Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

A Comprehensive Review on Synthesis of Silver Nano-particles: An Update

Author(s): Aditya Sharma, Anju Goyal*, Sapna Kumari, Madhukar Garg, Arpanpreet Kaur, Dinesh Mehta, Vibha Singh and Bhavya Hans

Volume 14, Issue 2, 2024

Published on: 02 February, 2024

Article ID: e020224226663 Pages: 21

DOI: 10.2174/0122106812259420240102060527

Price: $65

conference banner
Abstract

Silver and silver salts have been used since the beginning of civilization, but silver nanoparticles (Ag NPs) have just recently been discovered. They have been employed as antioxidants and antibacterial, antifungal, and potential anticáncer agents in agriculture and medicine. Many bacteria, including Bacilluscereus, Staphylococcus aureus, Citrobacter koseri, Salmonella typhii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Vibrio parahaemolyticus, and the fungus Candida albicans, were shown to be inhibited in their growth and multiplication by binding Ag/Ag+ to biomolecules that are present in microbial cells. Ag NPs are thought to create reactive oxygen species and free radicals, which cause apoptosis, cell death, and hinder cell reproduction. Ag NPs diffuse in side cells and break because they are smaller than bacteria. The researchers have developed numerous methods of their synthesis. The present review focused on the latest evidence related to silver nanoparticles, several methods of preparations, along with examples listed in the literature.

[1]
Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3(3), 135-140.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[2]
Midha, K.; Singh, G.; Nagpal, M.; Arora, S. Potential application of silver nanoparticles in medicine. Nanosci. Nanotechnol. Asia, 2016, 6(2), 82-91.
[http://dx.doi.org/10.2174/2210681205666150818230319]
[3]
Iglesias-Silva, E.; Rivas, J.; León Isidro, L.M.; López-Quintela, M.A. Synthesis of silver-coated magnetite nanoparticles. J. Non-Cryst. Solids, 2007, 353(8-10), 829-831.
[http://dx.doi.org/10.1016/j.jnoncrysol.2006.12.050]
[4]
Mathur, P.; Jha, S.; Ramteke, S.; Jain, N. K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol., 2017, 46(sup1), 115-126.
[http://dx.doi.org/10.1080/21691401.2017.1414825]
[5]
Ema, M.; Okuda, H.; Gamo, M.; Honda, K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod. Toxicol., 2017, 67, 149-164.
[http://dx.doi.org/10.1016/j.reprotox.2017.01.005] [PMID: 28088501]
[6]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[7]
Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X. Preparation and antibacterial activity of Fe 3 O 4 @Ag nanoparticles. Nanotechnology, 2007, 18(28), 285604.
[http://dx.doi.org/10.1088/0957-4484/18/28/285604]
[8]
Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Samiei, M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol., 2014, 42(2), 1-8.
[http://dx.doi.org/10.3109/1040841X.2014.912200] [PMID: 24937409]
[9]
Zhao, X.; Zhou, L.; Riaz Rajoka, M.S.; Yan, L.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Fungal silver nanoparticles: Synthesis, application and challenges. Crit. Rev. Biotechnol., 2018, 38(6), 817-835.
[http://dx.doi.org/10.1080/07388551.2017.1414141] [PMID: 29254388]
[10]
Shanmuganathan, R.; Karuppusamy, I.; Saravanan, M.; Muthukumar, H.; Ponnuchamy, K.; Ramkumar, V.S.; Pugazhendhi, A. Synthesis of silver nanoparticles and their biomedical applications - A comprehensive review. Curr. Pharm. Des., 2019, 25(24), 2650-2660.
[http://dx.doi.org/10.2174/1381612825666190708185506] [PMID: 31298154]
[11]
Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today, 2015, 20(5), 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[12]
Kumar, A.; Behl, T.; Chadha, S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int. J. Biol. Macromol., 2020, 149, 1262-1274.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.048] [PMID: 32044364]
[13]
Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6), 3669-3712.
[http://dx.doi.org/10.1021/cr100275d] [PMID: 21395318]
[14]
Kim, S.; Choi, J.E.; Choi, J.; Chung, K.H.; Park, K.; Yi, J.; Ryu, D.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro, 2009, 23(6), 1076-1084.
[http://dx.doi.org/10.1016/j.tiv.2009.06.001] [PMID: 19508889]
[15]
Lee, S.H.; Jun, B-H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865]
[16]
Chen, D.; Qiao, X.; Qiu, X.; Chen, J. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J. Mater. Sci., 2009, 44(4), 1076-1081.
[http://dx.doi.org/10.1007/s10853-008-3204-y]
[17]
Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of gold and silver nanoparticles in cancer nanomedicine. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 1210-1220.
[http://dx.doi.org/10.1080/21691401.2018.1449118]
[18]
Sriram, M.I.; Kalishwaralal, K.; Barathmanikanth, S.; Gurunathani, S. Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells. Nanoscience Methods, 2012, 1(1), 56-77.
[http://dx.doi.org/10.1080/17458080.2010.547878]
[19]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[20]
Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett., 2004, 4(9), 1733-1739.
[http://dx.doi.org/10.1021/nl048912c]
[21]
Skrabalak, S.E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C.M.; Xia, Y. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res., 2008, 41(12), 1587-1595.
[http://dx.doi.org/10.1021/ar800018v] [PMID: 18570442]
[22]
Tri Handok, C.; Huda, A.; Gulo, F. Synthesis pathway and powerful antimicrobial properties of silver nanoparticle: A critical review. Asian J. Sci. Res., 2018, 12(1), 1-17.
[http://dx.doi.org/10.3923/ajsr.2019.1.17]
[23]
Khayati, G.R.; Janghorban, K. The nanostructure evolution of Ag powder synthesized by high energy ball milling. Adv. Powder Technol., 2012, 23(3), 393-397.
[http://dx.doi.org/10.1016/j.apt.2011.05.005]
[24]
Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol., 2012, 2(3), 22-48.
[http://dx.doi.org/10.5923/j.nn.20120203.01]
[25]
El-Khatib, A.M.; Doma, A.S.; Abo-Zaid, G.A.; Badawi, M.S.; Mohamed, M.M.; Mohamed, A.S. Antibacterial activity of some nanoparticles prepared by double arc discharge method. Nano-Struct., 2020, 23, 100473. Available from:
[http://dx.doi.org/10.1016/j.nanoso.2020.100473]
[26]
Amendola, V.; Polizzi, S.; Meneghetti, M. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 2007, 23(12), 6766-6770.
[http://dx.doi.org/10.1021/la0637061] [PMID: 17489616]
[27]
Reza Sadrolhosseini, A.; Adzir Mahdi, M.; Alizadeh, F.; Abdul Rashid, S. Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technol. Appl., 2019. Available from:
[http://dx.doi.org/10.5772/intechopen.80374]
[28]
Menazea, A.A. Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat. Phys. Chem., 2020, 168, 108616.
[http://dx.doi.org/10.1016/j.radphyschem.2019.108616]
[29]
Shang, S.M.; Zeng, W. Conductive nanofibres and nanocoatings for smart textiles. In: Multidisciplinary Know-How for Smart-Textiles Developers; Elsevier, 2013:, pp. 92-128.
[30]
Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 2006, 513(1-2), 1-24.
[http://dx.doi.org/10.1016/j.tsf.2006.03.033]
[31]
Wang, Z.X.; Chen, C.Y.; Wang, Y.; Li, F.X.Z.; Huang, J.; Luo, Z.W.; Rao, S.S.; Tan, Y.J.; Liu, Y.W.; Yin, H.; Wang, Y.Y.; He, Z.H.; Xia, K.; Wu, B.; Hu, X.K.; Luo, M.J.; Liu, H.M.; Chen, T.H.; Hong, C.G.; Cao, J.; Liu, Z-Z.; Long, Z.; Gan, P-P.; Situ, W-Y.; Fan, R.; Yuan, L-Q.; Xie, H. Ångstrom-scale silver particles as a promising agent for low-toxicity broad-spectrum potent anticancer therapy. Adv. Funct. Mater., 2019, 29(23), 1808556.
[http://dx.doi.org/10.1002/adfm.201808556]
[32]
Wu, Z.; Cai, J.; Wang, J.; Geng, Z.; Wang, Q. Low-temperature Cu-Cu bonding using silver nanoparticles fabricated by physical vapor deposition. J. Electron. Mater., 2018, 47(2), 988-993.
[http://dx.doi.org/10.1007/s11664-017-5831-z]
[33]
Shweta, R.; Qureshi, M.S. Silver nanoparticles: Novel synthesis technique and characterizations. In: Advanced Nanomaterials and Nanotechnology; Giri, P.K.; Dk, G., Eds.; Springer: Berlin, Heidelberg, Berlin, Heidelberg, 2013, Vol. 143, pp. 77-83.
[http://dx.doi.org/10.1007/978-3-642-34216-5_7]
[34]
Kumar, N.; Biswas, K.; Gupta, R.K. Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances, 2016, 6(112), 111380-111388.
[http://dx.doi.org/10.1039/C6RA23120A]
[35]
Munkhbayar, B.; Tanshen, M.R.; Jeoun, J.; Chung, H.; Jeong, H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram. Int., 2013, 39(6), 6415-6425.
[http://dx.doi.org/10.1016/j.ceramint.2013.01.069]
[36]
Tien, D.C.; Tseng, K.H.; Liao, C.Y.; Huang, J.C.; Tsung, T.T. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J. Alloys Compd., 2008, 463(1-2), 408-411.
[http://dx.doi.org/10.1016/j.jallcom.2007.09.048]
[37]
Wongrat, E.; Wongkrajang, S.; Chuejetton, A.; Bhoomanee, C.; Choopun, S. Rapid synthesis of Au, Ag and Cu nanoparticles by DC arc-discharge for efficiency enhancement in polymer solar cells. Mater. Res. Innov., 2019, 23(2), 66-72.
[http://dx.doi.org/10.1080/14328917.2017.1376786]
[38]
Rhim, J.W.; Wang, L.F.; Lee, Y.; Hong, S.I. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: Laser ablation method. Carbohydr. Polym., 2014, 103, 456-465.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.075] [PMID: 24528754]
[39]
Abd El-kader, F.H.; Hakeem, N.A; Elashmawi, I.S; Menazea, A.A Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 331-339.
[http://dx.doi.org/10.1016/j.saa.2014.11.083] [PMID: 25506650]
[40]
Ijaz Hussain, J.; Kumar, S.; Adil Hashmi, A.; Khan, Z. Silver nanoparticles: Preparation, characterization, and kinetics. Adv. Mater. Lett., 2011, 2(3), 188-194.
[http://dx.doi.org/10.5185/amlett.2011.1206]
[41]
Al-Mubaddel, F.S.; Haider, S.; Al-Masry, W.A.; Al-Zeghayer, Y.; Imran, M.; Haider, A.; Ullah, Z. Engineered nanostructures: A review of their synthesis, characterization and toxic hazard considerations. Arab. J. Chem., 2017, 10, S376-S388.
[http://dx.doi.org/10.1016/j.arabjc.2012.09.010]
[42]
Rivera-Rangel, R.D.; González-Muñoz, M.P.; Avila-Rodriguez, M.; Razo-Lazcano, T.A.; Solans, C. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A Physicochem. Eng. Asp., 2018, 536, 60-67.
[http://dx.doi.org/10.1016/j.colsurfa.2017.07.051]
[43]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[44]
Ashraf, H.; Anjum, T.; Riaz, S.; Naseem, S. Microwave-assisted green synthesis and characterization of silver nanoparticles using melia azedarach for the management of fusarium wilt in tomato. Front. Microbiol., 2020, 11, 238.
[http://dx.doi.org/10.3389/fmicb.2020.00238] [PMID: 32210928]
[45]
Al-khattaf, F.S. Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J. Biol. Sci., 2021, 28(6), 3624-3631.
[http://dx.doi.org/10.1016/j.sjbs.2021.03.078] [PMID: 34121906]
[46]
Nešović, K; Janković, A; Radetić, T; Perić-Grujić, A; Vukašinović-Sekulić, M; Kojić, V; Rhee, K.Y; Mišković-Stanković, V Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. J. Electrochem. Sci. Eng., 2020, 10(2), 185-198.
[http://dx.doi.org/10.5599/jese.732]
[47]
Dondi, R.; Su, W.; Griffith, G.A.; Clark, G.; Burley, G.A. Highly size- and shape-controlled synthesis of silver nanoparticles via a templated Tollens reaction. Small, 2012, 8(5), 770-776.
[http://dx.doi.org/10.1002/smll.201101474] [PMID: 22228675]
[48]
Ranoszek-Soliwoda, K.; Tomaszewska, E.; Socha, E.; Krzyczmonik, P.; Ignaczak, A.; Orlowski, P.; Krzyzowska, M.; Celichowski, G.; Grobelny, J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanopart. Res., 2017, 19(8), 273.
[http://dx.doi.org/10.1007/s11051-017-3973-9] [PMID: 28824288]
[49]
Rashid, M.U.; Bhuiyan, M.K.H.; Quayum, M.E. Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ. J. Pharm. Sci., 2013, 12(1), 29-33.
[http://dx.doi.org/10.3329/dujps.v12i1.16297]
[50]
Pyatenko, A.; Yamaguchi, M.; Suzuki, M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem. C, 2007, 111(22), 7910-7917.
[http://dx.doi.org/10.1021/jp071080x]
[51]
Saade, J.; de Araújo, C.B. Synthesis of silver nanoprisms: A photochemical approach using light emission diodes. Mater. Chem. Phys., 2014, 148(3), 1184-1193.
[http://dx.doi.org/10.1016/j.matchemphys.2014.09.045]
[52]
Pu, F.; Ran, X.; Guan, M.; Huang, Y.; Ren, J.; Qu, X. Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition. Nano Res., 2018, 11(6), 3213-3221.
[http://dx.doi.org/10.1007/s12274-017-1819-5]
[53]
Zheng, X.; Peng, Y.; Lombardi, J.R.; Cui, X.; Zheng, W. Photochemical growth of silver nanoparticles with mixed-light irradiation. Colloid Polym. Sci., 2016, 294(5), 911-916.
[http://dx.doi.org/10.1007/s00396-016-3846-2]
[54]
Zaarour, M.; El Roz, M.; Dong, B.; Retoux, R.; Aad, R.; Cardin, J.; Dufour, C.; Gourbilleau, F.; Gilson, J.P.; Mintova, S. Photochemical preparation of silver nanoparticles supported on zeolite crystals. Langmuir, 2014, 30(21), 6250-6256.
[http://dx.doi.org/10.1021/la5006743] [PMID: 24810992]
[55]
Krajczewski, J.; Kolataj, K.; Parzyszek, S.; Kudelski, A. Photochemical synthesis of different silver nanostructures. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 2015.
[http://dx.doi.org/10.1109/NANO.2015.7388705]
[56]
Petrucci, O.D.; Hilton, R.J.; Farrer, J.K.; Watt, R.K. A ferritin photochemical synthesis of monodispersed silver nanoparticles that possess antimicrobial properties. J. Nanomater., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/9535708]
[57]
Starowicz, M. Stypuła, B.; Banaś, J. Electrochemical synthesis of silver nanoparticles. Electrochem. Commun., 2006, 8(2), 227-230.
[http://dx.doi.org/10.1016/j.elecom.2005.11.018]
[58]
Khaydarov, R.A.; Khaydarov, R.R.; Gapurova, O.; Estrin, Y.; Scheper, T. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res., 2009, 11(5), 1193-1200.
[http://dx.doi.org/10.1007/s11051-008-9513-x]
[59]
Cele, T. Preparation of nanoparticles. In: Engineered Nanomaterials - Health and Safety; Avramescu, S.M.; Akhtar, K.; Fierascu, I.; Khan, S.B.; Ali, F.; Asiri, A.M., Eds.; IntechOpen: London, England, 2020.
[http://dx.doi.org/10.5772/intechopen.90771]
[60]
Reicha, F.M.; Sarhan, A.; Abdel-Hamid, M.I.; El-Sherbiny, I.M. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr. Polym., 2012, 89(1), 236-244.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.002] [PMID: 24750629]
[61]
Laghrib, F.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Chemical synthesis of nanosilver on chitosan and electroanalysis activity against the p-nitroaniline reduction. J. Electroanal. Chem. , 2019, 845, 111-118.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.060]
[62]
Nthunya, L.N.; Derese, S.; Gutierrez, L.; Verliefde, A.R.; Mamba, B.B.; Barnard, T.G.; Mhlanga, S.D. Green synthesis of silver nanoparticles using one-pot and microwave-assisted methods and their subsequent embedment on PVDF nanofibre membranes for growth inhibition of mesophilic and thermophilic bacteria. New J. Chem., 2019, 43(10), 4168-4180.
[http://dx.doi.org/10.1039/C8NJ06160B]
[63]
Darroudi, M.; Khorsand Zak, A.; Muhamad, M.R.; Huang, N.M.; Hakimi, M. Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater. Lett., 2012, 66(1), 117-120.
[http://dx.doi.org/10.1016/j.matlet.2011.08.016]
[64]
Elsupikhe, R.F.; Shameli, K.; Ahmad, M.B. Sonochemical method for the synthesis of silver nanoparticles in κ-carrageenan from silver salt at different concentrations. Res. Chem. Intermed., 2015, 41(11), 8515-8525.
[http://dx.doi.org/10.1007/s11164-014-1907-z]
[65]
Naaz, S.; Chowdhury, P. Sunlight and ultrasound-assisted synthesis of photoluminescent silver nanoclusters: A unique ‘Knock out’ sensor for thiophilic metal ions. Sens. Actuators B Chem., 2017, 241, 840-848.
[http://dx.doi.org/10.1016/j.snb.2016.10.116]
[66]
Naaz, S.; Poddar, S.; Bayen, S.P.; Mondal, M.K.; Roy, D.; Mondal, S.K.; Chowdhury, P.; Saha, S.K. Tenfold enhancement of fluorescence quantum yield of water soluble silver nanoclusters for nano-molar level glucose sensing and precise determination of blood glucose level. Sens. Actuators B Chem., 2018, 255, 332-340.
[http://dx.doi.org/10.1016/j.snb.2017.07.143]
[67]
Chowdhury, P.; Hazra, A.; Kr Mondal, M.; Roy, B.; Roy, D.; Prasad Bayen, S.; Pal, S. Facile synthesis of polyacrylate directed silver nanoparticles for ph sensing through naked eye. J. Macromol. Sci. Part A, 2019, 56(8), 773-780.
[http://dx.doi.org/10.1080/10601325.2019.1607376]
[68]
Saha, S.K.; Chowdhury, P.; Saini, P.; Babu, S.P.S. Ultrasound assisted green synthesis of poly(vinyl alcohol) capped silver nanoparticles for the study of its antifilarial efficacy. Appl. Surf. Sci., 2014, 288, 625-632.
[http://dx.doi.org/10.1016/j.apsusc.2013.10.085]
[69]
Bayen, S.P.; Mondal, M.K.; Naaz, S.; Mondal, S.K.; Chowdhury, P. Design and sonochemical synthesis of water-soluble fluorescent silver nanoclusters for Hg2+ sensing. J. Environ. Chem. Eng., 2016, 4(1), 1110-1116.
[http://dx.doi.org/10.1016/j.jece.2016.01.014]
[70]
Mousavi, S. M.; Hashemi, S. A.; Ghasemi, Y.; Atapour, A.; Amani, A. M. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif Cells Nanomed Biotechnol, 2018, 46(sup3), S855-S872.
[http://dx.doi.org/10.1080/21691401.2018.1517769]
[71]
Rasheed, T.; Bilal, M.; Iqbal, H.M.N.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces, 2017, 158, 408-415.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.020] [PMID: 28719862]
[72]
Pandey, S.; Mewada, A.; Thakur, M.; Shah, R.; Oza, G.; Sharon, M. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater. Sci. Eng. C, 2013, 33(7), 3716-3722.
[http://dx.doi.org/10.1016/j.msec.2013.05.007] [PMID: 23910269]
[73]
Singh, A.; Dar, M.Y.; Joshi, B.; Sharma, B.; Shrivastava, S.; Shukla, S. Phytofabrication of silver nanoparticles: Novel drug to overcome hepatocellular ailments. Toxicol. Rep., 2018, 5, 333-342.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.013] [PMID: 29854602]
[74]
Mashwani, Z.R.; Khan, T.; Khan, M.A.; Nadhman, A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: Current status and future prospects. Appl. Microbiol. Biotechnol., 2015, 99(23), 9923-9934.
[http://dx.doi.org/10.1007/s00253-015-6987-1] [PMID: 26392135]
[75]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[76]
Park, Y.; Hong, Y.N.; Weyers, A.; Kim, Y.S.; Linhardt, R.J. Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol., 2011, 5(3), 69-78.
[http://dx.doi.org/10.1049/iet-nbt.2010.0033] [PMID: 21913788]
[77]
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13611-13614.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[78]
Deshpande, L.; Chopade, B. Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals, 1994, 7(1), 49-56.
[http://dx.doi.org/10.1007/BF00205194] [PMID: 8118173]
[79]
Ali, J.; Ali, N.; Wang, L.; Waseem, H.; Pan, G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods, 2019, 159, 18-25.
[http://dx.doi.org/10.1016/j.mimet.2019.02.010] [PMID: 30797020]
[80]
Otari, S.V.; Patil, R.M.; Ghosh, S.J.; Thorat, N.D.; Pawar, S.H. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 1175-1180.
[http://dx.doi.org/10.1016/j.saa.2014.10.003] [PMID: 25456659]
[81]
Margaret Galvez, A.; Mae Ramos, K.; Julianne Teja, A.; Baculi, R. Bacterial exopolysaccharide-mediated synthesis of silver nanoparticles and their application on bacterial biofilms. J. Microbiol. Biotechnol. Food Sci., 2019, 8(4), 970-978.
[http://dx.doi.org/10.15414/jmbfs.2019.8.4.970-978]
[82]
Ahmed, A.A.; Hamzah, H.; Maaroof, M. Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk. J. Biol., 2018, 42(1), 54-62.
[http://dx.doi.org/10.3906/biy-1710-2] [PMID: 30814870]
[83]
Singhal, A.; Singhal, N.; Bhattacharya, A.; Gupta, A. Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extract for potential application as antibacterial and dye decolourising agents. Inorg. Nano-Met., 2017, 47(11), 1520-1529.
[http://dx.doi.org/10.1080/24701556.2017.1357604]
[84]
Arun, G.; Eyini, M.; Gunasekaran, P. Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol. Bioprocess Eng.; BBE, 2014, 19(6), 1083-1090.
[http://dx.doi.org/10.1007/s12257-014-0071-z]
[85]
Nanda, A.; Majeed, S.; Ansari, M.T.; Dash, G. Fungal mediated synthesis of silver nanoparticles andits role in enhancing the bactericidal property of amoxicillin. Pharm. Lett., 2015, 7, 119-123.
[http://dx.doi.org/10.3390/ijms17091534]
[86]
Salaheldin, T.; Husseiny, S.; Al-Enizi, A.; Elzatahry, A.; Cowley, A. Evaluation of the cytotoxic behavior of fungal extracellular synthesized ag nanoparticles using confocal laser scanning microscope. Int. J. Mol. Sci., 2016, 17(3), 329.
[http://dx.doi.org/10.3390/ijms17030329] [PMID: 26950118]
[87]
Al Abboud, M.A. Fungal biosynthesis of silver nanoparticles and their role in control of fusarium wilt of sweet pepper and soil-borne fungi in vitro. Int. J. Pharmacol., 2018, 14(6), 773-780.
[http://dx.doi.org/10.3923/ijp.2018.773.780]
[88]
Neethu, S.; Midhun, S.J.; Radhakrishnan, E.K.; Jyothis, M. Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb. Pathog., 2018, 116, 263-272.
[http://dx.doi.org/10.1016/j.micpath.2018.01.033] [PMID: 29366864]
[89]
Seetharaman, P.K.; Chandrasekaran, R.; Gnanasekar, S.; Chandrakasan, G.; Gupta, M.; Manikandan, D.B.; Sivaperumal, S. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatal. Agric. Biotechnol., 2018, 16, 22-30.
[http://dx.doi.org/10.1016/j.bcab.2018.07.006]
[90]
Elegbede, J.A.; Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Oladipo, I.C.; Adebayo, E.A.; Beukes, L.S.; Gueguim-Kana, E.B. Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol., 2018, 12(6), 857-863.
[http://dx.doi.org/10.1049/iet-nbt.2017.0299] [PMID: 30104463]
[91]
Joshi, S.R.; Devi, L.S. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J. Microsc. Ultrastruct., 2015, 3(1), 29-37.
[http://dx.doi.org/10.1016/j.jmau.2014.10.004] [PMID: 30023179]
[92]
de Morais, M.G.; Vaz, B.S.; de Morais, E.G.; Costa, J.A.V. Biologically active metabolites synthesized by microalgae. BioMed Res. Int., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/835761] [PMID: 26339647]
[93]
Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci., 2015, 15(2), 160-176.
[http://dx.doi.org/10.1002/elsc.201400191]
[94]
Alassali, A.; Cybulska, I. Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Adv. Tech. Biol. Med., 2015, 4(1), 1000163.
[http://dx.doi.org/10.4172/2379-1764.1000163]
[95]
Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods, 2019, 163, 105656.
[http://dx.doi.org/10.1016/j.mimet.2019.105656] [PMID: 31220512]
[96]
Aziz, N.; Faraz, M.; Pandey, R.; Shakir, M.; Fatma, T.; Varma, A.; Barman, I.; Prasad, R. Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties. Langmuir, 2015, 31(42), 11605-11612.
[http://dx.doi.org/10.1021/acs.langmuir.5b03081] [PMID: 26447769]
[97]
Aboelfetoh, E.F.; El-Shenody, R.A.; Ghobara, M.M. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): Reaction optimization, catalytic and antibacterial activities. Environ. Monit. Assess., 2017, 189(7), 349.
[http://dx.doi.org/10.1007/s10661-017-6033-0] [PMID: 28646435]
[98]
Lin, S.; Wang, H.; Yu, T. A promising trend for nano-EHS research — Integrating fate and transport analysis with safety assessment using model organisms. NanoImpact, 2017, 7, 1-6.
[http://dx.doi.org/10.1016/j.impact.2016.09.007]
[99]
Ahluwalia, V.; Kumar, J.; Sisodia, R.; Shakil, N.A.; Walia, S. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod., 2014, 55, 202-206.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.026]
[100]
Azmath, P.; Baker, S.; Rakshith, D.; Satish, S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J., 2016, 24(2), 140-146.
[http://dx.doi.org/10.1016/j.jsps.2015.01.008] [PMID: 27013906]
[101]
Phanjom, P.; Ahmed, G. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci.: Nanosci., 2017, 8(4), 045016.
[http://dx.doi.org/10.1088/2043-6254/aa92bc]
[102]
AbdelRahim, K.; Mahmoud, S.Y.; Ali, A.M.; Almaary, K.S.; Mustafa, A.E.Z.M.A.; Husseiny, S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci., 2017, 24(1), 208-216.
[http://dx.doi.org/10.1016/j.sjbs.2016.02.025] [PMID: 28053592]
[103]
Banu, A.N.; Balasubramanian, C. Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol. Res., 2014, 113(10), 3843-3851.
[http://dx.doi.org/10.1007/s00436-014-4052-0] [PMID: 25085201]
[104]
Balakumaran, M.D.; Ramachandran, R.; Kalaichelvan, P.T. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol. Res., 2015, 178, 9-17.
[http://dx.doi.org/10.1016/j.micres.2015.05.009] [PMID: 26302842]
[105]
Costa Silva, L.P.; Pinto Oliveira, J.; Keijok, W.J.; da Silva, A.R.; Aguiar, A.R.; Guimarães, M.C.C.; Ferraz, C.M.; Araújo, J.V.; Tobias, F.L.; Braga, F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomedicine, 2017, 12, 6373-6381.
[http://dx.doi.org/10.2147/IJN.S137703] [PMID: 28919741]
[106]
Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control, 2018, 28(1), 28.
[http://dx.doi.org/10.1186/s41938-018-0028-1]
[107]
Nayak, R.R.; Pradhan, N.; Behera, D.; Pradhan, K.M.; Mishra, S.; Sukla, L.B.; Mishra, B.K. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. J. Nanopart. Res., 2011, 13(8), 3129-3137.
[http://dx.doi.org/10.1007/s11051-010-0208-8]
[108]
Qian, Y.; Yu, H.; He, D.; Yang, H.; Wang, W.; Wan, X.; Wang, L. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst. Eng., 2013, 36(11), 1613-1619.
[http://dx.doi.org/10.1007/s00449-013-0937-z] [PMID: 23463299]
[109]
Du, L.; Xu, Q.; Huang, M.; Xian, L.; Feng, J.X. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater. Chem. Phys., 2015, 160, 40-47.
[http://dx.doi.org/10.1016/j.matchemphys.2015.04.003]
[110]
Wang, L.; He, D.; Gao, S.; Wang, D.; Xue, B.; Yokoyama, K. Biosynthesis of silver nanoparticles by the fungus arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and fusarium. Int. J. Nanomedicine., 2016, 1899, 1899.
[http://dx.doi.org/10.2147/IJN.S98339]
[111]
Saxena, J.; Sharma, P.K.; Sharma, M.M.; Singh, A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Springerplus, 2016, 5(1), 861.
[http://dx.doi.org/10.1186/s40064-016-2558-x] [PMID: 27386310]
[112]
Ashrafi, S.J.; Rastegar, M.F.; Ashrafi, M.; Yazdian, F.; Pourrahim, R.; Suresh, A.K. Influence of external factors on the production and morphology of biogenic silver nanocrystallites. J. Nanosci. Nanotechnol., 2013, 13(3), 2295-2301.
[http://dx.doi.org/10.1166/jnn.2013.6791] [PMID: 23755682]
[113]
Rose, G.K.; Soni, R.; Rishi, P.; Soni, S.K. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process. Synth., 2019, 8(1), 144-156.
[http://dx.doi.org/10.1515/gps-2018-0042]
[114]
Bai, H-J.; Yang, B-S.; Chai, C-J. Yang, Guan-E.; Jia, W.-L.; Yi, Z.-B. Green synthesis of silver nanoparticles using rhodobactersphaeroides. World J. Microbiol. Biotechnol., 2011, 27(11), 2723-2728.
[http://dx.doi.org/10.1007/s11274-011-0747-x]
[115]
Chun-Jing, C.; Bai, H-J. Biosynthesis of silver nanoparticles using the phototrophic bacteria Rhodopseudomonas palustris and its antimicrobial activity against escherichia coli and Staphylococcus aureus. Wei Sheng Wu Xue Tong Bao, 2010, 37.
[116]
Juibari, M.M.; Abbasalizadeh, S.; Jouzani, G.S.; Noruzi, M. Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater. Lett., 2011, 65(6), 1014-1017.
[http://dx.doi.org/10.1016/j.matlet.2010.12.056]
[117]
Sadhasivam, S.; Shanmugam, P.; Yun, K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf. B Biointerfaces, 2010, 81(1), 358-362.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.036] [PMID: 20705438]
[118]
Sudha, S.S.; Rajamanickam, K.; Rengaramanujam, J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J. Exp. Biol., 2013, 51(5), 393-399.
[PMID: 23821828]
[119]
Govindaraju, K.; Basha, S.K.; Kumar, V.G.; Singaravelu, G. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis). Geitler. J. Mater. Sci., 2008, 43(15), 5115-5122.
[http://dx.doi.org/10.1007/s10853-008-2745-4]
[120]
Mohammed Fayaz, A.; Girilal, M.; Rahman, M.; Venkatesan, R.; Kalaichelvan, P.T. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem., 2011, 46(10), 1958-1962.
[http://dx.doi.org/10.1016/j.procbio.2011.07.003]
[121]
Otari, S.V.; Patil, R.M.; Nadaf, N.H.; Ghosh, S.J.; Pawar, S.H. Green synthesis of silver nanoparticles by microorganism using organic pollutant: Its antimicrobial and catalytic application. Environ. Sci. Pollut. Res. Int., 2014, 21(2), 1503-1513.
[http://dx.doi.org/10.1007/s11356-013-1764-0] [PMID: 23925656]
[122]
Anandaradje, A.; Meyappan, V.; Kumar, I.; Sakthivel, N. Microbial Synthesis of Silver Nanoparticles and Their Biological Potential; Nanoparticles in Medicine, 2019, pp. 99-133.
[http://dx.doi.org/10.1007/978-981-13-8954-2_4]
[123]
Kalpana, D.; Lee, Y.S. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb. Technol., 2013, 52(3), 151-156.
[http://dx.doi.org/10.1016/j.enzmictec.2012.12.006] [PMID: 23410925]
[124]
Parikh, R.Y.; Ramanathan, R.; Coloe, P.J.; Bhargava, S.K.; Patole, M.S.; Shouche, Y.S.; Bansal, V. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One, 2011, 6(6), e21401.
[http://dx.doi.org/10.1371/journal.pone.0021401] [PMID: 21713008]
[125]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[126]
Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 2017, 273, 219-227.
[http://dx.doi.org/10.1016/j.cbi.2017.06.019] [PMID: 28647323]
[127]
Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol., 2018, 102(16), 6799-6814.
[http://dx.doi.org/10.1007/s00253-018-9146-7] [PMID: 29882162]
[128]
Mashwani, Z.R.; Khan, M.A.; Khan, T.; Nadhman, A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci., 2016, 234, 132-141.
[http://dx.doi.org/10.1016/j.cis.2016.04.008] [PMID: 27181393]
[129]
Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[130]
Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep., 2017, 7(1), 15867.
[http://dx.doi.org/10.1038/s41598-017-15724-8] [PMID: 29158537]
[131]
Küünal, S.; Visnapuu, M.; Volubujeva, O.; Soares Rosario, M.; Rauwel, P.; Rauwel, E. Optimisation of plant mediated synthesis of silver nanoparticles by common weed Plantago major and their antimicrobial properties. IOP Conf. Series Mater. Sci. Eng., 2019, 613(1), 012003.
[http://dx.doi.org/10.1088/1757-899X/613/1/012003]
[132]
Abdi, V.; Sourinejad, I.; Yousefzadi, M.; Ghasemi, Z. Mangrove-mediated synthesis of silver nanoparticles using native Avicennia marina plant extract from southern Iran. Chem. Eng. Commun., 2018, 205(8), 1069-1076.
[http://dx.doi.org/10.1080/00986445.2018.1431624]
[133]
Njue, W.M.; Kithokoi, J.K.; Mburu, J.; Mwangi, H.; Swaleh, S. Green sonochemical synthesis of silver nanoparticles using Adansonia digitata leaves extract and evaluation of their antibacterial potential. Eur. J. Adv. Chem. Res., 2020, 1(2), 1-6.
[http://dx.doi.org/10.24018/ejchem.2020.1.2.5]
[134]
Latha, M.; Priyanka, M.; Rajasekar, P.; Manikandan, R.; Prabhu, N.M. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles. Microb. Pathog., 2016, 93, 88-94.
[http://dx.doi.org/10.1016/j.micpath.2016.01.013] [PMID: 26802519]
[135]
Velmurugan, P.; Shim, J.; Kim, H.; Lim, J.M.; Kim, S.A.; Seo, Y.S.; Kim, J.W.; Kim, K.; Oh, B.T. Bio-functionalization of cotton, silk, and leather using different in-situ silver nanoparticle synthesis modules, and their antibacterial properties. Res. Chem. Intermed., 2020, 46(2), 999-1015.
[http://dx.doi.org/10.1007/s11164-016-2481-3]
[136]
Moyo, M.; Gomba, M.; Nharingo, T. Afzelia quanzensis bark extract for green synthesis of silver nanoparticles and study of their antibacterial activity. Int. J. Ind. Chem., 2015, 6(4), 329-338.
[http://dx.doi.org/10.1007/s40090-015-0055-7]
[137]
Karunakaran, G.; Jagathambal, M.; Gusev, A.; Kolesnikov, E.; Mandal, A.R.; Kuznetsov, D. Allamanda cathartica flower’s aqueous extract-mediated green synthesis of silver nanoparticles with excellent antioxidant and antibacterial potential for biomedical application. MRS Commun., 2016, 6(1), 41-46.
[http://dx.doi.org/10.1557/mrc.2016.2]
[138]
Pugazhendhi, S.; Kirubha, E.; Palanisamy, P.K.; Gopalakrishnan, R. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics. Appl. Surf. Sci., 2015, 357, 1801-1808.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.237]
[139]
Kolya, H.; Maiti, P.; Pandey, A.; Tripathy, T. Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J. Anal. Sci. Technol., 2015, 6(1), 33.
[http://dx.doi.org/10.1186/s40543-015-0074-1]
[140]
Jadhav, K.; Dhamecha, D.; Bhattacharya, D.; Patil, M. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J. Photochem. Photobiol. B, 2016, 155, 109-115.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.01.002] [PMID: 26774382]
[141]
Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J. Photochem. Photobiol. B, 2015, 151, 118-124.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.015] [PMID: 26233711]
[142]
Govindarajan, M.; Rajeswary, M.; Veerakumar, K.; Muthukumaran, U.; Hoti, S.L.; Benelli, G. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp. Parasitol., 2016, 161, 40-47.
[http://dx.doi.org/10.1016/j.exppara.2015.12.011] [PMID: 26708933]
[143]
Rajan, A.; Vilas, V.; Philip, D. Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut. J. Mol. Liq., 2015, 207, 231-236.
[http://dx.doi.org/10.1016/j.molliq.2015.03.023]
[144]
Murugan, K.; Labeeba, M.A.; Panneerselvam, C.; Dinesh, D.; Suresh, U.; Subramaniam, J.; Madhiyazhagan, P.; Hwang, J.S.; Wang, L.; Nicoletti, M.; Benelli, G. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi? Res. Vet. Sci., 2015, 102, 127-135.
[http://dx.doi.org/10.1016/j.rvsc.2015.08.001] [PMID: 26412532]
[145]
Velusamy, P.; Das, J.; Pachaiappan, R.; Vaseeharan, B.; Pandian, K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind. Crops Prod., 2015, 66, 103-109.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.042]
[146]
Ahmed, S. Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[147]
Phull, A.R.; Abbas, Q.; Ali, A.; Raza, H. kim, S.J.; Zia, M.; Haq, I. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J. Pharm. Sci., 2016, 2(1), 31-36.
[http://dx.doi.org/10.1016/j.fjps.2016.03.001]
[148]
Kokila, T.; Ramesh, P.S.; Geetha, D. Biosynthesis of AgNPs using carica papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol. Environ. Saf., 2016, 134(Pt 2), 467-473.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.021] [PMID: 27156649]
[149]
Muthukrishnan, S.; Bhakya, S.; Senthil Kumar, T.; Rao, M.V. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii – An endemic species. Ind. Crops Prod., 2015, 63, 119-124.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.022]
[150]
Krithiga, N.; Rajalakshmi, A.; Jayachitra, A. Green synthesis of silver nanoparticles using leaf extracts of clitoria ternatea and solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/928204]
[151]
Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C, 2016, 58, 36-43.
[http://dx.doi.org/10.1016/j.msec.2015.08.018] [PMID: 26478284]
[152]
Naraginti, S.; Kumari, P.L.; Das, R.K.; Sivakumar, A.; Patil, S.H.; Andhalkar, V.V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater. Sci. Eng. C, 2016, 62, 293-300.
[http://dx.doi.org/10.1016/j.msec.2016.01.069] [PMID: 26952426]
[153]
Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb. Pathog., 2017, 102, 133-142.
[http://dx.doi.org/10.1016/j.micpath.2016.11.030] [PMID: 27916692]
[154]
Kayalvizhi, T.; Ravikumar, S.; Venkatachalam, P. Green synthesis of metallic silver nanoparticles using Curculigo orchioides rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. J. Environ. Eng., 2016, 142(9), C4016002.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001098]
[155]
Thangaraj, K.; Natesan, K.V.M. From digitaria radicosa leaves. Asian J. Pharm. Clin. Res., 2016, 9.
[156]
Pugazhendhi, S.; Sathya, P.; Palanisamy, P.K.; Gopalakrishnan, R. Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. J. Photochem. Photobiol. B, 2016, 159, 155-160.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.043] [PMID: 27064188]
[157]
Rao, N.H. N, L.; Pammi, S.V.N.; Kollu, P.; S, G.; P, L. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater. Sci. Eng. C, 2016, 62, 553-557.
[http://dx.doi.org/10.1016/j.msec.2016.01.072] [PMID: 26952458]
[158]
Lee, J.H.; Lim, J.M.; Velmurugan, P.; Park, Y.J.; Park, Y.J.; Bang, K.S.; Oh, B.T. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J. Photochem. Photobiol. B, 2016, 162, 93-99.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.029] [PMID: 27348063]
[159]
Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C, 2016, 62, 719-724.
[http://dx.doi.org/10.1016/j.msec.2016.02.024] [PMID: 26952477]
[160]
Dhayalan, M.; Denison, M.I.J. L, A.J.; Krishnan, K.; N, N.G. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat. Prod. Res., 2017, 31(4), 465-468.
[http://dx.doi.org/10.1080/14786419.2016.1166499] [PMID: 27104858]
[161]
Ramesh, P.S.; Kokila, T.; Geetha, D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 142, 339-343.
[http://dx.doi.org/10.1016/j.saa.2015.01.062] [PMID: 25710891]
[162]
Rajkuberan, C.; Prabukumar, S.; Sathishkumar, G.; Wilson, A.; Ravindran, K.; Sivaramakrishnan, S. Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J. Saudi Chem. Soc., 2017, 21(8), 911-919.
[http://dx.doi.org/10.1016/j.jscs.2016.01.002]
[163]
Kumar, V.; Singh, D.K.; Mohan, S.; Hasan, S.H. Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against acridine orange. J. Photochem. Photobiol. B, 2016, 155, 39-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.011] [PMID: 26734999]
[164]
Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C, 2016, 58, 44-52.
[http://dx.doi.org/10.1016/j.msec.2015.08.022] [PMID: 26478285]
[165]
Arunachalam, K.; Shanmuganathan, B.; Sreeja, P.S.; Parimelazhagan, T. Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Environ. Sci. Pollut. Res. Int., 2015, 22(22), 18066-18075.
[http://dx.doi.org/10.1007/s11356-015-4992-7] [PMID: 26174983]
[166]
Parveen, M.; Ahmad, F.; Malla, A.M.; Azaz, S. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Appl. Nanosci., 2016, 6(2), 267-276.
[http://dx.doi.org/10.1007/s13204-015-0433-7]
[167]
Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci., 2016, 6(5), 755-766.
[http://dx.doi.org/10.1007/s13204-015-0473-z]
[168]
Devi, T.A.; Ananthi, N.; Amaladhas, T.P. Photobiological synthesis of noble metal nanoparticles using Hydrocotyle asiatica and application as catalyst for the photodegradation of cationic dyes. J. Nanostructure Chem., 2016, 6(1), 75-92.
[http://dx.doi.org/10.1007/s40097-015-0180-z]
[169]
Nayak, D.; Ashe, S.; Rauta, P.R.; Nayak, B. Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts. IET Nanobiotechnol., 2015, 9(5), 288-293.
[http://dx.doi.org/10.1049/iet-nbt.2014.0047] [PMID: 26435282]
[170]
Jeevanandam, J.; Kiew, S.F.; Boakye-Ansah, S.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 2022, 14(7), 2534-2571.
[http://dx.doi.org/10.1039/D1NR08144F] [PMID: 35133391]
[171]
Ismail, M.; Gul, S.; Khan, M.A.; Khan, M.I. Plant mediated green synthesis of anti-microbial silver nanoparticles—a review on recent trends. Nanotechnol. Rev., 2016, 5(2), 119-135.
[http://dx.doi.org/10.1166/rnn.2016.1073]
[172]
Awad, M.A.; Mekhamer, W.K.; Merghani, N.M.; Hendi, A.A.; Ortashi, K.M.O.; Al-Abbas, F.; Eisa, N.E. Green synthesis, characterization, and antibacterial activity of silver/polystyrene nanocomposite. J. Nanomater., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/943821]
[173]
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng. C, 2015, 49, 373-381.
[http://dx.doi.org/10.1016/j.msec.2015.01.035] [PMID: 25686962]
[174]
Dong, C.; Cao, C.; Zhang, X.; Zhan, Y.; Wang, X.; Yang, X.; Zhou, K.; Xiao, X.; Yuan, B. Wolfberry fruit (Lycium barbarum) extract mediated novel route for the green synthesis of silver nanoparticles. Optik,, 2017, 130, 162-170.
[http://dx.doi.org/10.1016/j.ijleo.2016.11.010]
[175]
Sreekanth, T.V.M.; Ravikumar, S.; Lee, Y.R. Good use of fruit wastes: Eco-friendly synthesis of silver nanoparticles, characterization, BSA protein binding studies. J. Mol. Recognit., 2016, 29(6), 253-259.
[http://dx.doi.org/10.1002/jmr.2525] [PMID: 26644144]
[176]
Rajakumar, G.; Gomathi, T.; Thiruvengadam, M.; Devi Rajeswari, V.; Kalpana, V.N.; Chung, I.M. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb. Pathog., 2017, 103, 123-128.
[http://dx.doi.org/10.1016/j.micpath.2016.12.019] [PMID: 28025099]
[177]
Alabdallah, N.M.; Hasan, M.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J. Biol. Sci., 2021, 28(10), 5631-5639.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.081] [PMID: 34588874]
[178]
Harshiny, M.; Matheswaran, M.; Arthanareeswaran, G.; Kumaran, S.; Rajasree, S. Enhancement of antibacterial properties of silver nanoparticles–ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol. Environ. Saf., 2015, 121, 135-141.
[http://dx.doi.org/10.1016/j.ecoenv.2015.04.041] [PMID: 25982731]
[179]
Rizwana, H.; Bokahri, N.A.S.; Alkhattaf, F.; Albasher, G.A.; Aldehaish, H. Antifungal, antibacterial, and cytotoxic activities of silver nanoparticles synthesized from aqueous extracts of mace-arils of myristica fragrans. Molecules, 2021, 26(24), 7709.
[http://dx.doi.org/10.3390/molecules26247709] [PMID: 34946791]
[180]
Basu, S.; Maji, P.; Ganguly, J. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis. Appl. Nanosci., 2016, 6(1), 1-5.
[http://dx.doi.org/10.1007/s13204-015-0407-9]
[181]
Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dhar, S.S. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J. Photochem. Photobiol. B, 2016, 154, 1-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.11.004] [PMID: 26590801]
[182]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2016, 6(3), 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[183]
Allafchian, A.R.; Mirahmadi-Zare, S.Z.; Jalali, S.A.H.; Hashemi, S.S.; Vahabi, M.R. Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J. Nanostructure Chem., 2016, 6(2), 129-135.
[http://dx.doi.org/10.1007/s40097-016-0187-0]
[184]
Sreekanth, T.V.M.; Jung, M.J.; Eom, I.Y. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Appl. Surf. Sci., 2016, 361, 102-106.
[http://dx.doi.org/10.1016/j.apsusc.2015.11.146]
[185]
Ramachandran, K.; Kalpana, D.; Sathishkumar, Y.; Lee, Y.S.; Ravichandran, K. kumar, G.G. A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J. Ind. Eng. Chem., 2016, 35, 29-35.
[http://dx.doi.org/10.1016/j.jiec.2015.10.033]
[186]
Mohapatra, B.; Kuriakose, S.; Mohapatra, S. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J. Alloys Compd., 2015, 637, 119-126.
[http://dx.doi.org/10.1016/j.jallcom.2015.02.206]
[187]
Priya, R.S.; Geetha, D.; Ramesh, P.S. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study. Ecotoxicol. Environ. Saf., 2016, 134(Pt 2), 308-318.
[http://dx.doi.org/10.1016/j.ecoenv.2015.07.037] [PMID: 26277620]
[188]
Bose, D.; Chatterjee, S. Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl. Nanosci., 2016, 6(6), 895-901.
[http://dx.doi.org/10.1007/s13204-015-0496-5]
[189]
Panneerselvam, C.; Murugan, K.; Roni, M.; Aziz, A.T.; Suresh, U.; Rajaganesh, R.; Madhiyazhagan, P.; Subramaniam, J.; Dinesh, D.; Nicoletti, M.; Higuchi, A.; Alarfaj, A.A.; Munusamy, M.A.; Kumar, S.; Desneux, N.; Benelli, G. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol. Res., 2016, 115(3), 997-1013.
[http://dx.doi.org/10.1007/s00436-015-4828-x] [PMID: 26612497]
[190]
K, A. Review on biosynthesis of silver nanoparticles and its characterization. Plant Arch., 2021, 21(Suppl. 1), 2393-2400.
[http://dx.doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.391]
[191]
Patil, M.P.; Rokade, A.A.; Ngabire, D.; Kim, G.D. Green synthesis of silver nanoparticles using water extract from galls of Rhus chinensis and its antibacterial activity. J. Cluster Sci., 2016, 27(5), 1737-1750.
[http://dx.doi.org/10.1007/s10876-016-1037-4]
[192]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 2017, 24(1), 45-50.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.006] [PMID: 28053570]
[193]
Tahir, K.; Nazir, S.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Ahmad, A.; Khan, F.U. An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Separ. Purif. Tech., 2015, 150, 316-324.
[http://dx.doi.org/10.1016/j.seppur.2015.07.012]
[194]
Verma, D.K.; Hasan, S.H.; Banik, R.M. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B, 2016, 155, 51-59.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.008] [PMID: 26735000]
[195]
Moldovan, B.; David, L.; Achim, M.; Clichici, S.; Filip, G.A. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J. Mol. Liq., 2016, 221, 271-278.
[http://dx.doi.org/10.1016/j.molliq.2016.06.003]
[196]
Perugu, S.; Nagati, V.; Bhanoori, M. Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study. Appl. Nanosci., 2016, 6(5), 747-753.
[http://dx.doi.org/10.1007/s13204-015-0486-7]
[197]
Hemashekhar, B. Chandrappa Cp, Melappa G, Chandrasekhar N, Ganganagappa N, Ramachandra YL. Green synthesis of silver nanoparticles from endophytic fungus aspergillus niger isolated from Simarouba glauca leaf and its antibacterial and antioxidant activity. Int. J. Eng. Res. Appl., 2017, 07(08), 17-24.
[http://dx.doi.org/10.9790/9622-0708011724]
[198]
Ahmed, M.J.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett., 2015, 153, 10-13.
[http://dx.doi.org/10.1016/j.matlet.2015.03.143]
[199]
Sengottaiyan, A.; Mythili, R.; Selvankumar, T.; Aravinthan, A.; Kamala-Kannan, S.; Manoharan, K.; Thiyagarajan, P.; Govarthanan, M.; Kim, J.H. Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res. Chem. Intermed., 2016, 42(4), 3095-3103.
[http://dx.doi.org/10.1007/s11164-015-2199-7]
[200]
Isa, N.; Wan Kamis, W.Z.; Inderan, V.; Husin, N.I.; Ahmad, F.N.; Bashirom, N.H.; Lockman, Z. Shape, size and dispersion of plant-driven silver nanoparticles for removal of methylene blue dyes. J. Phys. Conf. Ser., 2019, 1349(1), 012115.
[http://dx.doi.org/10.1088/1742-6596/1349/1/012115]
[201]
Bogireddy, N.K.R.; Kiran Kumar, H.A.; Mandal, B.K. Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J. Environ. Chem. Eng., 2016, 4(1), 56-64.
[http://dx.doi.org/10.1016/j.jece.2015.11.004]
[202]
Yugandhar, P.; Haribabu, R.; Savithramma, N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygiumalternifolium (Wt.) walp. 3 Biotech, 2015, 5(6), 1031-1039.
[http://dx.doi.org/10.1007/s13205-015-0307-4]
[203]
Devadiga, A.; Shetty, K.V.; Saidutta, M.B. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int. Nano Lett., 2015, 5(4), 205-214.
[http://dx.doi.org/10.1007/s40089-015-0157-4]
[204]
Saiqa Ikram, S.A. Silver nanoparticles: One pot green synthesis using Terminalia arjuna extract for biological application. J. Nanomed. Nanotechnol., 2015, 6(4), 1000309.
[http://dx.doi.org/10.4172/2157-7439.1000309]
[205]
Edison, T.N.J.I.; Atchudan, R.; Lee, Y.R. Optical sensor for dissolved ammonia through the green synthesis of silver nanoparticles by fruit extract of Terminalia chebula. J. Cluster Sci., 2016, 27(2), 683-690.
[http://dx.doi.org/10.1007/s10876-016-0972-4]
[206]
Edison, T.N.J.I.; Lee, Y.R.; Sethuraman, M.G. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 161, 122-129.
[http://dx.doi.org/10.1016/j.saa.2016.02.044] [PMID: 26967513]
[207]
Selvam, K.; Sudhakar, C.; Govarthanan, M.; Thiyagarajan, P.; Sengottaiyan, A.; Senthilkumar, B.; Selvankumar, T. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J. Rad. Res. Appl. Sci., 2017, 10(1), 6-12.
[http://dx.doi.org/10.1016/j.jrras.2016.02.005]
[208]
Choudhary, M.K.; Kataria, J.; Cameotra, S.S.; Singh, J. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity. Appl. Nanosci., 2016, 6(1), 105-111.
[http://dx.doi.org/10.1007/s13204-015-0418-6]
[209]
El-Sherbiny, I.M.; El-Shibiny, A.; Salih, E. Photo-induced green synthesis and antimicrobial efficacy of poly (ɛcaprolactone)/curcumin/grape leaf extract-silver hybrid nanoparticles. J. Photochem. Photobiol. B, 2016, 160, 355-363.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.029] [PMID: 27183490]
[210]
Sumi Maria, B.; Devadiga, A.; Shetty Kodialbail, V.; Saidutta, M.B. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl. Nanosci., 2015, 5(6), 755-762.
[http://dx.doi.org/10.1007/s13204-014-0372-8]
[211]
Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res., 2010, 12(5), 1531-1551.
[http://dx.doi.org/10.1007/s11051-010-9900-y]
[212]
Tran, Q.H.; Nguyen, V.Q.; Le, A-T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3), 033001.
[http://dx.doi.org/10.1088/2043-6262/4/3/033001]
[213]
Enoch, D.A.; Ludlam, H.A.; Brown, N.M. Invasive fungal infections: A review of epidemiology and management options. J. Med. Microbiol., 2006, 55(7), 809-818.
[http://dx.doi.org/10.1099/jmm.0.46548-0] [PMID: 16772406]
[214]
Kim, K-J.; Sung, W.S.; Moon, S-K.; Choi, J-S.; Kim, J.G.; Lee, D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 2008, 18(8), 1482-1484.
[PMID: 18756112]
[215]
Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 2005, 3(1), 6.
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[216]
Xiang, D.; Zheng, C.; Zheng, Y.; Li, X.; Yin, J.; O’ Conner, M.; Marappan, M.; Miao, Y.; Xiang, B.; Duan, W.; Shigdar, S.; Zhao, X. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 2013, 8, 4103-4113.
[http://dx.doi.org/10.2147/IJN.S53622] [PMID: 24204140]
[217]
Doolette, C.L.; McLaughlin, M.J.; Kirby, J.K.; Batstone, D.J.; Harris, H.H.; Ge, H.; Cornelis, G. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chem. Cent. J., 2013, 7(1), 46.
[http://dx.doi.org/10.1186/1752-153X-7-46] [PMID: 23497481]
[218]
Li, C.; Fu, R.; Yu, C.; Li, Z.; Guan, H.; Hu, D.; Zhao, D.; Lu, L. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: A preclinical study. Int. J. Nanomedicine, 2013, 8(1), 4131-4145.
[http://dx.doi.org/10.1016/j.joule.2020.05.018] [PMID: 24204142]
[219]
Uzunalan, G.; Ozturk, M.T.; Dincer, S.; Tuzlakoglu, K. A newly designed collagen-based bilayered scaffold for skin tissue regeneration. J. Compos. Biodegradable Polym., 2013, 1(1), 8-15.
[http://dx.doi.org/10.12974/2311-8717.2013.01.01.2]
[220]
Alt, V.; Bechert, T.; Steinrücke, P.; Wagener, M.; Seidel, P.; Dingeldein, E.; Domann, E.; Schnettler, R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004, 25(18), 4383-4391.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.078] [PMID: 15046929]
[221]
Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 2010, 28(11), 580-588.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.006] [PMID: 20724010]
[222]
Huang, H.; Yang, Y. Preparation of silver nanoparticles in inorganic clay suspensions. Compos. Sci. Technol., 2008, 68(14), 2948-2953.
[http://dx.doi.org/10.1016/j.compscitech.2007.10.003]
[223]
Zhou, Y.; Yu, S.H.; Wang, C.Y.; Li, X.G.; Zhu, Y.R.; Chen, Z.Y. A Novel ultraviolet irradiation photoreduction technique for the preparation of single- crystal Ag nanorods and Ag dendrites. Adv. Mater., 1999, 11(10), 850-852.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z]
[224]
Socol, Y.; Abramson, O.; Gedanken, A.; Meshorer, Y.; Berenstein, L.; Zaban, A. Suspensive electrode for- mation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 2002, 18, 4736-4740.
[225]
Loganathan, S.; Selvam, K.; Padmavathi, G.; Shivakumar, M.S.; Senthil-Nathan, S.; Sumathi, A.G.; Ajmal Ali, M.; Saeedah, M. Almutairi, biological synthesis and characterization of passiflora subpeltata ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. J. King Saud Univ. Sci., 2022, 34(3), 101846.
[http://dx.doi.org/10.1016/j.jksus.2022.101846]
[226]
Mokter Hossain, Md. Aka Robinson junior, Ndeddy.; Sun Mok, Young; Wu, Sarah Investigation of silver nanoparticle synthesis with various nonthermal plasma reactor configurations. Arab. J. Chem., 2023, 16(10), 105174.
[http://dx.doi.org/10.1016/j.arabjc.2023.105174]
[227]
Vanmathi Selvi, K.; Sivakumar, T. Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int. J. Curr. Microbiol. Appl. Sci., 2012, 1(1), 56-62.
[228]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem., 2019, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[229]
Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10(20), 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy