Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment

Author(s): Anjana Goel*, Amisha Rastogi, Mansi Jain and Kinjal Niveriya

Volume 25, Issue 16, 2024

Published on: 12 February, 2024

Page: [2125 - 2137] Pages: 13

DOI: 10.2174/0113892010291042240130171709

Price: $65

Abstract

It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.

Graphical Abstract

[1]
Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; Kuehn, M.S.; Taylor, C.M.; Neph, S.; Koch, C.M.; Asthana, S.; Malhotra, A.; Adzhubei, I.; Greenbaum, J.A.; Andrews, R.M.; Flicek, P.; Boyle, P.J.; Cao, H.; Carter, N.P.; Clelland, G.K.; Davis, S.; Day, N.; Dhami, P.; Dillon, S.C.; Dorschner, M.O.; Fiegler, H.; Giresi, P.G.; Goldy, J.; Hawrylycz, M.; Haydock, A.; Humbert, R.; James, K.D.; Johnson, B.E.; Johnson, E.M.; Frum, T.T.; Rosenzweig, E.R.; Karnani, N.; Lee, K.; Lefebvre, G.C.; Navas, P.A.; Neri, F.; Parker, S.C.; Sabo, P.J.; Sandstrom, R.; Shafer, A.; Vetrie, D.; Weaver, M.; Wilcox, S.; Yu, M.; Collins, F.S.; Dekker, J.; Lieb, J.D.; Tullius, T.D.; Crawford, G.E.; Sunyaev, S.; Noble, W.S.; Dunham, I.; Denoeud, F.; Reymond, A.; Kapranov, P.; Rozowsky, J.; Zheng, D.; Castelo, R.; Frankish, A.; Harrow, J.; Ghosh, S.; Sandelin, A.; Hofacker, I.L.; Baertsch, R.; Keefe, D.; Dike, S.; Cheng, J.; Hirsch, H.A.; Sekinger, E.A.; Lagarde, J.; Abril, J.F.; Shahab, A.; Flamm, C.; Fried, C.; Hackermüller, J.; Hertel, J.; Lindemeyer, M.; Missal, K.; Tanzer, A.; Washietl, S.; Korbel, J.; Emanuelsson, O.; Pedersen, J.S.; Holroyd, N.; Taylor, R.; Swarbreck, D.; Matthews, N.; Dickson, M.C.; Thomas, D.J.; Weirauch, M.T.; Gilbert, J.; Drenkow, J.; Bell, I.; Zhao, X.; Srinivasan, K.G.; Sung, W.K.; Ooi, H.S.; Chiu, K.P.; Foissac, S.; Alioto, T.; Brent, M.; Pachter, L.; Tress, M.L.; Valencia, A.; Choo, S.W.; Choo, C.Y.; Ucla, C.; Manzano, C.; Wyss, C.; Cheung, E.; Clark, T.G.; Brown, J.B.; Ganesh, M.; Patel, S.; Tammana, H.; Chrast, J.; Henrichsen, C.N.; Kai, C.; Kawai, J.; Nagalakshmi, U.; Wu, J.; Lian, Z.; Lian, J.; Newburger, P.; Zhang, X.; Bickel, P.; Mattick, J.S.; Carninci, P.; Hayashizaki, Y.; Weissman, S.; Hubbard, T.; Myers, R.M.; Rogers, J.; Stadler, P.F.; Lowe, T.M.; Wei, C.L.; Ruan, Y.; Struhl, K.; Gerstein, M.; Antonarakis, S.E.; Fu, Y.; Green, E.D.; Karaöz, U.; Siepel, A.; Taylor, J.; Liefer, L.A.; Wetterstrand, K.A.; Good, P.J.; Feingold, E.A.; Guyer, M.S.; Cooper, G.M.; Asimenos, G.; Dewey, C.N.; Hou, M.; Nikolaev, S.; Montoya-Burgos, J.I.; Löytynoja, A.; Whelan, S.; Pardi, F.; Massingham, T.; Huang, H.; Zhang, N.R.; Holmes, I.; Mullikin, J.C.; Ureta-Vidal, A.; Paten, B.; Seringhaus, M.; Church, D.; Rosenbloom, K.; Kent, W.J.; Stone, E.A.; Batzoglou, S.; Goldman, N.; Hardison, R.C.; Haussler, D.; Miller, W.; Sidow, A.; Trinklein, N.D.; Zhang, Z.D.; Barrera, L.; Stuart, R.; King, D.C.; Ameur, A.; Enroth, S.; Bieda, M.C.; Kim, J.; Bhinge, A.A.; Jiang, N.; Liu, J.; Yao, F.; Vega, V.B.; Lee, C.W.; Ng, P.; Shahab, A.; Yang, A.; Moqtaderi, Z.; Zhu, Z.; Xu, X.; Squazzo, S.; Oberley, M.J.; Inman, D.; Singer, M.A.; Richmond, T.A.; Munn, K.J.; Rada-Iglesias, A.; Wallerman, O.; Komorowski, J.; Fowler, J.C.; Couttet, P.; Bruce, A.W.; Dovey, O.M.; Ellis, P.D.; Langford, C.F.; Nix, D.A.; Euskirchen, G.; Hartman, S.; Urban, A.E.; Kraus, P.; Van Calcar, S.; Heintzman, N.; Kim, T.H.; Wang, K.; Qu, C.; Hon, G.; Luna, R.; Glass, C.K.; Rosenfeld, M.G.; Aldred, S.F.; Cooper, S.J.; Halees, A.; Lin, J.M.; Shulha, H.P.; Zhang, X.; Xu, M.; Haidar, J.N.; Yu, Y.; Ruan, Y.; Iyer, V.R.; Green, R.D.; Wadelius, C.; Farnham, P.J.; Ren, B.; Harte, R.A.; Hinrichs, A.S.; Trumbower, H.; Clawson, H.; Hillman-Jackson, J.; Zweig, A.S.; Smith, K.; Thakkapallayil, A.; Barber, G.; Kuhn, R.M.; Karolchik, D.; Armengol, L.; Bird, C.P.; de Bakker, P.I.; Kern, A.D.; Lopez-Bigas, N.; Martin, J.D.; Stranger, B.E.; Woodroffe, A.; Davydov, E.; Dimas, A.; Eyras, E.; Hallgrímsdóttir, I.B.; Huppert, J.; Zody, M.C.; Abecasis, G.R.; Estivill, X.; Bouffard, G.G.; Guan, X.; Hansen, N.F.; Idol, J.R.; Maduro, V.V.; Maskeri, B.; McDowell, J.C.; Park, M.; Thomas, P.J.; Young, A.C.; Blakesley, R.W.; Muzny, D.M.; Sodergren, E.; Wheeler, D.A.; Worley, K.C.; Jiang, H.; Weinstock, G.M.; Gibbs, R.A.; Graves, T.; Fulton, R.; Mardis, E.R.; Wilson, R.K.; Clamp, M.; Cuff, J.; Gnerre, S.; Jaffe, D.B.; Chang, J.L.; Lindblad-Toh, K.; Lander, E.S.; Koriabine, M.; Nefedov, M.; Osoegawa, K.; Yoshinaga, Y.; Zhu, B.; de Jong, P.J. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146), 799-816.
[http://dx.doi.org/10.1038/nature05874] [PMID: 17571346]
[2]
Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; Kodzius, R.; Shimokawa, K.; Bajic, V.B.; Brenner, S.E.; Batalov, S.; Forrest, A.R.R.; Zavolan, M.; Davis, M.J.; Wilming, L.G.; Aidinis, V.; Allen, J.E.; Ambesi-Impiombato, A.; Apweiler, R.; Aturaliya, R.N.; Bailey, T.L.; Bansal, M.; Baxter, L.; Beisel, K.W.; Bersano, T.; Bono, H.; Chalk, A.M.; Chiu, K.P.; Choudhary, V.; Christoffels, A.; Clutterbuck, D.R.; Crowe, M.L.; Dalla, E.; Dalrymple, B.P.; de Bono, B.; Gatta, G.D.; di Bernardo, D.; Down, T.; Engstrom, P.; Fagiolini, M.; Faulkner, G.; Fletcher, C.F.; Fukushima, T.; Furuno, M.; Futaki, S.; Gariboldi, M.; Georgii-Hemming, P.; Gingeras, T.R.; Gojobori, T.; Green, R.E.; Gustincich, S.; Harbers, M.; Hayashi, Y.; Hensch, T.K.; Hirokawa, N.; Hill, D.; Huminiecki, L.; Iacono, M.; Ikeo, K.; Iwama, A.; Ishikawa, T.; Jakt, M.; Kanapin, A.; Katoh, M.; Kawasawa, Y.; Kelso, J.; Kitamura, H.; Kitano, H.; Kollias, G.; Krishnan, S.P.T.; Kruger, A.; Kummerfeld, S.K.; Kurochkin, I.V.; Lareau, L.F.; Lazarevic, D.; Lipovich, L.; Liu, J.; Liuni, S.; McWilliam, S.; Babu, M.M.; Madera, M.; Marchionni, L.; Matsuda, H.; Matsuzawa, S.; Miki, H.; Mignone, F.; Miyake, S.; Morris, K.; Mottagui-Tabar, S.; Mulder, N.; Nakano, N.; Nakauchi, H.; Ng, P.; Nilsson, R.; Nishiguchi, S.; Nishikawa, S.; Nori, F.; Ohara, O.; Okazaki, Y.; Orlando, V.; Pang, K.C.; Pavan, W.J.; Pavesi, G.; Pesole, G.; Petrovsky, N.; Piazza, S.; Reed, J.; Reid, J.F.; Ring, B.Z.; Ringwald, M.; Rost, B.; Ruan, Y.; Salzberg, S.L.; Sandelin, A.; Schneider, C.; Schönbach, C.; Sekiguchi, K.; Semple, C.A.M.; Seno, S.; Sessa, L.; Sheng, Y.; Shibata, Y.; Shimada, H.; Shimada, K.; Silva, D.; Sinclair, B.; Sperling, S.; Stupka, E.; Sugiura, K.; Sultana, R.; Takenaka, Y.; Taki, K.; Tammoja, K.; Tan, S.L.; Tang, S.; Taylor, M.S.; Tegner, J.; Teichmann, S.A.; Ueda, H.R.; van Nimwegen, E.; Verardo, R.; Wei, C.L.; Yagi, K.; Yamanishi, H.; Zabarovsky, E.; Zhu, S.; Zimmer, A.; Hide, W.; Bult, C.; Grimmond, S.M.; Teasdale, R.D.; Liu, E.T.; Brusic, V.; Quackenbush, J.; Wahlestedt, C.; Mattick, J.S.; Hume, D.A.; Kai, C.; Sasaki, D.; Tomaru, Y.; Fukuda, S.; Kanamori-Katayama, M.; Suzuki, M.; Aoki, J.; Arakawa, T.; Iida, J.; Imamura, K.; Itoh, M.; Kato, T.; Kawaji, H.; Kawagashira, N.; Kawashima, T.; Kojima, M.; Kondo, S.; Konno, H.; Nakano, K.; Ninomiya, N.; Nishio, T.; Okada, M.; Plessy, C.; Shibata, K.; Shiraki, T.; Suzuki, S.; Tagami, M.; Waki, K.; Watahiki, A.; Okamura-Oho, Y.; Suzuki, H.; Kawai, J.; Hayashizaki, Y. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740), 1559-1563.
[http://dx.doi.org/10.1126/science.1112014] [PMID: 16141072]
[3]
Carninci, P.; Sandelin, A.; Lenhard, B.; Katayama, S.; Shimokawa, K.; Ponjavic, J.; Semple, C.A.M.; Taylor, M.S.; Engström, P.G.; Frith, M.C.; Forrest, A.R.R.; Alkema, W.B.; Tan, S.L.; Plessy, C.; Kodzius, R.; Ravasi, T.; Kasukawa, T.; Fukuda, S.; Kanamori-Katayama, M.; Kitazume, Y.; Kawaji, H.; Kai, C.; Nakamura, M.; Konno, H.; Nakano, K.; Mottagui-Tabar, S.; Arner, P.; Chesi, A.; Gustincich, S.; Persichetti, F.; Suzuki, H.; Grimmond, S.M.; Wells, C.A.; Orlando, V.; Wahlestedt, C.; Liu, E.T.; Harbers, M.; Kawai, J.; Bajic, V.B.; Hume, D.A.; Hayashizaki, Y. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet., 2006, 38(6), 626-635.
[http://dx.doi.org/10.1038/ng1789] [PMID: 16645617]
[4]
Cheng, J.; Kapranov, P.; Drenkow, J.; Dike, S.; Brubaker, S.; Patel, S.; Long, J.; Stern, D.; Tammana, H.; Helt, G.; Sementchenko, V.; Piccolboni, A.; Bekiranov, S.; Bailey, D.K.; Ganesh, M.; Ghosh, S.; Bell, I.; Gerhard, D.S.; Gingeras, T.R. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308(5725), 1149-1154.
[http://dx.doi.org/10.1126/science.1108625] [PMID: 15790807]
[5]
Cloonan, N.; Forrest, A.R.R.; Kolle, G.; Gardiner, B.B.A.; Faulkner, G.J.; Brown, M.K.; Taylor, D.F.; Steptoe, A.L.; Wani, S.; Bethel, G.; Robertson, A.J.; Perkins, A.C.; Bruce, S.J.; Lee, C.C.; Ranade, S.S.; Peckham, H.E.; Manning, J.M.; McKernan, K.J.; Grimmond, S.M. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods, 2008, 5(7), 613-619.
[http://dx.doi.org/10.1038/nmeth.1223] [PMID: 18516046]
[6]
Core, L.J.; Waterfall, J.J.; Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 2008, 322(5909), 1845-1848.
[http://dx.doi.org/10.1126/science.1162228] [PMID: 19056941]
[7]
Johnson, J.M.; Edwards, S.; Shoemaker, D.; Schadt, E.E. Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends Genet., 2005, 21(2), 93-102.
[http://dx.doi.org/10.1016/j.tig.2004.12.009] [PMID: 15661355]
[8]
Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; Bell, I.; Cheung, E.; Drenkow, J.; Dumais, E.; Patel, S.; Helt, G.; Ganesh, M.; Ghosh, S.; Piccolboni, A.; Sementchenko, V.; Tammana, H.; Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830), 1484-1488.
[http://dx.doi.org/10.1126/science.1138341] [PMID: 17510325]
[9]
Seila, A.C.; Calabrese, J.M.; Levine, S.S.; Yeo, G.W.; Rahl, P.B.; Flynn, R.A.; Young, R.A.; Sharp, P.A. Divergent transcription from active promoters. Science, 2008, 322(5909), 1849-1851.
[http://dx.doi.org/10.1126/science.1162253] [PMID: 19056940]
[10]
Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D.W.Y. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat. Chem. Biol., 2006, 2(12), 711-719.
[http://dx.doi.org/10.1038/nchembio839] [PMID: 17108989]
[11]
Rao, D.D.; Vorhies, J.S.; Senzer, N.; Nemunaitis, J. siRNA vs. shRNA: Similarities and differences. Adv. Drug Deliv. Rev., 2009, 61(9), 746-759.
[http://dx.doi.org/10.1016/j.addr.2009.04.004] [PMID: 19389436]
[12]
Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685.
[http://dx.doi.org/10.1128/MMBR.67.4.657-685.2003] [PMID: 14665679]
[13]
Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 1961, 190(4776), 576-581.
[http://dx.doi.org/10.1038/190576a0] [PMID: 20446365]
[14]
Gros, F.; Hiatt, H.; Gilbert, W.; Kurland, C.G.; Risebrough, R.W.; Watson, J.D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature, 1961, 190(4776), 581-585.
[http://dx.doi.org/10.1038/190581a0] [PMID: 13708983]
[15]
Kim, Y.K. RNA therapy: Current status and future potential. Chonnam Med. J., 2020, 56(2), 87-93.
[http://dx.doi.org/10.4068/cmj.2020.56.2.87] [PMID: 32509554]
[16]
Zamecnik, P.C.; Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA, 1978, 75(1), 280-284.
[http://dx.doi.org/10.1073/pnas.75.1.280] [PMID: 75545]
[17]
Wong, E.; Goldberg, T. Mipomersen (kynamro): A novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P&T, 2014, 39(2), 119-122.
[PMID: 24669178]
[18]
Curreri, A.; Sankholkar, D.; Mitragotri, S.; Zhao, Z. RNA therapeutics in the clinic. Bioeng. Transl. Med., 2023, 8(1), e10374.
[http://dx.doi.org/10.1002/btm2.10374] [PMID: 36684099]
[19]
Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643.
[http://dx.doi.org/10.1038/s41565-021-00898-0] [PMID: 34059811]
[20]
Wilson, R.C.; Doudna, J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys., 2013, 42(1), 217-239.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130404] [PMID: 23654304]
[21]
Matzke, M.A.; Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet., 2005, 6(1), 24-35.
[http://dx.doi.org/10.1038/nrg1500] [PMID: 15630419]
[22]
Cullen, B.R. Induction of stable RNA interference in mammalian cells. Gene Ther., 2006, 13(6), 503-508.
[http://dx.doi.org/10.1038/sj.gt.3302656] [PMID: 16195700]
[23]
Hemann, M.T.; Fridman, J.S.; Zilfou, J.T.; Hernando, E.; Paddison, P.J.; Cordon-Cardo, C.; Hannon, G.J.; Lowe, S.W. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet., 2003, 33(3), 396-400.
[http://dx.doi.org/10.1038/ng1091] [PMID: 12567186]
[24]
Rubinson, D.A.; Dillon, C.P.; Kwiatkowski, A.V.; Sievers, C.; Yang, L.; Kopinja, J.; Rooney, D.L.; Zhang, M.; Ihrig, M.M.; McManus, M.T.; Gertler, F.B.; Scott, M.L.; Van Parijs, L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet., 2003, 33(3), 401-406.
[http://dx.doi.org/10.1038/ng1117] [PMID: 12590264]
[25]
Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med., 2004, 351(27), 2805-2816.
[http://dx.doi.org/10.1056/NEJMoa042760] [PMID: 15625332]
[26]
Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[27]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[28]
Division of Cancer Prevention and Control. Centers for Disease Control and Prevention, Available from: https://www.cdc.gov/cancer/dcpc/about/
[29]
Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401.
[http://dx.doi.org/10.1016/j.gendis.2022.02.007] [PMID: 37397557]
[30]
National Cancer Institute.Targeted cancer therapies; National Cancer Institute: Bethesda, MD, 2020.
[31]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[32]
Chlebowski, R.T.; Anderson, G.L. Changing concepts: Menopausal hormone therapy and breast cancer. J. Natl. Cancer Inst., 2012, 104(7), 517-527.
[http://dx.doi.org/10.1093/jnci/djs014] [PMID: 22427684]
[33]
Glazer, E.S.; Curley, S.A. The ongoing history of thermal therapy for cancer. Surg. Oncol. Clin. N. Am., 2011, 20(2), 229-235. [vii].
[http://dx.doi.org/10.1016/j.soc.2010.11.001] [PMID: 21377580]
[34]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[35]
Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther., 2019, 10(1), 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[36]
Tsimberidou, A.M. Targeted therapy in cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1113-1132.
[http://dx.doi.org/10.1007/s00280-015-2861-1] [PMID: 26391154]
[37]
Knavel, E.M.; Brace, C.L. Tumor ablation: Common modalities and general practices. Tech. Vasc. Interv. Radiol., 2013, 16(4), 192-200.
[http://dx.doi.org/10.1053/j.tvir.2013.08.002] [PMID: 24238374]
[38]
American Cancer Society. Ablation for liver cancer; American Cancer Society: Atlanta, GA, 2019.
[39]
Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency ablation and microwave ablation in liver tumors: An update. Oncologist, 2019, 24(10), e990-e1005.
[http://dx.doi.org/10.1634/theoncologist.2018-0337] [PMID: 31217342]
[40]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[41]
Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res., 2009, 88(7), 585-596.
[http://dx.doi.org/10.1177/0022034509337480] [PMID: 19641145]
[42]
Sabari, J.K.; Lok, B.H.; Laird, J.H.; Poirier, J.T.; Rudin, C.M. Unravelling the biology of SCLC: Implications for therapy. Nat. Rev. Clin. Oncol., 2017, 14(9), 549-561.
[http://dx.doi.org/10.1038/nrclinonc.2017.71] [PMID: 28534531]
[43]
Khan, P.; Siddiqui, J.A.; Maurya, S.K.; Lakshmanan, I.; Jain, M.; Ganti, A.K.; Salgia, R.; Batra, S.K.; Nasser, M.W. Epigenetic landscape of small cell lung cancer: Small image of a giant recalcitrant disease. Semin. Cancer Biol., 2022, 83, 57-76.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.006] [PMID: 33220460]
[44]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[45]
Harrison, P.T.; Huang, P.H. Exploiting vulnerabilities in cancer signalling networks to combat targeted therapy resistance. Essays Biochem., 2018, 62(4), 583-593.
[http://dx.doi.org/10.1042/EBC20180016] [PMID: 30072489]
[46]
Shah, K.; Rawal, R.M. Genetic and epigenetic modulation of drug resistance in cancer: Challenges and opportunities. Curr. Drug Metab., 2020, 20(14), 1114-1131.
[http://dx.doi.org/10.2174/1389200221666200103111539] [PMID: 31902353]
[47]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[48]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[49]
Samadi, B.; Valizadeh, M. Genetics A molecular approach, 6th ed; Tehran University Publishers: Iran, 2013.
[50]
Fire, A.Z. WITHDRAWN: Gene silencing by double-stranded RNA. Cell Death Differ., 2007, 14(12), 1998-2012.
[http://dx.doi.org/10.1038/sj.cdd.4402253] [PMID: 18007671]
[51]
Tian, Z.; Liang, G.; Cui, K.; Liang, Y.; Wang, Q.; Lv, S.; Cheng, X.; Zhang, L. Insight into the prospects for RNAi therapy of cancer. Front. Pharmacol., 2021, 12, 644718.
[http://dx.doi.org/10.3389/fphar.2021.644718] [PMID: 33796026]
[52]
Ranasinghe, P.; Addison, M.L.; Dear, J.W.; Webb, D.J. Small interfering RNA: Discovery, pharmacology and clinical development—An introductory review. Br. J. Pharmacol., 2023, 180(21), 2697-2720.
[http://dx.doi.org/10.1111/bph.15972] [PMID: 36250252]
[53]
Charbe, N.B.; Amnerkar, N.D.; Ramesh, B.; Tambuwala, M.M.; Bakshi, H.A.; Aljabali, A.A.A.; Khadse, S.C.; Satheeshkumar, R.; Satija, S.; Metha, M.; Chellappan, D.K.; Shrivastava, G.; Gupta, G.; Negi, P.; Dua, K.; Zacconi, F.C. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery. Acta Pharm. Sin. B, 2020, 10(11), 2075-2109.
[http://dx.doi.org/10.1016/j.apsb.2020.10.005] [PMID: 33304780]
[54]
Leenders, F.; Möpert, K.; Schmiedeknecht, A.; Santel, A.; Czauderna, F.; Aleku, M.; Penschuck, S.; Dames, S.; Sternberger, M.; Röhl, T.; Wellmann, A.; Arnold, W.; Giese, K.; Kaufmann, J.; Klippel, A. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J., 2004, 23(16), 3303-3313.
[http://dx.doi.org/10.1038/sj.emboj.7600345] [PMID: 15282551]
[55]
Santel, A.; Aleku, M.; Röder, N.; Möpert, K.; Durieux, B.; Janke, O.; Keil, O.; Endruschat, J.; Dames, S.; Lange, C.; Eisermann, M.; Löffler, K.; Fechtner, M.; Fisch, G.; Vank, C.; Schaeper, U.; Giese, K.; Kaufmann, J. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin. Cancer Res., 2010, 16(22), 5469-5480.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1994] [PMID: 21062934]
[56]
Regulus. regulus announces clinical candidate nomination for the treatment of glioblastoma multiforme. Available from: http://ir.regulusrx.com/news-releases/news-release-details/regulus-announces-clinical-candidate-nomination-treatment(Accessed on 14 March 2022).
[57]
Liang, X.; Li, D.; Leng, S.; Zhu, X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother., 2020, 125, 109997.
[http://dx.doi.org/10.1016/j.biopha.2020.109997] [PMID: 32062550]
[58]
Telford, B.J.; Yahyanejad, S.; de Gunst, T.; den Boer, H.C.; Vos, R.M.; Stegink, M.; van den Bosch, M.T.J.; Alemdehy, M.F.; van Pinxteren, L.A.H.; Schaapveld, R.Q.J.; Janicot, M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget, 2021, 12(5), 422-439.
[http://dx.doi.org/10.18632/oncotarget.27894] [PMID: 33747358]
[59]
Setten, R.L.; Lightfoot, H.L.; Habib, N.A.; Rossi, J.J. Development of MTL-CEBPA: Small activating RNA drug for hepatocellular carcinoma. Curr. Pharm. Biotechnol., 2018, 19(8), 611-621.
[http://dx.doi.org/10.2174/1389201019666180611093428] [PMID: 29886828]
[60]
Zhou, J.; Li, H.; Xia, X.; Herrera, A.; Pollock, N.; Reebye, V.; Sodergren, M.H.; Dorman, S.; Littman, B.H.; Doogan, D.; Huang, K.W.; Habib, R.; Blakey, D.; Habib, N.A.; Rossi, J.J. Anti-inflammatory activity of MTL-CEBPA, a small activating RNA drug, in LPS-stimulated monocytes and humanized mice. Mol. Ther., 2019, 27(5), 999-1016.
[http://dx.doi.org/10.1016/j.ymthe.2019.02.018] [PMID: 30852139]
[61]
Transcode. Targeting microRNA-10b. Available from: https://www.transcodetherapeutics.com/ttx-mc138.html (Accessed on 14 March 2022).
[62]
Jiang, Q.; Wei, H.; Tian, Z. Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer, 2008, 8(1), 12.
[http://dx.doi.org/10.1186/1471-2407-8-12] [PMID: 18199340]
[63]
Iribarren, K.; Bloy, N.; Buqué, A.; Cremer, I.; Eggermont, A.; Fridman, W.H.; Fucikova, J.; Galon, J.; Špíšek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. OncoImmunology, 2016, 5(3), e1088631.
[http://dx.doi.org/10.1080/2162402X.2015.1088631] [PMID: 27141345]
[64]
Shemi, A.; Khvalevsky, E.Z.; Gabai, R.M.; Domb, A.; Barenholz, Y. Multistep, effective drug distribution within solid tumors. Oncotarget, 2015, 6(37), 39564-39577.
[http://dx.doi.org/10.18632/oncotarget.5051] [PMID: 26416413]
[65]
Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412.
[http://dx.doi.org/10.1083/jcb.201208082] [PMID: 23109665]
[66]
Han, Z.; Liang, J.; Li, Y.; He, J. Drugs and clinical approaches targeting the antiapoptotic protein: A review. BioMed Res. Int., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/1212369] [PMID: 31662966]
[67]
Villalona-Calero, M.A.; Ritch, P.; Figueroa, J.A.; Otterson, G.A.; Belt, R.; Dow, E.; George, S.; Leonardo, J.; McCachren, S.; Miller, G.L.; Modiano, M.; Valdivieso, M.; Geary, R.; Oliver, J.W.; Holmlund, J. A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin. Cancer Res., 2004, 10(18), 6086-6093.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0779] [PMID: 15447994]
[68]
Wang, D.; Jiang, W.; Zhu, F.; Mao, X.; Agrawal, S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int. J. Oncol., 2018, 53(3), 1193-1203.
[http://dx.doi.org/10.3892/ijo.2018.4456] [PMID: 29956749]
[69]
Karapetyan, L.; Luke, J.J.; Davar, D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther., 2020, 13, 10039-10061.
[http://dx.doi.org/10.2147/OTT.S247050] [PMID: 33116588]
[70]
Aleku, M.; Schulz, P.; Keil, O.; Santel, A.; Schaeper, U.; Dieckhoff, B.; Janke, O.; Endruschat, J.; Durieux, B.; Röder, N.; Löffler, K.; Lange, C.; Fechtner, M.; Möpert, K.; Fisch, G.; Dames, S.; Arnold, W.; Jochims, K.; Giese, K.; Wiedenmann, B.; Scholz, A.; Kaufmann, J. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res., 2008, 68(23), 9788-9798.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2428] [PMID: 19047158]
[71]
Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; Kranz, L.M.; Diken, M.; Kreiter, S.; Haas, H.; Attig, S.; Rae, R.; Cuk, K.; Kemmer-Brück, A.; Breitkreuz, A.; Tolliver, C.; Caspar, J.; Quinkhardt, J.; Hebich, L.; Stein, M.; Hohberger, A.; Vogler, I.; Liebig, I.; Renken, S.; Sikorski, J.; Leierer, M.; Müller, V.; Mitzel-Rink, H.; Miederer, M.; Huber, C.; Grabbe, S.; Utikal, J.; Pinter, A.; Kaufmann, R.; Hassel, J.C.; Loquai, C.; Türeci, Ö. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585(7823), 107-112.
[http://dx.doi.org/10.1038/s41586-020-2537-9] [PMID: 32728218]
[72]
Alberer, M.; Gnad-Vogt, U.; Hong, H.S.; Mehr, K.T.; Backert, L.; Finak, G.; Gottardo, R.; Bica, M.A.; Garofano, A.; Koch, S.D.; Fotin-Mleczek, M.; Hoerr, I.; Clemens, R.; von Sonnenburg, F. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017, 390(10101), 1511-1520.
[http://dx.doi.org/10.1016/S0140-6736(17)31665-3] [PMID: 28754494]
[73]
Hellgren, F.; Cagigi, A.; Arcoverde, C.R.; Ols, S.; Kern, T.; Lin, A.; Eriksson, B.; Dodds, M.G.; Jasny, E.; Schwendt, K.; Freuling, C.; Müller, T.; Corcoran, M.; Karlsson, H.G.B.; Petsch, B.; Loré, K. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat. Commun., 2023, 14(1), 3713.
[http://dx.doi.org/10.1038/s41467-023-39421-5] [PMID: 37349310]
[74]
Sebastian, M.; Papachristofilou, A.; Weiss, C.; Früh, M.; Cathomas, R.; Hilbe, W.; Wehler, T.; Rippin, G.; Koch, S.D.; Scheel, B.; Fotin-Mleczek, M.; Heidenreich, R.; Kallen, K.J.; Gnad-Vogt, U.; Zippelius, A. Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActive®) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 2014, 14(1), 748.
[http://dx.doi.org/10.1186/1471-2407-14-748] [PMID: 25288198]
[75]
A Phase 1, open-label, multicenter study to assess the safety and tolerability of mrna-5671/v941 as a monotherapy and in combination with pembrolizumab in participants with kras mutant advanced or metastatic non-small cell lung cancer, colorectal cancer or pancreatic adenocarcinoma. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03948763
[76]
National cancer institute Natl. Cancer inst. 2011. Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug
[77]
ClinicalTrials.gov. A phase 1 randomized, double blinded, placebo controlled, ascending dose study to assess the safety, tolerability, and pharmacokinetics of single doses of arct-810 in healthy adult subjects., 2020. b Available from: https://clinicaltrials.gov/ct2/show/NCT04416126
[78]
van Dülmen, M.; Rentmeister, A. mRNA Therapies: New hope in the fight against melanoma. Biochemistry, 2020, 59(17), 1650-1655.
[http://dx.doi.org/10.1021/acs.biochem.0c00181] [PMID: 32298088]
[79]
BioNTech (2021). Pipeline – biontech biontech. 2021. Available from: https://www.biontech.de/science/pipeline (Accessed January 27, 2021).
[80]
Hodges, D.; Crooke, S.T. Inhibition of splicing of wild-type and mutated luciferase-adenovirus pre-mRNAs by antisense oligonucleotides. Mol. Pharmacol., 1995, 48(5), 905-918.
[PMID: 7476922]
[81]
Sioud, M. RNA interference: mechanisms, technical challenges, and therapeutic opportunities. Methods Mol. Biol., 2015, 1218, 1-15.
[http://dx.doi.org/10.1007/978-1-4939-1538-5_1] [PMID: 25319642]
[82]
Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther., 2020, 5(1), 101.
[http://dx.doi.org/10.1038/s41392-020-0207-x] [PMID: 32561705]
[83]
MacLeod, A.R.; Crooke, S.T. RNA therapeutics in oncology: Advances, challenges, and future directions. J. Clin. Pharmacol., 2017, 57(S10), S43-S59.
[http://dx.doi.org/10.1002/jcph.957] [PMID: 28921648]
[84]
Zogg, H.; Singh, R.; Ro, S. Current advances in RNA therapeutics for human diseases. Int. J. Mol. Sci., 2022, 23(5), 2736.
[http://dx.doi.org/10.3390/ijms23052736] [PMID: 35269876]
[85]
Eberle, F.; Gießler, K.; Deck, C.; Heeg, K.; Peter, M.; Richert, C.; Dalpke, A.H. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol., 2008, 180(5), 3229-3237.
[http://dx.doi.org/10.4049/jimmunol.180.5.3229] [PMID: 18292547]
[86]
Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov., 2010, 9(1), 57-67.
[http://dx.doi.org/10.1038/nrd3010] [PMID: 20043028]
[87]
Suter, S.R.; Ball-Jones, A.; Mumbleau, M.M.; Valenzuela, R.; Ibarra-Soza, J.; Owens, H.; Fisher, A.J.; Beal, P.A. Controlling miRNA-like off-target effects of an siRNA with nucleobase modifications. Org. Biomol. Chem., 2017, 15(47), 10029-10036.
[http://dx.doi.org/10.1039/C7OB02654D] [PMID: 29164215]
[88]
Alagia, A.; Eritja, R. SIRNA and RNAI optimization. Wiley Interdiscip. Rev. RNA, 2016, 7(3), 316-329.
[http://dx.doi.org/10.1002/wrna.1337] [PMID: 26840434]
[89]
Sajid, M.I.; Moazzam, M.; Kato, S.; Yeseom Cho, K.; Tiwari, R.K. Overcoming barriers for siRNA therapeutics: From bench to bedside. Pharmaceuticals, 2020, 13(10), 294.
[http://dx.doi.org/10.3390/ph13100294] [PMID: 33036435]
[90]
Zhang, K.; Hodge, J.; Chatterjee, A.; Moon, T.S.; Parker, K.M. Duplex structure of double-stranded RNA provides stability against hydrolysis relative to single-stranded RNA. Environ. Sci. Technol., 2021, 55(12), 8045-8053.
[http://dx.doi.org/10.1021/acs.est.1c01255] [PMID: 34033461]
[91]
Jin, L.; Shi, Y.Z.; Feng, C.J.; Tan, Y.L.; Tan, Z.J. Modeling structure, stability, and flexibility of double-stranded RNAs in salt solutions. Biophys. J., 2018, 115(8), 1403-1416.
[http://dx.doi.org/10.1016/j.bpj.2018.08.030] [PMID: 30236782]
[92]
Barton, G.M.; Medzhitov, R. Toll-like receptor signaling pathways. Science, 2003, 300(5625), 1524-1525.
[http://dx.doi.org/10.1126/science.1085536] [PMID: 12791976]
[93]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[94]
Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[95]
Marques, J.T.; Williams, B.R.G. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol., 2005, 23(11), 1399-1405.
[http://dx.doi.org/10.1038/nbt1161] [PMID: 16273073]
[96]
Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663), 1526-1529.
[http://dx.doi.org/10.1126/science.1093620] [PMID: 14976262]
[97]
Bartlett, D.W.; Davis, M.E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA‐mediated gene silencing. Biotechnol. Bioeng., 2007, 97(4), 909-921.
[http://dx.doi.org/10.1002/bit.21285] [PMID: 17154307]
[98]
Mahmoodi, C.G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rezvani Rad, M.; Marmari, V. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach. Int. J. Nanomed, 2019, 14, 3111-3128.
[http://dx.doi.org/10.2147/IJN.S200253] [PMID: 31118626]
[99]
Ahmadzada, T.; Reid, G.; McKenzie, D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev., 2018, 10(1), 69-86.
[http://dx.doi.org/10.1007/s12551-017-0392-1] [PMID: 29327101]
[100]
Haque, S.; Cook, K.; Sahay, G.; Sun, C. RNA-Based therapeutics: Current developments in targeted molecular therapy of triple-negative breast cancer. Pharmaceutics, 2021, 13(10), 1694.
[http://dx.doi.org/10.3390/pharmaceutics13101694] [PMID: 34683988]
[101]
Wang, J.; Lu, Z.; Wientjes, M.G.; Au, J.L.S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J., 2010, 12(4), 492-503.
[http://dx.doi.org/10.1208/s12248-010-9210-4] [PMID: 20544328]
[102]
Rao, D.D.; Wang, Z.; Senzer, N.; Nemunaitis, J. RNA interference and personalized cancer therapy. Discov. Med., 2013, 15(81), 101-110.
[PMID: 23449112]
[103]
Mansoori, B.; Sandoghchian Shotorbani, S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321.
[PMID: 25436185]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy