, 311(3), E640-E648.
[http://dx.doi.org/10.1152/ajpendo.00205.2016] [PMID: 27436611]
[86]
Sjøberg, K.A.; Holst, J.J.; Rattigan, S.; Richter, E.A.; Kiens, B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2014, 306(4), E355-E362.
[http://dx.doi.org/10.1152/ajpendo.00283.2013] [PMID: 24302010]
[87]
Chai, W.; Dong, Z.; Wang, N.; Wang, W.; Tao, L.; Cao, W.; Liu, Z. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes, 2012, 61(4), 888-896.
[http://dx.doi.org/10.2337/db11-1073] [PMID: 22357961]
[88]
Chai, W.; Zhang, X.; Barrett, E.J.; Liu, Z. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin’s metabolic action in the presence of insulin resistance. Diabetes, 2014, 63(8), 2788-2799.
[http://dx.doi.org/10.2337/db13-1597] [PMID: 24658303]
[89]
Wang, N.; Tan, A.W.K.; Jahn, L.A.; Hartline, L.; Patrie, J.T.; Lin, S.; Barrett, E.J.; Aylor, K.W.; Liu, Z. Vasodilatory actions of glucagon-like peptide 1 are preserved in skeletal and cardiac muscle microvasculature but not in conduit artery in obese humans with vascular insulin resistance. Diabetes Care, 2020, 43(3), 634-642.
[http://dx.doi.org/10.2337/dc19-1465] [PMID: 31888883]
[90]
Abdulla, H.; Phillips, B.; Wilkinson, D.; Gates, A.; Limb, M.; Jandova, T.; Bass, J.; Lewis, J.; Williams, J.; Smith, K.; Idris, I.; Atherton, P. Effects of GLP-1 infusion upon whole-body glucose uptake and skeletal muscle perfusion during fed-state in older men. J. Clin. Endocrinol. Metab., 2023, 108(4), 971-978.
[http://dx.doi.org/10.1210/clinem/dgac613] [PMID: 36260533]
[91]
van Gerwen, J.; Shun-Shion, A.S.; Fazakerley, D.J. Insulin signalling and GLUT4 trafficking in insulin resistance. Biochem. Soc. Trans., 2023, 51(3), 1057-1069.
[http://dx.doi.org/10.1042/BST20221066] [PMID: 37248992]
[92]
Fujimoto, B.A.; Young, M.; Carter, L.; Pang, A.P.S.; Corley, M.J.; Fogelgren, B.; Polgar, N. The exocyst complex regulates insulin-stimulated glucose uptake of skeletal muscle cells. Am. J. Physiol. Endocrinol. Metab., 2019, 317(6), E957-E972.
[http://dx.doi.org/10.1152/ajpendo.00109.2019] [PMID: 31593505]
[93]
Snow, L.M.; Thompson, L.V. Influence of insulin and muscle fiber type in nepsilon-(carboxymethyl)-lysine accumulation in soleus muscle of rats with streptozotocin-induced diabetes mellitus. Pathobiology, 2009, 76(5), 227-234.
[http://dx.doi.org/10.1159/000228898] [PMID: 19816082]
[94]
Mcconell, G.; Sjoberg, K.; Ceutz, F.; Richter, E. Insulin‐induced membrane permeability to glucose in human muscles at rest and following exercise. J. Physiol., 2019, 598(2), 303-315.
[95]
Sugimoto, K.; Ikegami, H.; Takata, Y.; Katsuya, T.; Fukuda, M.; Akasaka, H.; Tabara, Y.; Osawa, H.; Hiromine, Y.; Rakugi, H. Glycemic control and insulin improve muscle mass and gait speed in type 2 diabetes: The MUSCLES-DM study. J. Am. Med. Dir. Assoc., 2021, 22(4), 834-838.e1.
[http://dx.doi.org/10.1016/j.jamda.2020.11.003] [PMID: 33278348]
[96]
Bouchi, R.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Insulin treatment attenuates decline of muscle mass in japanese patients with type 2 diabetes. Calcif. Tissue Int., 2017, 101(1), 1-8.
[http://dx.doi.org/10.1007/s00223-017-0251-x] [PMID: 28246927]
[97]
Tang, W.; Zhang, B.; Wang, H.; Li, M.; Wang, H.; Liu, F.; Zhu, D.; Bi, Y. Improved skeletal muscle energy metabolism relates to the recovery of β cell function by intensive insulin therapy in drug naïve type 2 diabetes. Diabetes Metab. Res. Rev., 2019, 35(7), e3177.
[http://dx.doi.org/10.1002/dmrr.3177] [PMID: 31077529]
[98]
Li, W.; Li, H.; Zheng, L.; Xia, J.; Yang, X.; Men, S.; Yuan, Y.; Fan, Y. Ginsenoside CK improves skeletal muscle insulin resistance by activating DRP1/PINK1-mediated mitophagy. Food Funct., 2023, 14(2), 1024-1036.
[http://dx.doi.org/10.1039/D2FO02026B] [PMID: 36562271]
[99]
Xu, L.; Li, W.; Chen, Z.; Guo, Q.; Wang, C.; Santhanam, R.K.; Chen, H. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. Int. J. Biol. Macromol., 2019, 125, 605-611.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.064] [PMID: 30529552]
[100]
Wang, M.; Pu, D.; Zhao, Y.; Chen, J.; Zhu, S. Lu, A Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci., 2020, 255, 117823.
[http://dx.doi.org/10.1016/j.lfs.2020.117823]
[101]
Kalhotra, P.; Chittepu, V.; Revilla, O.G.; Velázquez, G.T. Discovery of galangin as a potential DPP-4 inhibitor that improves insulin-stimulated skeletal muscle glucose uptake: A combinational therapy for diabetes. Int. J. Mol. Sci., 2019, 20(5), 1228.
[http://dx.doi.org/10.3390/ijms20051228] [PMID: 30862104]
[102]
Kalhotra, P.; Chittepu, V.C.S.R.; Revilla, O.G.; Velazquez, G.T. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: A possible mechanism of action to benefit the treatment of diabetes mellitus. Biomolecules, 2020, 10(2), 305.
[http://dx.doi.org/10.3390/biom10020305] [PMID: 32075130]
[103]
Han, J.Y.; Park, M.; Lee, H.J. Stevia (Stevia rebaudiana) extract ameliorates insulin resistance by regulating mitochondrial function and oxidative stress in the skeletal muscle of db/db mice. BMC Complement. Med. Ther., 2023, 23(1), 264.
[http://dx.doi.org/10.1186/s12906-023-04033-5] [PMID: 37488560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy