Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Breathomics Detect the Cardiovascular Disease: Delusion or Dilution of the Metabolomic Signature

Author(s): Basheer Marzoog*

Volume 20, Issue 4, 2024

Published on: 02 February, 2024

Article ID: e020224226647 Pages: 9

DOI: 10.2174/011573403X283768240124065853

Price: $65

Abstract

Volatile organic compounds (VOCs) can be subdivided into exogenous and endogenous categories based on their origin. Analyzing the endogenous VOCs can provide insights into maintaining the internal organs' homeostasis. Despite the ongoing development and the current understanding, studies have suggested a link between cardiovascular metabolic alterations in patients with ischemic heart disease and elevated levels of ethane and isoprene detectable through exhaled breath analysis. Conversely, patients with chronic heart failure exhibit elevated acetone and pentane in their exhaled air. These substances originate from disturbances in the heart tissue, including cellular and subcellular modulations. Hypothetically, ethane levels in the exhaled breath analysis can demonstrate the severity of ischemic heart disease and, consequently, the risk of death in the next 10 years due to cardiovascular disease (CVD). Real-time direct mass spectrometry is the preferred method for assessing VOCs in exhaled breath analysis. The accuracy of this analysis depends on several factors, including the selection of the relevant breath fraction, the type of breath collection container (if used), and the pre-concentration technique.

[1]
Pereira J, Porto-Figueira P, Cavaco C, et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015; 5(1): 3-55.
[http://dx.doi.org/10.3390/metabo5010003] [PMID: 25584743]
[2]
Hageman S, Pennells L, Ojeda F, et al. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe Eur Heart J 2021; 42: 2439-54.
[http://dx.doi.org/10.1093/eurheartj/ehab309]
[3]
Murray KK, Boyd RK, Eberlin MN, Langley GJ, Li L, Naito Y. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl Chem 2013; 85(7): 1515-609.
[http://dx.doi.org/10.1351/PAC-REC-06-04-06]
[4]
Trefz P, Obermeier J, Lehbrink R, Schubert JK, Miekisch W, Fischer DC. Exhaled volatile substances in children suffering from type 1 diabetes mellitus: Results from a cross-sectional study. Sci Rep 2019; 9(1): 15707.
[http://dx.doi.org/10.1038/s41598-019-52165-x] [PMID: 31673076]
[5]
van de Kant KDG, van der Sande LJTM, Jöbsis Q, van Schayck OCP, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir Res 2012; 13(1): 117.
[http://dx.doi.org/10.1186/1465-9921-13-117] [PMID: 23259710]
[6]
Amal H, Leja M, Funka K, et al. Breath testing as potential colorectal cancer screening tool. Int J Cancer 2016; 138(1): 229-36.
[http://dx.doi.org/10.1002/ijc.29701] [PMID: 26212114]
[7]
Chapman EA, Baker J, Aggarwal P, et al. GC-MS techniques investigating potential biomarkers of dying in the last weeks with lung cancer. Int J Mol Sci 2023; 24(2): 1591.
[http://dx.doi.org/10.3390/ijms24021591] [PMID: 36675106]
[8]
Chung J, Akter S, Han S, et al. Diagnosis by volatile organic compounds in exhaled breath from patients with gastric and colorectal cancers. Int J Mol Sci 2022; 24(1): 129.
[http://dx.doi.org/10.3390/ijms24010129] [PMID: 36613569]
[9]
Sukaram T, Tansawat R, Apiparakoon T, et al. Exhaled volatile organic compounds for diagnosis of hepatocellular carcinoma. Sci Rep 2022; 12(1): 5326.
[http://dx.doi.org/10.1038/s41598-022-08678-z] [PMID: 35351916]
[10]
Politi L, Monasta L, Rigressi MN, et al. Discriminant profiles of volatile compounds in the alveolar air of patients with squamous cell lung cancer, lung adenocarcinoma or colon cancer. Molecules 2021; 26(3): 550.
[http://dx.doi.org/10.3390/molecules26030550] [PMID: 33494458]
[11]
Di Gilio A, Catino A, Lombardi A, et al. Breath analysis for early detection of malignant pleural mesothelioma: Volatile organic compounds (VOCs) determination and possible biochemical pathways. Cancers 2020; 12(5): 1262.
[http://dx.doi.org/10.3390/cancers12051262] [PMID: 32429446]
[12]
Catino A, de Gennaro G, Di Gilio A, et al. Breath analysis: A systematic review of Volatile Organic Compounds (VOCs) in diagnostic and therapeutic management of pleural mesothelioma. Cancers 2019; 11(6): 831.
[http://dx.doi.org/10.3390/cancers11060831] [PMID: 31207975]
[13]
Rodrigues D, Pinto J, Araújo AM, et al. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography-mass spectrometry. Metabolomics 2018; 14(5): 62.
[http://dx.doi.org/10.1007/s11306-018-1361-9] [PMID: 30830384]
[14]
Princivalle A, Monasta L, Butturini G, Bassi C, Perbellini L. Pancreatic ductal adenocarcinoma can be detected by analysis of volatile organic compounds (VOCs) in alveolar air. BMC Cancer 2018; 18(1): 529.
[http://dx.doi.org/10.1186/s12885-018-4452-0] [PMID: 29728093]
[15]
Chin ST, Romano A, Doran SLF, Hanna GB. Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer. Sci Rep 2018; 8(1): 5139.
[http://dx.doi.org/10.1038/s41598-018-22890-w] [PMID: 29572531]
[16]
Brekelmans MP, Fens N, Brinkman P, et al. Smelling the diagnosis: The electronic nose as diagnostic tool in inflammatory arthritis. A case-reference study. PLoS One 2016; 11(3): e0151715.
[http://dx.doi.org/10.1371/journal.pone.0151715] [PMID: 26982569]
[17]
DeLano FA, Chow J, Schmid-Schönbein GW. Volatile decay products in breath during peritonitis shock are attenuated by enteral blockade of pancreatic digestive proteases. Shock 2017; 48(5): 571-5.
[http://dx.doi.org/10.1097/SHK.0000000000000888] [PMID: 28498300]
[18]
Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: A systematic review. Oncotarget 2015; 6(36): 38643-57.
[http://dx.doi.org/10.18632/oncotarget.5938] [PMID: 26440312]
[19]
Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis. JAMA Oncol 2019; 5(1): e182815.
[http://dx.doi.org/10.1001/jamaoncol.2018.2815] [PMID: 30128487]
[20]
Gruber M, Tisch U, Jeries R, et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: A feasibility study. Br J Cancer 2014; 111(4): 790-8.
[http://dx.doi.org/10.1038/bjc.2014.361] [PMID: 24983369]
[21]
Bajtarevic A, Ager C, Pienz M, et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009; 9(1): 348.
[http://dx.doi.org/10.1186/1471-2407-9-348] [PMID: 19788722]
[22]
Xu Z, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer 2013; 108(4): 941-50.
[http://dx.doi.org/10.1038/bjc.2013.44] [PMID: 23462808]
[23]
Peled N, Hakim M, Bunn PA Jr, et al. Non-invasive breath analysis of pulmonary nodules. J Thorac Oncol 2012; 7(10): 1528-33.
[http://dx.doi.org/10.1097/JTO.0b013e3182637d5f] [PMID: 22929969]
[24]
Ionescu R, Broza Y, Shaltieli H, et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem Neurosci 2011; 2(12): 687-93.
[http://dx.doi.org/10.1021/cn2000603] [PMID: 22860162]
[25]
Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M, Rudnicka J. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal Bioanal Chem 2012; 404(1): 141-6.
[http://dx.doi.org/10.1007/s00216-012-6102-8] [PMID: 22660158]
[26]
Stott S, Broza YY, Gharra A, Wang Z, Barker RA, Haick H. The utility of breath analysis in the diagnosis and staging of parkinson’s disease. J Parkinsons Dis 2022; 12(3): 993-1002.
[http://dx.doi.org/10.3233/JPD-213133] [PMID: 35147553]
[27]
Marcondes-Braga FG, Gioli-Pereira L, Bernardez-Pereira S, et al. Exhaled breath acetone for predicting cardiac and overall mortality in chronic heart failure patients. ESC Heart Fail 2020; 7(4): 1744-52.
[http://dx.doi.org/10.1002/ehf2.12736] [PMID: 32383349]
[28]
Marcondes-Braga FG, Batista GL, Bacal F, Gutz I. Exhaled breath analysis in heart failure. Curr Heart Fail Rep 2016; 13(4): 166-71.
[http://dx.doi.org/10.1007/s11897-016-0294-8] [PMID: 27287200]
[29]
Bykova AA, Malinovskaya LK, Chomakhidze PS, et al. Exhaled breath analysis in diagnostics of cardiovascular diseases. Kardiologiia 2019; 59(7): 61-7.
[http://dx.doi.org/10.18087/cardio.2019.7.10263] [PMID: 31322091]
[30]
Bykova AA, Malinovskaya LK, Trushina OV, et al. Exhaled breath analysis in diagnosis of chronic heart failure with reduced left ventricular ejection fraction. Cardiology and cardiovascular surgery 2019; 12(6): 568-76.
[http://dx.doi.org/10.17116/kardio201912061568]
[31]
Marcondes-Braga FG, Batista GL, Gutz IGR, et al. Impact of exhaled breath acetone in the prognosis of patients with heart failure with reduced ejection fraction (HFrEF). PLoS One 2016; 11(12): e0168790.
[http://dx.doi.org/10.1371/journal.pone.0168790] [PMID: 28030609]
[32]
Malinovskaya LK, Bykova AA, Chomahidze PSH, Kopylov PHYU, Syrkin AL, Betelin VB. P3758Exhaled breath analysis in the differential diagnostics of heart failure. Eur Heart J 2018; 39(Suppl. 1)
[http://dx.doi.org/10.1093/eurheartj/ehy563.P3758]
[33]
Biagini D, Lomonaco T, Ghimenti S, et al. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry. J Breath Res 2017; 11(4): 047110.
[http://dx.doi.org/10.1088/1752-7163/aa94e7] [PMID: 29052557]
[34]
Yokokawa T, Sato T, Suzuki S, et al. Elevated exhaled acetone concentration in stage C heart failure patients with diabetes mellitus. BMC Cardiovasc Disord 2017; 17(1): 280.
[http://dx.doi.org/10.1186/s12872-017-0713-0] [PMID: 29145814]
[35]
Yokokawa T, Sato T, Suzuki S, et al. Change of exhaled acetone concentration levels in patients with acute decompensated heart failure a preliminary study. Int Heart J 2018; 59(4): 808-12.
[http://dx.doi.org/10.1536/ihj.17-482] [PMID: 29794390]
[36]
Zhou Q, Wang Q, Chen B, et al. Factors influencing breath analysis results in patients with diabetes mellitus. J Breath Res 2019; 13(4): 046012.
[http://dx.doi.org/10.1088/1752-7163/ab285a] [PMID: 31489846]
[37]
Broza YY, Khatib S, Gharra A, et al. Screening for gastric cancer using exhaled breath samples. Br J Surg 2019; 106(9): 1122-5.
[http://dx.doi.org/10.1002/bjs.11294] [PMID: 31259390]
[38]
Wang MH, Yuk-Fai Lau S, Chong KC, et al. Estimation of clinical parameters of chronic kidney disease by exhaled breath full-scan mass spectrometry data and iterative PCA with intensity screening algorithm. J Breath Res 2017; 11(3): 036007.
[http://dx.doi.org/10.1088/1752-7163/aa7635] [PMID: 28566556]
[39]
Zeng Q, Li P, Cai Y, et al. Detection of creatinine in exhaled breath of humans with chronic kidney disease by extractive electrospray ionization mass spectrometry. J Breath Res 2016; 10(1): 016008.
[http://dx.doi.org/10.1088/1752-7155/10/1/016008] [PMID: 26857588]
[40]
Badjagbo K. Exhaled breath analysis for early cancer detection: principle and progress in direct mass spectrometry techniques. Clin Chem Lab Med 2012; 50(11): 1893-902.
[http://dx.doi.org/10.1515/cclm-2012-0208] [PMID: 22718640]
[41]
Chan MJ, Li YJ, Wu CC, et al. Breath ammonia is a useful biomarker predicting kidney function in chronic kidney disease patients. Biomedicines 2020; 8(11): 468.
[http://dx.doi.org/10.3390/biomedicines8110468] [PMID: 33142890]
[42]
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, et al. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33(12): e4684.
[http://dx.doi.org/10.1002/bmc.4684] [PMID: 31423612]
[43]
Filipiak W, Ruzsanyi V, Mochalski P, et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res 2012; 6(3): 036008.
[http://dx.doi.org/10.1088/1752-7155/6/3/036008] [PMID: 22932429]
[44]
Lawal O, Ahmed WM, Nijsen TME, Goodacre R, Fowler SJ. Exhaled breath analysis: A review of ‘breath-taking’ methods for off-line analysis. Metabolomics 2017; 13(10): 110.
[http://dx.doi.org/10.1007/s11306-017-1241-8] [PMID: 28867989]
[45]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2023 update: A report from the american heart association. Circulation 2023; 147(8): e93-e621.
[http://dx.doi.org/10.1161/CIR.0000000000001123] [PMID: 36695182]
[46]
[47]
Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt J Med Hum Genet 2022; 23(1): 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[48]
Marzoog BA. Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023; 23(1): 2-10.
[http://dx.doi.org/10.2174/1871529X23666230503123612] [PMID: 37138481]
[49]
Marzoog BA. Drug Targets 2024.
[50]
Abdullah Marzoog B. Pathophysiology of cardiac cell injury in post-covid-19 syndrome. Emir Med J 2023; 4(2): e280423216351.
[http://dx.doi.org/10.2174/0250688204666230428120808]
[51]
Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[52]
Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]
[53]
Abdullah Marzoog B. Cell physiological behavior in the context of local hypothermia. Emir Med J 2023; 5: e100723218576.
[http://dx.doi.org/10.2174/0250688204666230710102624]
[54]
Abdullah Marzoog B. Autophagy behavior under local hypothermia in myocardiocytes injury. Cardiovasc Hematol Agents Med Chem 2023; 21.
[http://dx.doi.org/10.2174/1871525721666230803102554] [PMID: 37534483]
[55]
Marzoog BA. Review article: Autophagy behavior in endothelial cell regeneration. Curr Aging Sci 2023; 16.
[http://dx.doi.org/10.2174/0118746098260689231002044435] [PMID: 37861048]
[56]
Marzoog BA. Endothelial dysfunction under the scope of arterial hypertension, coronary heart disease, and diabetes mellitus using the angioscan. Cardiovasc Hematol Agents Med Chem 2023; 22.
[http://dx.doi.org/10.2174/0118715257246589231018053646] [PMID: 37921186]
[57]
Abdullah Marzoog B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. Emir Med J 2023; 4(1): e281122211293.
[http://dx.doi.org/10.2174/04666221128110145]
[58]
Marzoog BA. Autophagy in endothrlial cell dysfunction. Curr Mol Med 2022.
[http://dx.doi.org/10.2174/0118715257275690231129101408]
[59]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[60]
Abdullah Marzoog B. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639.
[http://dx.doi.org/10.2174/0250688204666230508112229]
[61]
Zuurbier CJ, Bertrand L, Beauloye CR, et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24(11): 5937-54.
[http://dx.doi.org/10.1111/jcmm.15180] [PMID: 32384583]
[62]
Marzoog BA, Averina D. Nicotinamide mononucleotide in the context of myocardiocyte longevity. Curr Aging Sci 2023; 17.
[http://dx.doi.org/10.2174/0118746098266041231212105020] [PMID: 38151845]
[63]
Gaugg MT, Nussbaumer-Ochsner Y, Bregy L, et al. Real-time breath analysis reveals specific metabolic signatures of COPD exacerbations. Chest 2019; 156(2): 269-76.
[http://dx.doi.org/10.1016/j.chest.2018.12.023] [PMID: 30685334]
[64]
Buszewski B, Kęsy M, Ligor T, Amann A. Human exhaled air analytics: Biomarkers of diseases. Biomed Chromatogr 2007; 21(6): 553-66.
[http://dx.doi.org/10.1002/bmc.835] [PMID: 17431933]
[65]
Mochalski P, King J, Klieber M, et al. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 2013; 138(7): 2134-45.
[http://dx.doi.org/10.1039/c3an36756h] [PMID: 23435188]
[66]
Huang J, Kumar S, Hanna GB. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS). J Breath Res 2014; 8(3): 037104.
[http://dx.doi.org/10.1088/1752-7155/8/3/037104] [PMID: 25190002]
[67]
Belluomo I, Boshier PR, Myridakis A, et al. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath. Nat Protoc 2021; 16(7): 3419-38.
[http://dx.doi.org/10.1038/s41596-021-00542-0] [PMID: 34089020]
[68]
Bruderer T, Gaisl T, Gaugg MT, et al. On-line analysis of exhaled breath: Focus review. Chem Rev 2019; 119(19): 10803-28.
[http://dx.doi.org/10.1021/acs.chemrev.9b00005] [PMID: 31594311]
[69]
Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018; 1024: 18-38.
[http://dx.doi.org/10.1016/j.aca.2018.01.069] [PMID: 29776545]
[70]
Di Gilio A, Palmisani J, Ventrella G, et al. Breath analysis: Comparison among methodological approaches for breath sampling. Molecules 2020; 25(24): 5823.
[http://dx.doi.org/10.3390/molecules25245823] [PMID: 33321824]
[71]
Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled molecular fingerprinting in diagnosis and monitoring: Validating volatile promises. Trends Mol Med 2015; 21(10): 633-44.
[http://dx.doi.org/10.1016/j.molmed.2015.08.001] [PMID: 26432020]
[72]
Hauschild AC, Schneider T, Pauling J, et al. Computational methods for metabolomic data analysis of ion mobility spectrometry data-reviewing the state of the art. Metabolites 2012; 2(4): 733-55.
[http://dx.doi.org/10.3390/metabo2040733] [PMID: 24957760]
[73]
Zemek PG. Proton Transfer Reaction Mass Spectrometry (PTRMS) for Ambient and (Compliance) Source Testing Discussion A draft ASTM method is also being developed n.d.
[74]
Weraduwage SM, Rasulov B, Sahu A, Niinemets Ü, Sharkey TD. Isoprene measurements to assess plant hydrocarbon emissions and the methylerythritol pathway. Methods Enzymol 2022; 676: 211-37.
[http://dx.doi.org/10.1016/bs.mie.2022.07.020] [PMID: 36280351]
[75]
Zhang X, Frankevich V, Ding J, Ma Y, Chingin K, Chen H. Direct mass spectrometry analysis of exhaled human breath in real‐time. Mass Spectrom Rev 2023; mas.21855.
[http://dx.doi.org/10.1002/mas.21855] [PMID: 37565588]
[76]
Španěl P, Smith D. Progress in SIFT‐MS: Breath analysis and other applications. Mass Spectrom Rev 2011; 30(2): 236-67.
[http://dx.doi.org/10.1002/mas.20303] [PMID: 20648679]
[77]
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common strategies and factors affecting off-line breath sampling and volatile organic compounds analysis using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Metabolites 2022; 13(1): 8.
[http://dx.doi.org/10.3390/metabo13010008] [PMID: 36676933]
[78]
Majchrzak T, Wojnowski W, Lubinska-Szczygeł M, Różańska A, Namieśnik J, Dymerski T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal Chim Acta 2018; 1035: 1-13.
[http://dx.doi.org/10.1016/j.aca.2018.06.056] [PMID: 30224127]
[79]
Tranchida PQ, Franchina FA, Dugo P, Mondello L. Comprehensive two‐dimensional gas chromatography‐mass spectrometry: Recent evolution and current trends. Mass Spectrom Rev 2016; 35(4): 524-34.
[http://dx.doi.org/10.1002/mas.21443] [PMID: 25269651]
[80]
King J, Koc H, Unterkofler K, et al. Physiological Modeling for Analysis of Exhaled Breath. Volatile Biomarkers 2013; pp. 26-46.
[http://dx.doi.org/10.1016/B978-0-44-462613-4.00003-9]
[81]
Böhme DK. Ion-molecule reactions in mass spectrometry. Encycl Spectrosc Spectrom 2016; 338-46.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.10996-5]
[82]
Marcondes-Braga FG, Gutz IGR, Batista GL, et al. Exhaled acetone as a new biomaker of heart failure severity. Chest 2012; 142(2): 457-66.
[http://dx.doi.org/10.1378/chest.11-2892] [PMID: 22345382]
[83]
Samara MA, Tang WHW, Cikach F Jr, et al. Single exhaled breath metabolomic analysis identifies unique breathprint in patients with acute decompensated heart failure. J Am Coll Cardiol 2013; 61(13): 1463-4.
[http://dx.doi.org/10.1016/j.jacc.2012.12.033] [PMID: 23500243]
[84]
Cikach FS Jr, Dweik RA. Cardiovascular biomarkers in exhaled breath. Prog Cardiovasc Dis 2012; 55(1): 34-43.
[http://dx.doi.org/10.1016/j.pcad.2012.05.005] [PMID: 22824108]
[85]
Risby T. F.T.-O. engineering, undefined 2010, Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis, Spiedigitallibrary. OrgTH Risby, FK TittelOptical Eng Available from: https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-49/issue-11/111123/Current-status-of-midinfrared-quantum-and-interband-cascade-lasers-for/10.1117/1.3498768.short (accessed September 4, 2023)
[86]
Nardi Agmon I, Broza YY, Alaa G, et al. Detecting coronary artery disease using exhaled breath analysis. Cardiology 2022; 147(4): 389-97.
[http://dx.doi.org/10.1159/000525688] [PMID: 35820369]
[87]
Pappas LK, Giannopoulos G, Loukides S, et al. Exhaled breath condensate in acute and chronic heart failure: New insights into the role of lung injury and barrier dysfunction. Am J Respir Crit Care Med 2014; 190(3): 342-5.
[http://dx.doi.org/10.1164/rccm.201402-0272LE] [PMID: 25084262]
[88]
Pappas L, Filippatos G. Pulmonary congestion in acute heart failure: From hemodynamics to lung injury and barrier dysfunction. Rev Esp Cardiol 2011; 64(9): 735-8.
[http://dx.doi.org/10.1016/j.recesp.2011.05.006] [PMID: 21775041]
[89]
Schuster A, Thakur A, Wang Z, Borowski AG, Thomas JD, Tang WHW. Increased exhaled nitric oxide levels after exercise in patients with chronic systolic heart failure with pulmonary venous hypertension. J Card Fail 2012; 18(10): 799-803.
[http://dx.doi.org/10.1016/j.cardfail.2012.08.356] [PMID: 23040116]
[90]
Witt K, Fischer C, Reulecke S, et al. Electronic nose detects heart failure from exhaled breath. Biomed Eng / Biomed Tech 2013; 58(Suppl 1)
[http://dx.doi.org/10.1515/bmt-2013-4145]
[91]
Agostoni P, Bussotti M. Exhaled nitric oxide and exercise performance in heart failure. Arch Physiol Biochem 2003; 111(4): 293-6.
[http://dx.doi.org/10.3109/13813450312331337423] [PMID: 15764057]
[92]
Sola Martínez RA, Pastor Hernández JM, Lozano Terol G, et al. Data preprocessing workflow for exhaled breath analysis by GC/MS using open sources. Sci Rep 2020; 10(1): 22008.
[http://dx.doi.org/10.1038/s41598-020-79014-6] [PMID: 33319832]
[93]
Vlasova T. Organ lipid distress syndrome in the pathogenesis of the progression of surgical endotoxicosis. 2015.
[94]
Morita TCAB, Trés GFS, Criado RFJ, Sotto MN, Criado PR. Update on vasculitis: an overview and dermatological clues for clinical and histopathological diagnosis - part I. An Bras Dermatol 2020; 95(3): 355-71.
[http://dx.doi.org/10.1016/j.abd.2020.01.003] [PMID: 32307202]
[95]
[96]
Sutaria SR, Gori SS, Morris JD, Xie Z, Fu XA, Nantz MH. Lipid peroxidation produces a diverse mixture of saturated and unsaturated aldehydes in exhaled breath that can serve as biomarkers of lung cancer—a review. Metabolites 2022; 12(6): 561.
[http://dx.doi.org/10.3390/metabo12060561] [PMID: 35736492]
[97]
Kanoh S, Kobayashi H, Motoyoshi K. Exhaled ethane. Chest 2005; 128(4): 2387-92.
[http://dx.doi.org/10.1378/chest.128.4.2387] [PMID: 16236899]
[98]
Plantier L, Smolinska A, Fijten R, et al. The use of exhaled air analysis in discriminating interstitial lung diseases: A pilot study. Respir Res 2022; 23(1): 12.
[http://dx.doi.org/10.1186/s12931-021-01923-5] [PMID: 35057817]
[99]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425]
[100]
McGraw KE, Riggs DW, Rai S, et al. Exposure to volatile organic compounds - acrolein, 1,3-butadiene, and crotonaldehyde - is associated with vascular dysfunction. Environ Res 2021; 196: 110903.
[http://dx.doi.org/10.1016/j.envres.2021.110903] [PMID: 33636185]
[101]
McGraw K. Identifying the cardiovascular effects of multiple pollutants. University of Louisville 2021.
[http://dx.doi.org/10.18297/etd/3605]
[102]
Sharma R, Zang W, Tabartehfarahani A, et al. Portable breath-based volatile organic compound monitoring for the detection of COVID-19 During the circulation of the SARS-CoV-2 delta variant and the transition to the SARS-CoV-2 omicron variant. JAMA Netw Open 2023; 6(2): e230982.
[http://dx.doi.org/10.1001/jamanetworkopen.2023.0982] [PMID: 36853606]
[103]
Ma CM, Lin LY, Chen HW, Huang LC, Li JF, Chuang KJ. Volatile organic compounds exposure and cardiovascular effects in hair salons. Occup Med 2010; 60(8): 624-30.
[http://dx.doi.org/10.1093/occmed/kqq128] [PMID: 20819803]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy