Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

Effects and Mechanisms of Fisetin against Ischemia-reperfusion Injuries: A Systematic Review

Author(s): Omid-Ali Adeli, Saeid Heidari-Soureshjani*, Sahar Rostamian, Zahra Azadegan-Dehkordi and Armin Khaghani

Volume 25, Issue 16, 2024

Published on: 26 January, 2024

Page: [2138 - 2153] Pages: 16

DOI: 10.2174/0113892010281821240102105415

Price: $65

Abstract

Background: Ischemia-reperfusion injury (IRI) is a well-known ailment that can disturb organ function.

Objectives: This systematic review study investigated fisetin's effects and possible mechanisms in attenuating myocardial, cerebral, renal, and hepatic IRIs.

Methods: This systematic review included studies earlier than Sep 2023 by following the PRISMA statement 2020. After determining inclusion and exclusion criteria and related keywords, bibliographic databases, such as Cochrane Library, PubMed, Web of Science, Embase, and Scopus databases, were used to search the relevant studies. Studies were imported in End- Note X8, and the primary information was recorded in Excel.

Results: Fisetin reduced reactive oxygen species (ROS) generation and upregulated antioxidant enzymes, such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx), in ischemic tissues. Moreover, fisetin can attenuate oxidative stress by activating phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Fisetin has been indicated to prevent the activation of several pro-inflammatory signaling pathways, including NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-activated protein kinases). It also inhibits the production of pro-inflammatory cytokines and enzymes like tumor necrosis factor-a (TNF-α), inducible-NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-1, and IL-6. Fisetin attenuates IRI by improving mitochondrial function, anti-apoptotic effects, promoting autophagy, and preserving tissues from histological changes induced by IRIs.

Conclusion: Fisetin, by antioxidant, anti-inflammatory, mitochondrial protection, promoting autophagy, and anti-apoptotic properties, can reduce cell injury due to myocardial, cerebral renal, and hepatic IRIs without any significant side effects.

Graphical Abstract

[1]
Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Évora, P.; Castro-e-Silva, O. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Mol. Sci., 2019, 20(20), 5034.
[http://dx.doi.org/10.3390/ijms20205034] [PMID: 31614478]
[2]
Sánchez-Hernández, C.D.; Torres-Alarcón, L.A.; González-Cortés, A.; Peón, A.N. Ischemia/reperfusion injury: Pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8405370] [PMID: 32410868]
[3]
Sánchez, E.C. Pathophysiology of ischemia-reperfusion injury and its management with hyperbaric oxygen (HBO): A review. J. Emerg. Crit. Care Med., 2019, 3, 22.
[http://dx.doi.org/10.21037/jeccm.2019.04.03]
[4]
Li, Y.; Palmer, A.; Lupu, L.; Huber-Lang, M. Inflammatory response to the ischaemia–reperfusion insult in the liver after major tissue trauma. Eur. J. Trauma Emerg. Surg., 2022, 48(6), 4431-4444.
[http://dx.doi.org/10.1007/s00068-022-02026-6] [PMID: 35831749]
[5]
Erturk, E. Ischemia-reperfusion injury and volatile anesthetics. BioMed Res. Int., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/526301] [PMID: 24524079]
[6]
He, J.; Bellenger, N.G.; Ludman, A.J.; Shore, A.C.; Strain, W.D. Treatment of myocardial ischaemia-reperfusion injury in patients with ST-segment elevation myocardial infarction: Promise, disappointment, and hope. Rev. Cardiovasc. Med., 2022, 23(1), 1.
[http://dx.doi.org/10.31083/j.rcm2301023] [PMID: 35092215]
[7]
Pantazi, E.; Bejaoui, M.; Folch-Puy, E.; Adam, R.; Roselló-Catafau, J. Advances in treatment strategies for ischemia reperfusion injury. Expert Opin. Pharmacother., 2016, 17(2), 169-179.
[http://dx.doi.org/10.1517/14656566.2016.1115015] [PMID: 26745388]
[8]
Altememy, D.; Bahmani, M.; Hussam, F.; Karim, Y.S.; Kadhim, M.M.; Khawaja, W.K.; Hameed, N.M.; Alwan, N.H.; Darvishi, M. Determination of total antioxidant content of methanolic extracts of cynara scolymus, echinacea purpurea and portulaca oleracea. Adv. Life Sci., 2023, 9(4), 395-400.
[9]
Raeisi, E.; Aazami, M.H.; Aghamiri, S.M.R.; Satari, A.; Hosseinzadeh, S.; Lemoigne, Y.; Heidarian, E. Bromelain-based chemo-herbal combination effect on human cancer cells: In-vitro study on AGS and MCF7 proliferation and apoptosis. Curr. Issues Pharm. Med. Sci., 2020, 33(3), 155-161.
[http://dx.doi.org/10.2478/cipms-2020-0028]
[10]
Bethesda (MD): National library of medicine (US), National center for biotechnology information. PubChem Compound Summary for CID 5281614, Fisetin., 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Fisetin[cited 2023 Dec. 13].
[11]
Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Chapter 18 - Role of flavonoids in management of inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Second Edition; Watson, R. R.; Preedy, V. R., Eds. Academic Press, 2019; pp. 293-322.
[12]
Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: A dietary antioxidant for health promotion. Antioxid. Redox Signal., 2013, 19(2), 151-162.
[http://dx.doi.org/10.1089/ars.2012.4901] [PMID: 23121441]
[13]
Nabizadeh, Z.; Nasrollahzadeh, M.; Shabani, A.A.; Mirmohammadkhani, M.; Nasrabadi, D. Evaluation of the anti-inflammatory activity of fisetin-loaded nanoparticles in an in vitro model of osteoarthritis. Sci. Rep., 2023, 13(1), 15494.
[http://dx.doi.org/10.1038/s41598-023-42844-1] [PMID: 37726323]
[14]
Jiang, K.; Yang, J.; Xue, G.; Dai, A.; Wu, H. Fisetin ameliorates the inflammation and oxidative stress in lipopolysaccharide-induced endometritis. J. Inflamm. Res., 2021, 14, 2963-2978.
[http://dx.doi.org/10.2147/JIR.S314130] [PMID: 34262322]
[15]
Dalle Carbonare, L.; Bertacco, J.; Gaglio, S.C.; Minoia, A.; Cominacini, M.; Cheri, S.; Deiana, M.; Marchetto, G.; Bisognin, A.; Gandini, A.; Antoniazzi, F.; Perduca, M.; Mottes, M.; Valenti, M.T. Fisetin: An integrated approach to identify a strategy promoting osteogenesis. Front. Pharmacol., 2022, 13, 890693.
[http://dx.doi.org/10.3389/fphar.2022.890693] [PMID: 35652047]
[16]
Mao, X.; Cai, Y.; Chen, Y.; Wang, Y.; Jiang, X.; Ye, L.; Li, S. Novel targets and therapeutic strategies to protect against hepatic ischemia reperfusion injury. Front. Med., 2022, 8, 757336.
[http://dx.doi.org/10.3389/fmed.2021.757336] [PMID: 35059411]
[17]
Jiang, Y.; Tang, X.; Deng, P.; Jiang, C.; He, Y.; Hao, D.; Yang, H. The neuroprotective role of fisetin in different neurological diseases: A systematic review. Mol. Neurobiol., 2023, 60(11), 6383-6394.
[http://dx.doi.org/10.1007/s12035-023-03469-7] [PMID: 37453993]
[18]
Pu, J.; Wan, L.; Zheng, D.; Wei, X.; Wu, Z.; Tang, C. Fisetin alleviates hypoxia/reoxygenation injury in rat hepatocytes via modulation of TLR4/NF-κB signaling pathway. Xibao Yu Fenzi Mianyixue Zazhi, 2017, 33(7), 936-941.
[PMID: 28712401]
[19]
주하영. Protective effect of fisetin on acute and chronic kidney disease in mice. 부경대학교, 2023.
[20]
ZHU, J.; WU, Y.; YE, X.; YE, H.; WANG, G.; FEI, F. Effect of fisetin on learning and memory impairment induced by cerebral ischemia reperfusion and HPA axis. Chinese J. Clin. Pharmacol. Ther., 2017, 22(9), 1002.
[21]
Garg, S. ARYA, D.; Bhattia, J. Fisetin, a PPAR gamma agonist improves myocardial injury in rats through Inhibition of MAPK Signalling Pathway mediated oxidative stress and inflammation in Experimental Model of Myocardial Ischemia Reperfusion Injury, Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology), Japanese Pharmacological Society; , 2018, pp. PO1-2-76.
[22]
Ahlenstiel, T.; Burkhardt, G.; Köhler, H.; Kuhlmann, M.K. Bioflavonoids attenuate renal proximal tubular cell injury during cold preservation in euro-collins and university of wisconsin solutions. Kidney Int., 2003, 63(2), 554-563.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00774.x] [PMID: 12631120]
[23]
Ahlenstiel, T.; Burkhardt, G.; Köhler, H.; Kuhlmann, M.K. Improved cold preservation of kidney tubular cells by means of adding bioflavonoids to organ preservation solutions. Transplantation, 2006, 81(2), 231-239.
[http://dx.doi.org/10.1097/01.tp.0000191945.09524.a1] [PMID: 16436967]
[24]
Maher, P.; Salgado, K.F.; Zivin, J.A.; Lapchak, P.A. A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res., 2007, 1173, 117-125.
[http://dx.doi.org/10.1016/j.brainres.2007.07.061] [PMID: 17765210]
[25]
Gelderblom, M.; Leypoldt, F.; Lewerenz, J.; Birkenmayer, G.; Orozco, D.; Ludewig, P.; Thundyil, J.; Arumugam, T.V.; Gerloff, C.; Tolosa, E.; Maher, P.; Magnus, T. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice. J. Cereb. Blood Flow Metab., 2012, 32(5), 835-843.
[http://dx.doi.org/10.1038/jcbfm.2011.189] [PMID: 22234339]
[26]
Shanmugam, K.; Ravindran, S.; Kurian, G.A.; Rajesh, M. Fisetin confers cardioprotection against myocardial ischemia reperfusion injury by suppressing mitochondrial oxidative stress and mitochondrial dysfunction and inhibiting glycogen synthase kinase 3 β activity. Oxid. Med. Cell. Longev., 2018, 2018, 1-16.
[http://dx.doi.org/10.1155/2018/9173436] [PMID: 29636855]
[27]
Althunibat, O.Y.; Al Hroob, A.M.; Abukhalil, M.H.; Germoush, M.O.; Bin-Jumah, M.; Mahmoud, A.M. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci., 2019, 221, 83-92.
[http://dx.doi.org/10.1016/j.lfs.2019.02.017] [PMID: 30742869]
[28]
Liu, L.; Gan, S.; Li, B.; Ge, X.; Yu, H.; Zhou, H. Fisetin alleviates atrial inflammation, remodeling, and vulnerability to atrial fibrillation after myocardial infarction. Int. Heart J., 2019, 60(6), 1398-1406.
[http://dx.doi.org/10.1536/ihj.19-131] [PMID: 31666455]
[29]
Wang, L.; Cao, D.; Wu, H.; Jia, H.; Yang, C.; Zhang, L. Fisetin prolongs therapy window of brain ischemic stroke using tissue plasminogen activator: A double-blind randomized placebo-controlled clinical trial. Clin. Appl. Thromb. Hemost., 2019, 25.
[http://dx.doi.org/10.1177/1076029619871359] [PMID: 31434498]
[30]
Garg, S.; Khan, S.I.; Malhotra, R.K.; Sharma, M.K.; Kumar, M.; Kaur, P.; Nag, T.C. RumaRay; Bhatia, J.; Arya, D.S. The molecular mechanism involved in cardioprotection by the dietary flavonoid fisetin as an agonist of PPAR-γ in a murine model of myocardial infarction. Arch. Biochem. Biophys., 2020, 694, 108572.
[http://dx.doi.org/10.1016/j.abb.2020.108572] [PMID: 32926843]
[31]
Long, L.; Han, X.; Ma, X.; Li, K.; Liu, L.; Dong, J.; Qin, B.; Zhang, K.; Yang, K.; Yan, H. Protective effects of fisetin against myocardial ischemia/reperfusion injury. Exp. Ther. Med., 2020, 19(5), 3177-3188.
[http://dx.doi.org/10.3892/etm.2020.8576] [PMID: 32266013]
[32]
Rodius, S.; de Klein, N.; Jeanty, C.; Sánchez-Iranzo, H.; Crespo, I.; Ibberson, M.; Xenarios, I.; Dittmar, G.; Mercader, N.; Niclou, S.P.; Azuaje, F. Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity. Sci. Rep., 2020, 10(1), 2896.
[http://dx.doi.org/10.1038/s41598-020-59894-4] [PMID: 32076073]
[33]
Li, Z.; Wang, Y.; Zhang, Y.; Wang, X.; Gao, B.; Li, Y.; Li, R.; Wang, J. Protective effects of fisetin on hepatic ischemia-reperfusion injury through alleviation of apoptosis and oxidative stress. Arch. Med. Res., 2021, 52(2), 163-173.
[http://dx.doi.org/10.1016/j.arcmed.2020.10.009] [PMID: 33645502]
[34]
Pu, J.L.; Huang, Z.T.; Luo, Y.H.; Mou, T.; Li, T.T.; Li, Z.T.; Wei, X.F.; Wu, Z.J. Fisetin mitigates hepatic ischemia-reperfusion injury by regulating GSK3β/AMPK/NLRP3 inflammasome pathway. Hepatobiliary Pancreat. Dis. Int., 2021, 20(4), 352-360.
[http://dx.doi.org/10.1016/j.hbpd.2021.04.013] [PMID: 34024736]
[35]
Shanmugam, K.; Boovarahan, S.R.; Prem, P.; Sivakumar, B.; Kurian, G.A. Fisetin attenuates myocardial ischemia-reperfusion injury by activating the reperfusion injury salvage kinase (RISK) signaling pathway. Front. Pharmacol., 2021, 12, 566470.
[http://dx.doi.org/10.3389/fphar.2021.566470] [PMID: 33762932]
[36]
Sivakumar, B.; Boovarahan, S.R.; Prem, P.N.; Kurian, G.A. Fisetin ameliorates ischemia re-oxygenation injury in H9c2 cardiomyocytes via targeting the PI3K signalling pathway. Phytomedicine Plus, 2021, 1(3), 100094.
[http://dx.doi.org/10.1016/j.phyplu.2021.100094]
[37]
Zhang, P.; Cui, J. Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation, 2021, 44(4), 1490-1506.
[http://dx.doi.org/10.1007/s10753-021-01434-x] [PMID: 33616827]
[38]
Cordaro, M.; D’Amico, R.; Fusco, R.; Peritore, A.F.; Genovese, T.; Interdonato, L.; Franco, G.; Arangia, A.; Gugliandolo, E.; Crupi, R.; Siracusa, R.; Di Paola, R.; Cuzzocrea, S.; Impellizzeri, D. Discovering the effects of fisetin on NF-κB/NLRP-3/NRF-2 molecular pathways in a mouse model of vascular dementia induced by repeated bilateral carotid occlusion. Biomedicines, 2022, 10(6), 1448.
[http://dx.doi.org/10.3390/biomedicines10061448] [PMID: 35740470]
[39]
Prem, P.N.; Kurian, G.A. Fisetin attenuates renal ischemia/reperfusion injury by improving mitochondrial quality, reducing apoptosis and oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(5), 547-561.
[http://dx.doi.org/10.1007/s00210-022-02204-8] [PMID: 35133446]
[40]
Prem, P.N.; Sivakumar, B.; Boovarahan, S.R.; Kurian, G.A. Long-term administration of fisetin was not as effective as short term in ameliorating IR injury in isolated rat heart. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(7), 859-863.
[http://dx.doi.org/10.1007/s00210-022-02239-x] [PMID: 35460340]
[41]
Shanmugam, K.; Prem, P.N.; Boovarahan, S.R.; Sivakumar, B.; Kurian, G.A. FIsetin preserves interfibrillar mitochondria to protect against myocardial ischemia-reperfusion injury. Cell Biochem. Biophys., 2022, 80(1), 123-137.
[http://dx.doi.org/10.1007/s12013-021-01026-4] [PMID: 34392494]
[42]
Sivakumar, B.; Kurian, G.A. PM 2.5 from diesel exhaust attenuated fisetin mediated cytoprotection in H9c2 cardiomyocytes subjected to ischemia reoxygenation by inducing mitotoxicity. Drug Chem. Toxicol., 2023, 46(1), 15-23.
[http://dx.doi.org/10.1080/01480545.2021.2003698] [PMID: 34806509]
[43]
Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol., 2015, 6, 524-551.
[http://dx.doi.org/10.1016/j.redox.2015.08.020] [PMID: 26484802]
[44]
Ikhlas, M.; Atherton, N.S. Vascular reperfusion injury. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[45]
He, J.; Liu, D.; Zhao, L.; Zhou, D.; Rong, J.; Zhang, L.; Xia, Z. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp. Ther. Med., 2022, 23(6), 430.
[http://dx.doi.org/10.3892/etm.2022.11357] [PMID: 35607376]
[46]
Buja, L.M. Pathobiology of myocardial ischemia and reperfusion injury: Models, modes, molecular mechanisms, modulation, and clinical applications. Cardiol. Rev., 2023, 31(5), 252-264.
[http://dx.doi.org/10.1097/CRD.0000000000000440] [PMID: 35175958]
[47]
Heusch, G.; Gersh, B.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge. Eur. Heart J., 2017, 38(11), 774-784.
[PMID: 27354052]
[48]
Xiong, Y.; Wakhloo, A.K.; Fisher, M. Advances in acute ischemic stroke therapy. Circ. Res., 2022, 130(8), 1230-1251.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319948] [PMID: 35420919]
[49]
Vongsfak, J.; Pratchayasakul, W.; Apaijai, N.; Vaniyapong, T.; Chattipakorn, N.; Chattipakorn, S.C. The alterations in mitochondrial dynamics following cerebral ischemia/reperfusion injury. Antioxidants, 2021, 10(9), 1384.
[http://dx.doi.org/10.3390/antiox10091384] [PMID: 34573016]
[50]
Lerink, L.J.S.; de Kok, M.J.C.; Mulvey, J.F.; Le Dévédec, S.E.; Markovski, A.A.; Wüst, R.C.I.; Alwayn, I.P.J.; Ploeg, R.J.; Schaapherder, A.F.M.; Bakker, J.A.; Lindeman, J.H.N. Preclinical models versus clinical renal ischemia reperfusion injury: A systematic review based on metabolic signatures. Am. J. Transplant., 2022, 22(2), 344-370.
[http://dx.doi.org/10.1111/ajt.16868] [PMID: 34657378]
[51]
Guan, Y.; Yao, W.; Yi, K.; Zheng, C.; Lv, S.; Tao, Y.; Hei, Z.; Li, M. Nanotheranostics for the management of hepatic ischemia‐reperfusion injury. Small, 2021, 17(23), 2007727.
[http://dx.doi.org/10.1002/smll.202007727] [PMID: 33852769]
[52]
Mouratidou, C.; Pavlidis, E.T.; Katsanos, G.; Kotoulas, S.C.; Mouloudi, E.; Tsoulfas, G.; Galanis, I.N.; Pavlidis, T.E. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J. Gastrointest. Surg., 2023, 15(9), 1858-1870.
[http://dx.doi.org/10.4240/wjgs.v15.i9.1858] [PMID: 37901735]
[53]
Xin, W.; Qin, Y.; Lei, P.; Zhang, J.; Yang, X.; Wang, Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. Mol. Ther. Nucleic Acids, 2022, 29, 900-922.
[http://dx.doi.org/10.1016/j.omtn.2022.08.032] [PMID: 36159596]
[54]
Jassem, W.; Heaton, N.D. The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int., 2004, 66(2), 514-517.
[http://dx.doi.org/10.1111/j.1523-1755.2004.761_9.x] [PMID: 15253700]
[55]
Yapca, O.E.; Borekci, B.; Suleyman, H. Ischemia-reperfusion damage. Eurasian J. Med., 2013, 45(2), 126-127.
[http://dx.doi.org/10.5152/eajm.2013.24] [PMID: 25610264]
[56]
Geng, X.; Ding, Y.; Shen, J.; Rastogi, R. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen. Res., 2019, 14(6), 948-953.
[http://dx.doi.org/10.4103/1673-5374.250568] [PMID: 30761998]
[57]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[58]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/reperfusion. Compr. Physiol., 2016, 7(1), 113-170.
[http://dx.doi.org/10.1002/cphy.c160006] [PMID: 28135002]
[59]
Kicinska, A.; Jarmuszkiewicz, W. Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 2020, 25(13), 3060.
[http://dx.doi.org/10.3390/molecules25133060] [PMID: 32635481]
[60]
Koklesova, L.; Liskova, A.; Samec, M.; Zhai, K. AL-Ishaq, R.K.; Bugos, O.; Šudomová, M.; Biringer, K.; Pec, M.; Adamkov, M.; Hassan, S.T.S.; Saso, L.; Giordano, F.A.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Protective effects of flavonoids against mitochondriopathies and associated pathologies: Focus on the predictive approach and personalized prevention. Int. J. Mol. Sci., 2021, 22(16), 8649.
[http://dx.doi.org/10.3390/ijms22168649] [PMID: 34445360]
[61]
Afroze, N.; Pramodh, S.; Shafarin, J.; Bajbouj, K.; Hamad, M.; Sundaram, M.K.; Haque, S.; Hussain, A. Fisetin deters cell proliferation, induces apoptosis, alleviates oxidative stress and inflammation in human cancer cells, hela. Int. J. Mol. Sci., 2022, 23(3), 1707.
[http://dx.doi.org/10.3390/ijms23031707] [PMID: 35163629]
[62]
Guo, X.; Cao, W.; Yao, J.; Yuan, Y.; Hong, Y.; Wang, X.; Xing, J. Cardioprotective effects of tilianin in rat myocardial ischemia-reperfusion injury. Mol. Med. Rep., 2015, 11(3), 2227-2233.
[http://dx.doi.org/10.3892/mmr.2014.2954] [PMID: 25405380]
[63]
Yang, L.; Xian, D.; Xiong, X.; Lai, R.; Song, J.; Zhong, J. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. BioMed Res. Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/8584136] [PMID: 29750172]
[64]
Hassan, S.S.; Samanta, S.; Dash, R.; Karpiński, T.M.; Habibi, E.; Sadiq, A.; Ahmadi, A.; Bungau, S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front. Pharmacol., 2022, 13, 1015835.
[http://dx.doi.org/10.3389/fphar.2022.1015835] [PMID: 36299900]
[65]
Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446.
[http://dx.doi.org/10.1016/S0891-5849(00)00498-6] [PMID: 11182299]
[66]
Maher, P. A comparison of the neurotrophic activities of the flavonoid fisetin and some of its derivatives. Free Radic. Res., 2006, 40(10), 1105-1111.
[http://dx.doi.org/10.1080/10715760600672509] [PMID: 17015255]
[67]
Galati, G.; Sabzevari, O.; Wilson, J.X.; O’Brien, P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology, 2002, 177(1), 91-104.
[http://dx.doi.org/10.1016/S0300-483X(02)00198-1] [PMID: 12126798]
[68]
Wang, Y.; Hong, F.; Yang, S. Roles of nitric oxide in brain ischemia and reperfusion. Int. J. Mol. Sci., 2022, 23(8), 4243.
[http://dx.doi.org/10.3390/ijms23084243] [PMID: 35457061]
[69]
Maurya, B.K.; Trigun, S.K. Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin-B1 induced hepatocellular carcinoma in rats. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/1972793] [PMID: 26682000]
[70]
Varesi, A.; Chirumbolo, S.; Campagnoli, L.I.M.; Pierella, E.; Piccini, G.B.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants, 2022, 11(7), 1224.
[http://dx.doi.org/10.3390/antiox11071224] [PMID: 35883714]
[71]
Ehren, J.L.; Maher, P. Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin. Biochem. Pharmacol., 2013, 85(12), 1816-1826.
[http://dx.doi.org/10.1016/j.bcp.2013.04.010] [PMID: 23618921]
[72]
Maher, P. How fisetin reduces the impact of age and disease on CNS function. Front. Biosci., 2015, 7(1), 58-82.
[http://dx.doi.org/10.2741/s425] [PMID: 25961687]
[73]
Ravingerová, T.; Kindernay, L.; Barteková, M.; Ferko, M.; Adameová, A.; Zohdi, V.; Bernátová, I.; Ferenczyová, K.; Lazou, A. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int. J. Mol. Sci., 2020, 21(21), 7889.
[http://dx.doi.org/10.3390/ijms21217889] [PMID: 33114290]
[74]
Zhao, Z. Iron and oxidizing species in oxidative stress and Alzheimer’s disease. Aging Med., 2019, 2(2), 82-87.
[http://dx.doi.org/10.1002/agm2.12074] [PMID: 31942516]
[75]
Zhao, Y.; Xin, Z.; Li, N.; Chang, S.; Chen, Y.; Geng, L.; Chang, H.; Shi, H.; Chang, Y.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic. Biol. Med., 2018, 124, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.082] [PMID: 29807160]
[76]
Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; Jakubek, M. Iron complexes of flavonoids-antioxidant capacity and beyond. Int. J. Mol. Sci., 2021, 22(2), 646.
[http://dx.doi.org/10.3390/ijms22020646] [PMID: 33440733]
[77]
Sharfuddin, A.A.; Molitoris, B.A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol., 2011, 7(4), 189-200.
[http://dx.doi.org/10.1038/nrneph.2011.16] [PMID: 21364518]
[78]
Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med., 2011, 17(11), 1391-1401.
[http://dx.doi.org/10.1038/nm.2507] [PMID: 22064429]
[79]
Jurcau, A.; Simion, A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int. J. Mol. Sci., 2021, 23(1), 14.
[http://dx.doi.org/10.3390/ijms23010014] [PMID: 35008440]
[80]
Zuidema, M.Y.; Zhang, C. Ischemia/reperfusion injury: The role of immune cells. World J. Cardiol., 2010, 2(10), 325-332.
[http://dx.doi.org/10.4330/wjc.v2.i10.325] [PMID: 21160610]
[81]
Francisco, J.; Del Re, D.P. Inflammation in myocardial ischemia/reperfusion injury: Underlying mechanisms and therapeutic potential. Antioxidants, 2023, 12(11), 1944.
[http://dx.doi.org/10.3390/antiox12111944] [PMID: 38001797]
[82]
Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol., 2020, 108(3), 787-799.
[http://dx.doi.org/10.1002/JLB.2MR0220-549R] [PMID: 32182390]
[83]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[84]
Chazelas, P.; Steichen, C.; Favreau, F.; Trouillas, P.; Hannaert, P.; Thuillier, R.; Giraud, S.; Hauet, T.; Guillard, J. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives. Int. J. Mol. Sci., 2021, 22(5), 2366.
[http://dx.doi.org/10.3390/ijms22052366] [PMID: 33673423]
[85]
Danobeitia, J.S.; Djamali, A.; Fernandez, L.A. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair, 2014, 7(1), 16.
[http://dx.doi.org/10.1186/1755-1536-7-16] [PMID: 25383094]
[86]
Jia, J.; Zang, E.; Lv, L.; Li, Q.; Zhang, C.; Xia, Y.; Zhang, L.; Dang, L.; Li, M. Flavonoids in myocardial ischemia-reperfusion injury: Therapeutic effects and mechanisms. Chin. Herb. Med., 2021, 13(1), 49-63.
[http://dx.doi.org/10.1016/j.chmed.2020.09.002] [PMID: 36117755]
[87]
Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2), 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[88]
Yu, B.; Zhang, Y.; Wang, T.; Guo, J.; Kong, C.; Chen, Z.; Ma, X.; Qiu, T. MAPK signaling pathways in hepatic ischemia/reperfusion injury. J. Inflamm. Res., 2023, 16, 1405-1418.
[http://dx.doi.org/10.2147/JIR.S396604] [PMID: 37012971]
[89]
Sung, B.; Pandey, M.K.; Aggarwal, B.B. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol., 2007, 71(6), 1703-1714.
[http://dx.doi.org/10.1124/mol.107.034512] [PMID: 17387141]
[90]
Bi, M.; Li, D.; Zhang, J. Role of curcumin in ischemia and reperfusion injury. Front. Pharmacol., 2023, 14, 1057144.
[http://dx.doi.org/10.3389/fphar.2023.1057144] [PMID: 37021057]
[91]
Zhang, S.; Rao, S.; Yang, M.; Ma, C.; Hong, F.; Yang, S. Role of mitochondrial pathways in cell apoptosis during He-patic ischemia/reperfusion injury. Int. J. Mol. Sci., 2022, 23(4), 2357.
[http://dx.doi.org/10.3390/ijms23042357] [PMID: 35216473]
[92]
Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6), 1352-1364.
[http://dx.doi.org/10.1016/j.immuni.2019.05.020] [PMID: 31216460]
[93]
Shi, T.; Dansen, T.B. Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal., 2020, 33(12), 839-859.
[http://dx.doi.org/10.1089/ars.2020.8074] [PMID: 32151151]
[94]
Park, C.; Cha, H.J.; Kim, D.H.; Kwon, C.Y.; Park, S.H.; Hong, S.H.; Bang, E.; Cheong, J.; Kim, G.Y.; Choi, Y.H. Fisetin protects C2C12 mouse myoblasts from oxidative stress-induced cytotoxicity through regulation of the Nrf2/HO-1 signaling. J. Microbiol. Biotechnol., 2023, 33(5), 591-599.
[http://dx.doi.org/10.4014/jmb.2212.12042] [PMID: 36859395]
[95]
Arab, H.A.; Sasani, F.; Rafiee, M.H.; Fatemi, A.; Javaheri, A. Histological and biochemical alterations in early-stage lobar ischemia-reperfusion in rat liver. World J. Gastroenterol., 2009, 15(16), 1951-1957.
[http://dx.doi.org/10.3748/wjg.15.1951] [PMID: 19399926]
[96]
Cearra, I.; Herrero de la Parte, B.; Moreno-Franco, D.I.; García-Alonso, I. A reproducible method for biochemical, histological and functional assessment of the effects of ischaemia–reperfusion syndrome in the lower limbs. Sci. Rep., 2021, 11(1), 19325.
[http://dx.doi.org/10.1038/s41598-021-98887-9] [PMID: 34588582]
[97]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[98]
Ahsan, A.; Liu, M.; Zheng, Y.; Yan, W.; Pan, L.; Li, Y.; Ma, S.; Zhang, X.; Cao, M.; Wu, Z.; Hu, W.; Chen, Z.; Zhang, X. Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm. Sin. B, 2021, 11(7), 1708-1720.
[http://dx.doi.org/10.1016/j.apsb.2020.10.018] [PMID: 34386317]
[99]
Hung, C.M.; Garcia-Haro, L.; Sparks, C.A.; Guertin, D.A. mTOR-dependent cell survival mechanisms. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a008771.
[http://dx.doi.org/10.1101/cshperspect.a008771] [PMID: 23124837]
[100]
Zaffagnini, G.; Martens, S. Mechanisms of selective autophagy. J. Mol. Biol., 2016, 428(9)(9 Pt A), 1714-1724.
[http://dx.doi.org/10.1016/j.jmb.2016.02.004] [PMID: 26876603]
[101]
Liu, K-Y.; Mo, Y.; Sun, Y-Y. Autophagy and inflammation in ischemic stroke. Neural Regen. Res., 2020, 15(8), 1388-1396.
[http://dx.doi.org/10.4103/1673-5374.274331] [PMID: 31997797]
[102]
Suh, Y.; Afaq, F.; Khan, N.; Johnson, J.J.; Khusro, F.H.; Mukhtar, H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis, 2010, 31(8), 1424-1433.
[http://dx.doi.org/10.1093/carcin/bgq115] [PMID: 20530556]
[103]
Zhang, W.; Xu, C.; Sun, J.; Shen, H.M.; Wang, J.; Yang, C. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm. Sin. B, 2022, 12(3), 1019-1040.
[http://dx.doi.org/10.1016/j.apsb.2022.01.008] [PMID: 35530153]
[104]
Kalogeris, T.; Bao, Y.; Korthuis, R.J. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol., 2014, 2, 702-714.
[http://dx.doi.org/10.1016/j.redox.2014.05.006] [PMID: 24944913]
[105]
Loor, G.; Kondapalli, J.; Iwase, H.; Chandel, N.S.; Waypa, G.B.; Guzy, R.D.; Vanden Hoek, T.L.; Schumacker, P.T. Mitochondrial oxidant stress triggers cell death in simulated ischemia–reperfusion. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(7), 1382-1394.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.008] [PMID: 21185334]
[106]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[107]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[108]
Bothiraja, C.; Yojana, B.D.; Pawar, A.P.; Shaikh, K.S.; Thorat, U.H. Fisetin-loaded nanocochleates: Formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin. Drug Deliv., 2014, 11(1), 17-29.
[http://dx.doi.org/10.1517/17425247.2013.860131] [PMID: 24294925]
[109]
Krishnakumar, I.M.; Jaja-Chimedza, A.; Joseph, A.; Balakrishnan, A.; Maliakel, B.; Swick, A. Enhanced bioavailability and pharmacokinetics of a novel hybrid-hydrogel formulation of fisetin orally administered in healthy individuals: A randomised double-blinded comparative crossover study. J. Nutr. Sci., 2022, 11, e74.
[http://dx.doi.org/10.1017/jns.2022.72] [PMID: 36304817]
[110]
Xiong, H.H.; Lin, S.Y.; Chen, L.L.; Ouyang, K.H.; Wang, W.J. The interaction between flavonoids and intestinal microbes: A review. Foods, 2023, 12(2), 320.
[http://dx.doi.org/10.3390/foods12020320] [PMID: 36673411]
[111]
Kawabata, K.; Sugiyama, Y.; Sakano, T.; Ohigashi, H. Flavonols enhanced production of anti‐inflammatory substance(s) by Bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. Biofactors, 2013, 39(4), 422-429.
[http://dx.doi.org/10.1002/biof.1081] [PMID: 23554103]
[112]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos, R.M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[113]
Kadari, A.; Gudem, S.; Kulhari, H.; Bhandi, M.M.; Borkar, R.M.; Kolapalli, V.R.M.; Sistla, R. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv., 2017, 24(1), 224-232.
[http://dx.doi.org/10.1080/10717544.2016.1245366] [PMID: 28156161]
[114]
Maher, P. Fisetin acts on multiple pathways to reduce the impact of age and disease on CNS function. Front. Biosci., 2015, 7, 58.
[http://dx.doi.org/10.2741/s425] [PMID: 25961687]
[115]
Syed, D.N.; Adhami, V.M.; Khan, N.; Khan, M.I.; Mukhtar, H. Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin. Cancer Biol., 2016, 40-41, 130-140.
[http://dx.doi.org/10.1016/j.semcancer.2016.04.003] [PMID: 27163728]
[116]
Prasath, G.S.; Subramanian, S.P. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2011, 668(3), 492-496.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.021] [PMID: 21816145]
[117]
Guo, P.; Feng, Y.Y. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop. J. Pharm. Res., 2017, 16(8), 1819-1826.
[http://dx.doi.org/10.4314/tjpr.v16i8.10]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy