Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

In silico Approaches for Exploring the Pharmacological Activities of Benzimidazole Derivatives: A Comprehensive Review

Author(s): Manisha Srivastava, Kuldeep Singh*, Sanjay Kumar, Syed Misbahul Hasan, Samar Mujeeb, Shom Prakash Kushwaha and Ali Husen

Volume 24, Issue 16, 2024

Published on: 29 January, 2024

Page: [1481 - 1495] Pages: 15

DOI: 10.2174/0113895575287322240115115125

Price: $65

Abstract

Background: This article reviews computational research on benzimidazole derivatives. Cytotoxicity for all compounds against cancer cell lines was measured and the results revealed that many compounds exhibited high inhibitions. This research examines the varied pharmacological properties like anticancer, antibacterial, antioxidant, anti-inflammatory and anticonvulsant activities of benzimidazole derivatives. The suggested method summarises In silico research for each activity. This review examines benzimidazole derivative structure-activity relationships and pharmacological effects. In silico investigations can anticipate structural alterations and their effects on these derivative’s pharmacological characteristics and efficacy through many computational methods. Molecular docking, molecular dynamics simulations and virtual screening help anticipate pharmacological effects and optimize chemical design. These trials will improve lead optimization, target selection, and ADMET property prediction in drug development. In silico benzimidazole derivative studies will be assessed for gaps and future research. Prospective studies might include empirical verification, pharmacodynamic analysis, and computational methodology improvement.

Objectives: This review discusses benzimidazole derivative In silico research to understand their specific pharmacological effects. This will help scientists design new drugs and guide future research.

Methods: Latest, authentic and published reports on various benzimidazole derivatives and their activities are being thoroughly studied and analyzed.

Result: The overview of benzimidazole derivatives is more comprehensive, highlighting their structural diversity, synthetic strategies, mechanisms of action, and the computational tools used to study them.

Conclusion: In silico studies help to understand the structure-activity relationship (SAR) of benzimidazole derivatives. Through meticulous alterations of substituents, ring modifications, and linker groups, this study identified the structural factors influencing the pharmacological activity of benzimidazole derivatives. These findings enable the rational design and optimization of more potent and selective compounds.

Graphical Abstract

[1]
Tugrak, M.; Gul, H.I.; Demir, Y.; Levent, S.; Gulcin, I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone‐based benzenesulfonamides. Arch. Pharm., 2021, 354(4), 2000375.
[http://dx.doi.org/10.1002/ardp.202000375] [PMID: 33283898]
[2]
Hamide, M.; Gök, Y.; Demir, Y.; Yakalı, G.; Tok, T.T.; Aktaş, A.; Sevinçek, R.; Güzel, B.; Gülçin, İ. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J. Mol. Struct., 2022, 1265, 133266.
[http://dx.doi.org/10.1016/j.molstruc.2022.133266]
[3]
Roopan, M.S.; Patil, S.M.; Palaniraja, J. Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. Res. Chem. Intermed., 2016, 42(4), 2749-2790.
[http://dx.doi.org/10.1007/s11164-015-2216-x]
[4]
Hashem, H.E.; El Bakri, Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. Arab. J. Chem., 2021, 14(11), 103418.
[http://dx.doi.org/10.1016/j.arabjc.2021.103418]
[5]
Palit, R.; Kumar, R.; Saraswat, N.; Wal, A.; Upadhyaya, P.K. Benzimidazole: An overview. Int. J. Res. Ayurveda Pharm., 2017, 7(6), 68-73.
[http://dx.doi.org/10.7897/2277-4343.076243]
[6]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), 2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[7]
Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules, 2020, 25(12), 2850.
[http://dx.doi.org/10.3390/molecules25122850] [PMID: 32575664]
[8]
Alp, M.; Göker, H.; Brun, R.; Yıldız, S. Synthesis and antiparasitic and antifungal evaluation of 2′-arylsubstituted-1H,1′H-[2,5′]bisbenzimidazolyl-5-carboxamidines. Eur. J. Med. Chem., 2009, 44(5), 2002-2008.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.003] [PMID: 19010569]
[9]
Sun, S.J.; Deng, P.; Peng, C.E.; Ji, H.Y.; Mao, L.F.; Peng, L.Z. Extraction, structure and immunoregulatory activity of low molecular weight polysaccharide from Dendrobium officinale. Polymers, 2022, 14(14), 2899.
[http://dx.doi.org/10.3390/polym14142899] [PMID: 35890675]
[10]
Xia, J.; Li, Y.; He, C.; Yong, C.; Wang, L.; Fu, H.; He, X.L.; Wang, Z.Y.; Liu, D.F.; Zhang, Y.Y. Synthesis and biological activities of oxazolidinone pleuromutilin derivatives as a potent anti-MRSA agent. ACS Infect. Dis., 2023, 9(9), 1711-1729.
[http://dx.doi.org/10.1021/acsinfecdis.3c00162] [PMID: 37610012]
[11]
Zhang, J.; Shen, Q.; Ma, Y.; Liu, L.; Jia, W.; Chen, L.; Xie, J. Calcium homeostasis in parkinson’s disease: From pathology to treatment. Neurosci. Bull., 2022, 38(10), 1267-1270.
[http://dx.doi.org/10.1007/s12264-022-00899-6] [PMID: 35727497]
[12]
Hamide, M.; Gök, Y.; Demir, Y.; Sevinçek, R.; Taskin-Tok, T.; Tezcan, B.; Aktaş, A.; Gülçin, İ.; Aygün, M.; Güzel, B. Benzimidazolium salts containing trifluoromethoxybenzyl: Synthesis, characterization, crystal structure, molecular docking studies and enzymes inhibitory properties. Chem. Biodivers., 2022, 19(12), e202200257.
[http://dx.doi.org/10.1002/cbdv.202200257] [PMID: 36260838]
[13]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[14]
Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.L. Metal–organic frameworks: Structures and functional applications. Mater. Today, 2019, 27, 43-68.
[http://dx.doi.org/10.1016/j.mattod.2018.10.038]
[15]
Kim, D.; Kang, M.; Ha, H.; Hong, C.S.; Kim, M. Multiple functional groups in metal–organic frameworks and their positional regioisomerism. Coord. Chem. Rev., 2021, 438, 213892.
[http://dx.doi.org/10.1016/j.ccr.2021.213892]
[16]
Alım, Z.; Kılıç, D.; Demir, Y. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies. Arch. Physiol. Biochem., 2019, 125(5), 387-395.
[http://dx.doi.org/10.1080/13813455.2018.1470646] [PMID: 29741961]
[17]
Chandrasekar, K.; Kumar, B.; Saravanan, A.; Victor, A.; Sivaraj, S.; Haridoss, M.; Priyadurairaj, P.; Hemalatha, C.N.; Muthukumar, V.A. Evalution and molecular docking of benzimidazole and its derivatives as a potent antibacterial agent. Biomed. Pharmacol. J., 2019, 12(4), 1835-1847.
[http://dx.doi.org/10.13005/bpj/1814]
[18]
Mulugeta, E.; Samuel, Y. Synthesis of benzimidazole-sulfonyl derivatives and their biological activities. Biochem. Res. Int., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/7255299] [PMID: 35425644]
[19]
Pathare, B.; Bansode, T. Review- biological active benzimidazole derivatives. Results Chem., 2021, 3, 100200.
[http://dx.doi.org/10.1016/j.rechem.2021.100200]
[20]
Atmaca, H.; İlhan, S.; Batır, M.B.; Pulat, Ç.Ç.; Güner, A.; Bektaş, H. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies. Chem. Biol. Interact., 2020, 327, 109163.
[http://dx.doi.org/10.1016/j.cbi.2020.109163] [PMID: 32534988]
[21]
Ebenezer, O.; Oyetunde-Joshua, F.; Omotoso, O.D.; Shapi, M. Benzimidazole and its derivatives: Recent Advances (2020–2022). Results Chem., 2023, 5, 100925.
[http://dx.doi.org/10.1016/j.rechem.2023.100925]
[22]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B, 2023, 13(2), 478-497.
[http://dx.doi.org/10.1016/j.apsb.2022.09.010] [PMID: 36873180]
[23]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12, 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267]
[24]
Wu, Z.; Li, W.; Liu, G.; Tang, Y. Network-based methods for prediction of drug-target interactions. Front. Pharmacol., 2018, 9, 1134.
[http://dx.doi.org/10.3389/fphar.2018.01134]
[25]
de Neto, S.L.R.; Filho, M.J.T.; Neves, B.J.; Maidana, R.L.B.R.; Guimarães, A.C.R.; Furnham, N.; Andrade, C.H.; Silva, F.P., Jr In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem., 2020, 8, 93.
[26]
Sucharitha, P. Absorption, distribution, metabolism, excretion, and toxicity assessment of drugs using computational tools. In: Computational Approaches for Novel Therapeutics and Diag- nostic Designing to Mitigate SARS-CoV2 Infection; Academic Press, 2022; pp. 335-355.
[http://dx.doi.org/10.1016/B978-0-323-91172-6.00012-1]
[27]
Raies, A.B.; Bajic, V.B. In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2016, 6(2), 147-172.
[http://dx.doi.org/10.1002/wcms.1240] [PMID: 27066112]
[28]
Kontoyianni, M. Docking and virtual screening in drug discovery. Methods Mol. Biol., 2017, 1647, 255-266.
[http://dx.doi.org/10.1007/978-1-4939-7201-2_18] [PMID: 28809009]
[29]
Kakakhan, C.; Türkeş, C.; Güleç, Ö.; Demir, Y.; Arslan, M.; Özkemahlı, G.; Beydemir, Ş. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorg. Med. Chem., 2023, 77, 117111.
[30]
Rasul, H.O.; Aziz, B.K.; Ghafour, D.D.; Kivrak, A. In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J. Mol. Model., 2022, 28(1), 17.
[http://dx.doi.org/10.1007/s00894-021-05010-w] [PMID: 34962586]
[31]
Govindarasu, M.; Ganeshan, S.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Alghamdi, S.; Almehmadi, M.; Rajakumar, G.; Thiruvengadam, M.; Vaiyapuri, M. In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. J. Saudi Chem. Soc., 2021, 25(9), 101319.
[http://dx.doi.org/10.1016/j.jscs.2021.101319]
[32]
Demir, Y.; Türkeş, C.; Çavuş, M.S.; Erdoğan, M.; Muğlu, H.; Yakan, H.; Beydemir, Ş. Enzyme inhibition, molecular docking, and density functional theory studies of new thiosemicarbazones incorporating the 4-hydroxy-3,5-dimethoxy benzaldehyde motif. Arch. Pharm., 2023, 356(4), 2200554.
[http://dx.doi.org/10.1002/ardp.202200554] [PMID: 36575148]
[33]
Arjmand, B.; Hamidpour, S.K.; Alavi-Moghadam, S.; Yavari, H.; Shahbazbadr, A.; Tavirani, M.R.; Gilany, K.; Larijani, B. Molecular docking as a therapeutic approach for targeting cancer stem cell metabolic processes. Front. Pharmacol., 2022, 13, 768556.
[http://dx.doi.org/10.3389/fphar.2022.768556] [PMID: 35264950]
[34]
Baskaran, C.; Ramachandran, M. Computational molecular docking studies on anticancer drugs. Asian Pac. J. Trop. Dis., 2012, 2(S2), S734-S738.
[http://dx.doi.org/10.1016/S2222-1808(12)60254-0]
[35]
Saikia, S.; Bordoloi, M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets, 2019, 20(5), 501-521.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[36]
Satija, G.; Sharma, B.; Madan, A.; Iqubal, A.; Shaquiquzzaman, M.; Akhter, M.; Parvez, S.; Khan, M.A.; Alam, M.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J. Heterocycl. Chem., 2022, 59(1), 22-66.
[http://dx.doi.org/10.1002/jhet.4355]
[37]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97(1), 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[38]
Abdulazeez, I.; Khaled, M.; Al-Saadi, A.A. Impact of electron-withdrawing and electron-donating substituents on the corrosion inhibitive properties of benzimidazole derivatives: A quantum chemical study. J. Mol. Struct., 2019, 1196, 348-355.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.082]
[39]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[40]
Plana, D.; Palmer, A.C.; Sorger, P.K. Independent drug action in combination therapy: Implications for precision oncology. Cancer Discov., 2022, 12(3), 606-624.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0212] [PMID: 34983746]
[41]
Yan, L.; Rosen, N.; Arteaga, C. Targeted cancer therapies. Chin. J. Cancer, 2011, 30(1), 1-4.
[http://dx.doi.org/10.5732/cjc.010.10553]
[42]
Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-based virtual screening: From classical to artificial intelligence. Front Chem., 2020, 8, 343.
[43]
Kistan, A.; Anna Benedict, B.; Vasanthan, S. PremKumar, A.; Kullappan, M.; Ambrose, J.M.; Veeraraghavan, V.P.; Rengasamy, G.; Surapaneni, K.M. Structure-based virtual screening of benzaldehyde thiosemicarbazone derivatives against DNA gyrase B of Mycobacterium tuberculosis. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6140378] [PMID: 34938343]
[44]
Li, Q.; Shah, S. Structure-based virtual screening. Methods Mol. Biol., 2017, 1558, 111-124.
[http://dx.doi.org/10.1007/978-1-4939-6783-4_5] [PMID: 28150235]
[45]
Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; Shoichet, B.K. A practical guide to large-scale docking. Nat. Protoc., 2021, 16(10), 4799-4832.
[http://dx.doi.org/10.1038/s41596-021-00597-z] [PMID: 34561691]
[46]
Osmaniye, D.; Türkeş, C.; Demir, Y.; Özkay, Y.; Beydemir, Ş.; Kaplancıklı, Z.A. Design, synthesis, and biological activity of novel dithiocarbamate‐methylsulfonyl hybrids as carbonic anhydrase inhibitors. Arch. Pharm., 2022, 355(8), 2200132.
[http://dx.doi.org/10.1002/ardp.202200132] [PMID: 35502846]
[47]
Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug design by pharmacophore and virtual screening approach. Pharmaceuticals, 2022, 15(5), 646.
[http://dx.doi.org/10.3390/ph15050646] [PMID: 35631472]
[48]
Horvath, D. Pharmacophore-based virtual screening. In: Chemoinformatics and Computational Chemical Biology; Humana Press: Totowa, NJ, 2010.
[http://dx.doi.org/10.1007/978-1-60761-839-3_11]
[49]
Rao, E.; Rao, G.E.; Babu, S.P.; Koushik, O.S.; Sharmila, R.; Vijayabharathi, M.; Maruthikumar, S.; Prathyusha, R.; Pavankumar, P. International journal of pharmaceutical, chemical and biological sciences a review on chemistry of benzimidazole nucleus and its biological significance. IJPCBS, 2016, (2), 227-232.
[50]
Pardeshi, V.A.; Pathan, S.; Bhargava, A.; Chundawat, N.S.; Singh, G.P. Synthesis and evaluation of novel benzimidazole derivatives as potential anti bacterial and anti fungal agents. Egypt. J. Basic Appl. Sci., 2021, 8(1), 330-344.
[http://dx.doi.org/10.1080/2314808X.2021.1989560]
[51]
Bouchal, B.; Abrigach, F.; Takfaoui, A.; Errahhali, E.M.; Errahhali, E.M.; Dixneuf, P.H.; Doucet, H.; Touzani, R.; Bellaoui, M. Identification of novel antifungal agents: Antimicrobial evaluation, SAR, ADME–Tox and molecular docking studies of a series of imidazole derivatives. BMC Chem., 2019, 13(1), 100.
[http://dx.doi.org/10.1186/s13065-019-0623-6] [PMID: 31410411]
[52]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole‐based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[53]
García, V.E.; Häberli, C.; Bardón, A.M.; Escala, N.; de Agüero, C.G.V.; de la Vega, J.; del Olmo, E.; Fouce, B.R.; Keiser, J.; Valladares, M.M. Benzimidazole and aminoalcohol derivatives show in vitro anthelmintic activity against Trichuris muris and Heligmosomoides polygyrus. Parasit. Vectors, 2022, 15(1), 243.
[http://dx.doi.org/10.1186/s13071-022-05347-y] [PMID: 35804427]
[54]
Alasmary, F.; Snelling, A.; Zain, M.; Alafeefy, A.; Awaad, A.; Karodia, N. Synthesis and evaluation of selected benzimidazole derivatives as potential antimi-crobial agents. Molecules, 2015, 20(8), 15206-15223.
[http://dx.doi.org/10.3390/molecules200815206] [PMID: 26307956]
[55]
Tahlan, S.; Kumar, S.; Narasimhan, B. Antimicrobial potential of 1H-benzo[d]imidazole scaffold: A review. BMC Chem., 2019, 13(1), 18.
[http://dx.doi.org/10.1186/s13065-019-0521-y] [PMID: 31384767]
[56]
Kabi, A.K.; Sravani, S.; Gujjarappa, R. An overview on biological activity of benzimidazole derivatives. In: Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2022.
[http://dx.doi.org/10.1007/978-981-16-8399-2_9]
[57]
Yang, Y.; Cai, Z.; Huang, Z.; Tang, X.; Zhang, X. Antimicrobial cationic polymers: From structural design to functional control. Polym. J., 2018, 50(1), 33-44.
[http://dx.doi.org/10.1038/pj.2017.72]
[58]
Zhou, S.F.; Zhong, W.Z. Drug design and discovery: Principles and applications. Molecules, 2017, 22(2), 279.
[http://dx.doi.org/10.3390/molecules22020279] [PMID: 28208821]
[59]
Pant, S.; Verma, S.; Pathak, R.K.; Singh, D.B. Structure-based drug designing. In: Bioinformatics: Methods and Applications;; , 2022; pp. 219-231.
[http://dx.doi.org/10.1016/B978-0-323-89775-4.00027-4]
[60]
Oostindie, S.C.; Lazar, G.A.; Schuurman, J.; Parren, P.W.H.I. Avidity in antibody effector functions and biotherapeutic drug design. Nat. Rev. Drug Discov., 2022, 21(10), 715-735.
[http://dx.doi.org/10.1038/s41573-022-00501-8] [PMID: 35790857]
[61]
Zarate, X.; Pop, L.C.; Treto-Suárez, M.; Tapia, J.; Schott, E. Structure and electronic properties of benzimidazole and cycloheptaimidazole gold N-heterocyclic carbenes. Polyhedron, 2021, 205, 115259.
[http://dx.doi.org/10.1016/j.poly.2021.115259]
[62]
Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Hsu, M.H.; Hsu, M.H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules, 2019, 24(18), 3259.
[http://dx.doi.org/10.3390/molecules24183259] [PMID: 31500191]
[63]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem., 2021, 60, 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004] [PMID: 34147204]
[64]
Blinder, S.M. Density functional theory. In: Introduction to Quantum Mechanics; Academic Press, 2021; pp. 235-244.
[http://dx.doi.org/10.1016/B978-0-12-822310-9.00022-7]
[65]
Garuti, L.; Roberti, M.; Bottegoni, G. Benzimidazole derivatives as kinase inhibitors. Curr. Med. Chem., 2014, 21(20), 2284-2298.
[http://dx.doi.org/10.2174/0929867321666140217105714] [PMID: 24533813]
[66]
Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[67]
Escala, N.; Pineda, L.M.; Ng, M.G.; Coronado, L.M.; Spadafora, C.; del Olmo, E. Antiplasmodial activity, structure–activity relationship and studies on the action of novel benzimidazole derivatives. Sci. Rep., 2023, 13(1), 285.
[http://dx.doi.org/10.1038/s41598-022-27351-z]
[68]
Veerasamy, R.; Roy, A.; Karunakaran, R.; Rajak, H. Structure–activity relationship analysis of benzimidazoles as emerging anti-inflammatory agents: An overview. Pharmaceuticals, 2021, 14(7), 663.
[http://dx.doi.org/10.3390/ph14070663] [PMID: 34358089]
[69]
Moharana, A.K.; Dash, R.N.; Mahanandia, N.C.; Subudhi, B.B. Synthesis and anti-inflammatory activity evaluation of some benzimidazole derivatives. Pharm. Chem. J., 2022, 56(8), 1070-1074.
[http://dx.doi.org/10.1007/s11094-022-02755-3] [PMID: 36405379]
[70]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[71]
Liu, Y.; Li, H.; Wang, X.; Huang, J.; Zhao, D.; Tan, Y.; Zhang, Z.; Zhang, Z.; Zhu, L.; Wu, B.; Chen, Z.; Peng, W. Anti-Alzheimers molecular mechanism of icariin: insights from gut microbiota, metabolomics, and network pharmacology. J. Transl. Med., 2023, 21(1), 277.
[http://dx.doi.org/10.1186/s12967-023-04137-z] [PMID: 37095548]
[72]
Xie, X.; Wang, X.; Liang, Y.; Yang, J.; Wu, Y.; Li, L.; Sun, X.; Bing, P.; He, B.; Tian, G.; Shi, X. Evaluating cancer-related biomarkers based on pathological images: A systematic review. Front. Oncol., 2021, 11, 763527.
[http://dx.doi.org/10.3389/fonc.2021.763527] [PMID: 34900711]
[73]
Zhou, L.; Zhang, Q.; Deng, H.; Ou, S.; Liang, T.; Zhou, J. The SNHG1-centered ceRNA network regulates cell cycle and is a potential prognostic biomarker for hepatocellular carcinoma. Tohoku J. Exp. Med., 2022, 258(4), 265-276.
[http://dx.doi.org/10.1620/tjem.2022.J083] [PMID: 36244757]
[74]
Matsuzaki, Y.; Matsuzaki, Y.; Sato, T.; Akiyama, Y. In silico screening of protein-protein interactions with all-to-all rigid docking and clustering: An application to pathway analysis. J. Bioinform. Comput. Biol., 2009, 7(6), 991-1012.
[http://dx.doi.org/10.1142/S0219720009004461] [PMID: 20014475]
[75]
Rizzuti, B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. Biochim. Biophys. Acta. Proteins Proteomics, 2022, 1870(3), 140757.
[http://dx.doi.org/10.1016/j.bbapap.2022.140757] [PMID: 35051666]
[76]
Jiang, M.; Niu, C.; Cao, J.; Ni, D.; Chu, Z. In silico-prediction of protein–protein interactions network about MAPKs and PP2Cs reveals a novel docking site variants in Brachypodium distachyon. Sci. Rep., 2018, 8(1), 15083.
[http://dx.doi.org/10.1038/s41598-018-33428-5] [PMID: 30305661]
[77]
Nardi, M.; Cano, N.C.H.; Simeonov, S.; Bence, R.; Kurutos, A.; Scarpelli, R.; Wunderlin, D.; Procopio, A. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities. Catalysts, 2023, 13(2), 392.
[http://dx.doi.org/10.3390/catal13020392]
[78]
Morcoss, M.M.; Abdelhafez, E.S.M.N.; Ibrahem, R.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem., 2020, 101, 103956.
[79]
Kumar, P.; Rahman, M.A.; Wal, P.; Rawat, P.; Singh, K. Design, synthesis, and anticancer evaluation of novel benzopyran 1, 3, 4- oxadiazole derivatives. Indian J. Heterocycl. Chem., 2020, 30, 395-402.
[80]
Kumar, P.; Rahman, M.A.; Wal, P.; Singh, K. Design, synthesis, and evaluation of anticancer potential of some new benzopyran schiff base derivatives. Indian J. Heterocycl. Chem., 2020, 30(2), 297-305.
[81]
Zha, G.F.; Preetham, H.D.; Rangappa, S.; Kumar, S.K.S.; Girish, Y.R.; Rakesh, K.P.; Ashrafizadeh, M.; Zarrabi, A.; Rangappa, K.S. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg. Chem., 2021, 115, 105175.
[82]
Singh, K.; Jain, A.K.; Mishra, P.K. Synthesis of benzimidazole derivatives and study of their antimicrobial and antifungal activities. Orient. J. Chem., 2007, 23(2), 641.
[83]
Shukla, S.; Kumar, A.; Verma, S.; Singh, K. Heterocycle-fused benzimidazole: A privileged scaffold in antimicrobial drug discovery. Int. J. Pharma Sci., 2022, 13, 674-687.
[84]
Gentile, F.; Yaacoub, J.C.; Gleave, J.; Fernandez, M.; Ton, A.T.; Ban, F.; Stern, A.; Cherkasov, A. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat. Protoc., 2022, 17(3), 672-697.
[http://dx.doi.org/10.1038/s41596-021-00659-2] [PMID: 35121854]
[85]
Clegg, L.E.; Gabhann, M.F. Molecular mechanism matters: Benefits of mechanistic computational models for drug development. Pharmacol. Res., 2015, 99, 149-154.
[http://dx.doi.org/10.1016/j.phrs.2015.06.002] [PMID: 26093283]
[86]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[87]
Kushwaha, R.K.; Singh, K.; Kushwaha, S.P.; Chandra, D.; Kumar, A.; Kumar, P. Design and synthesis of chroman isatin hybrid derivatives as antitubercular agents. Ann. Phytomed., 2022, 11(2), 385-390.
[http://dx.doi.org/10.54085/ap.2022.11.2.46]
[88]
Wei, S.; Sun, T.; Du, J.; Zhang, B.; Xiang, D.; Li, W. Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncol. Rep., 2018, 40(6), 3213-3222.
[http://dx.doi.org/10.3892/or.2018.6723]
[89]
Zhang, Y.; Zeng, M.; Li, B.; Zhang, B.; Cao, B.; Wu, Y.; Ye, S.; Xu, R.; Zheng, X.; Feng, W. Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin. J. Nat. Med., 2023, 21(5), 371-382.
[http://dx.doi.org/10.1016/S1875-5364(23)60454-6] [PMID: 37245875]
[90]
Qin, Y.; Huang, C.; Huang, G.; Li, H.; Shohag, M.J.I.; Gu, M.; Shen, F.; Lu, D.; Zhang, M.; Wei, Y. Relative bioavailability of selenium in rice using a rat model and its application to human health risk assessment. Environ. Pollut., 2023, 338, 122675.
[http://dx.doi.org/10.1016/j.envpol.2023.122675]
[91]
Lou, Z.; Gong, Y.Q.; Zhou, X.; Hu, G.H. Low expression of miR-199 in hepatocellular carcinoma contributes to tumor cell hyper-proliferation by negatively suppressing XBP1. Oncol. Lett., 2018, 16(5), 6531-6539.
[http://dx.doi.org/10.3892/ol.2018.9476]
[92]
Chen, X.; Liao, Y.; Long, D.; Yu, T.; Shen, F.; Lin, X. The Cdc2/Cdk1 inhibitor, purvalanol A, enhances the cytotoxic effects of taxol through Op18/stathmin in non-small cell lung cancer cells in vitro. Int. J. Mol. Med., 2017, 40(1), 235-242.
[93]
Fasiuddin, G.S. Synthesis, Spectroscopic, Molecular Docking and inhibitory activity of 6-Bromo-2-(4-chlorophenyl)-1H- benzimidazole-a DFT approach. J. Mol. Struct., 2022, 1261, 132815.
[http://dx.doi.org/10.1016/j.molstruc.2022.132815]
[94]
Chatnarin, S.; Thirabunyanon, M. Potential bioactivities via anticancer, antioxidant, and immunomodulatory properties of cultured mycelial enriched β-D-glucan polysaccharides from a novel fungus Ophiocordyceps sinensis OS8. Front. Immunol., 2023, 14, 1150287.
[95]
Park, J.K.; Kim, D.E.; Hoanh, T.D.; Kwon, Y.S.; Lee, B.J. Zinc complex based on 2-(5-methyl-2-hydroxyphenyl)benzotriazole: synthesis and electroluminescence characteristics. J. Nanosci. Nanotechnol., 2008, 8(10), 5071-5075.
[96]
Xing, G.; Pan, L.; Yi, C.; Li, X.; Ge, X.; Zhao, Y.; Liu, Y.; Li, J.; Woo, A.; Lin, B.; Zhang, Y.; Cheng, M. Design, synthesis and biological evaluation of 5-(2-amino-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one derivatives as potent β2-adrenoceptor agonists. Bioorg. Med. Chem., 2019, 27(12), 2306-2314.
[http://dx.doi.org/10.1016/j.bmc.2018.10.043] [PMID: 30392952]
[97]
Sivakumar, C.; Balachandran, V.; Narayana, B.; Salian, V.V.; Revathi, B.; Shanmugapriya, N.; Vanasundari, K. Molecular spectroscopic investigation, quantum chemical, molecular docking and biological evaluation of 2-(4-Chlorophenyl)-1-[3-(4-chlorophenyl)-5-[4-(propan-2-yl) phenyl-3, 5-dihydro-1H-pyrazole-yl] ethanone. J. Mol. Struct., 2021, 1224, 129010.
[http://dx.doi.org/10.1016/j.molstruc.2020.129010]
[98]
Mehta, S.; Kumar, S.; Marwaha, R.K.; Narasimhan, B.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V. Synthesis, molecular docking and biological potentials of new 2-(4-(2-chloroacetyl) piperazin-1-yl)-N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)acetamide derivatives. BMC Chem., 2019, 13(1), 113.
[http://dx.doi.org/10.1186/s13065-019-0629-0] [PMID: 31355363]
[99]
2-(4-pyrimidinyl)-1H-Benzimidazole. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2-_4-Pyrimidinyl_-1H-Benzimidazole
[100]
Prashanth, T.; Ranganatha, V.L.; Ramu, R.; Mandal, S.P.; Mallikarjunaswamy, C.; Khanum, S.A. Synthesis, characterization, docking study and antimicrobial activity of 2-(4-benzoylphenoxy)-1-[2-(1-methyl-1H-indol-3-yl)methyl)-1H-benzo[d]imidazol-1-yl] ethanone derivatives. J. Indian Chem. Soc., 2021, 18(10), 2741-2756.
[http://dx.doi.org/10.1007/s13738-021-02230-y]
[101]
Barot, K.P.; Jain, S.V.; Gupta, N.; Kremer, L.; Singh, S.; Takale, V.B.; Joshi, K.; Ghate, M.D. Design, synthesis and docking studies of some novel (R)-2-(4′-chlorophenyl)-3-(4′-nitrophenyl)-1,2,3,5-tetrahydrobenzo[4,5] imidazo [1,2-c]pyrimidin-4-ol derivatives as antitubercular agents. Eur. J. Med. Chem., 2014, 83, 245-255.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.019] [PMID: 24972340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy