Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Ultrasound-assisted Aqueous Two-Phase Extraction of Flavonoids from Scutellariae Radix and Evaluation of their Bioactivities In Vitro

Author(s): Zhenkai Ge, Yongheng Zhao, Xu Ling, Chenpan Zhu and Xincai Hao*

Volume 20, Issue 2, 2024

Published on: 30 January, 2024

Page: [133 - 145] Pages: 13

DOI: 10.2174/0115734110285441240119060535

Price: $65

conference banner
Abstract

Background: Scutellariae Radix, one of the most widely used herbs in Traditional Chinese Medicine, exhibits various biological activities due to its chemical components, which stand out for a number of flavonoids. In this study, Ultrasound-assisted aqueous two-phase extraction (UAATPE) was employed for the first time to obtain a high extraction rate and high purity of flavonoids from Scutellariae Radix.

Methods: The Box-Behnken response surface method (RSM) was utilized to optimize the extraction conditions with the application of the new aqueous two-phase system (ATPS) composed of ethanol and ammonium sulfate. The major influence factors, including ethanol concentration, ammonium sulfate concentration, liquid-to-solid ratio, sonication time, and extraction temperature, were investigated by the single-factor experiment. The compositional characterization of flavonoids was characterized with HPLC-UV. Scanning electron microscopy (SEM) was applied to research the surface morphology of raw material. Furthermore, the bioactivities of the extract obtained by UA-ATPE were studied in vitro.

Results: The optimal extraction conditions were as follows: the ethanol content was 26.12% (w/w), the ammonium sulfate content was 20.02% (w/w), the liquid-to-solid ratio was 40 mL/g, the sonication time was 5 min with the ultrasonic power of 250 W, and the operating process was performed at room temperature. Compared with the traditional extraction methods, UA-ATPE exhibited higher extraction efficiency and better extraction selectivity. The DPPH and ABTS radical scavenging tests showed that enriched products possessed strong antioxidant activity.

Conclusion: The study confirmed that the developed method of UA-ATPE could be used as an efficient, eco-friendly, and low-consumption method for the extraction and purification of flavonoids from Scutellariae Radix.

Graphical Abstract

[1]
Wei, Z.F.; Wang, X.Q.; Peng, X.; Wang, W.; Zhao, C.J.; Zu, Y.G.; Fu, Y.J. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crops Prod., 2015, 63, 175-181.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.013]
[2]
Gu, Y.; Zheng, Q.; Fan, G.; Liu, R. Advances in anti-cancer activities of flavonoids in Scutellariae radix: Perspectives on mechanism. Int. J. Mol. Sci., 2022, 23(19), 11042-11060.
[http://dx.doi.org/10.3390/ijms231911042] [PMID: 36232344]
[3]
Paczkowska-Walendowska, M.; Cielecka-Piontek, J. Chitosan as a functional carrier for the local delivery anti-inflammatory systems containing scutellariae baicalensis radix extract. Pharmaceutics, 2022, 14(10), 2148-2163.
[http://dx.doi.org/10.3390/pharmaceutics14102148] [PMID: 36297583]
[4]
Yan, X.; Zhang, Y.; Peng, Y.; Li, X. The water extract of radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice. J. Ethnopharmacol., 2022, 293, 115238-115247.
[http://dx.doi.org/10.1016/j.jep.2022.115238] [PMID: 35351576]
[5]
Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z.; Lin, S.S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Ind. Crops Prod., 2013, 45, 182-190.
[http://dx.doi.org/10.1016/j.indcrop.2012.11.041]
[6]
Dong, J.; Zhou, K.; Ge, X.; Xu, N.; Wang, X.; He, Q.; Zhang, C.; Chu, J.; Li, Q. Effects of extraction technique on the content and antioxidant activity of flavonoids from gossypium hirsutum linn. flowers. Molecules, 2022, 27(17), 5627-5638.
[http://dx.doi.org/10.3390/molecules27175627] [PMID: 36080389]
[7]
Pharmacopoeia of People’s Republic of China; China Medical Science Press: Beijing,, 2020; p. 314.
[8]
Li, J.; Wu, C.; Li, F.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Zeng, W. Optimization of ultrasound-assisted water extraction of flavonoids from Psidium guajava leaves by response surface analysis. Prep. Biochem. Biotechnol., 2019, 49(1), 21-29.
[http://dx.doi.org/10.1080/10826068.2018.1466158] [PMID: 30621500]
[9]
Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol., 2012, 5(2), 409-424.
[http://dx.doi.org/10.1007/s11947-011-0573-z]
[10]
Yu, J.; Lou, Q.; Zheng, X.; Cui, Z.; Fu, J. Sequential combination of microwave- and ultrasound-assisted extraction of total flavonoids from osmanthus fragrans lour. flowers. Molecules, 2017, 22(12), 2216.
[http://dx.doi.org/10.3390/molecules22122216] [PMID: 29236089]
[11]
Sun, J.; Mu, Y.; Shi, J.; Zhao, Y.; Xu, B. Super/subcritical fluid extraction combined with ultrasound-assisted ethanol extraction in propolis development. J. Apic. Res., 2022, 61(2), 255-263.
[http://dx.doi.org/10.1080/00218839.2020.1772529]
[12]
Shen, Y.; Xu, M.; Chen, Y.; Wang, H.; Zhou, Y.; Zhu, Y.; Yang, H.; Yu, J. Integrated extraction and purification of total bioactive flavonoids from Toona sinensis leaves. Nat. Prod. Res., 2019, 33(20), 3025-3028.
[http://dx.doi.org/10.1080/14786419.2018.1512996] [PMID: 30580592]
[13]
Li, L.; Zhang, T.; Xing, J.; Xue, B.; Luo, Z.; Liu, Z. Ethanol/ammonium sulfate ultrasonic-assisted liquid–liquid extraction of flavonoids from Tibetan Sea-buckthorn fruit. J. Food Process. Preserv., 2022, 46(5), 16602.
[http://dx.doi.org/10.1111/jfpp.16602]
[14]
Heydari, R.; Darabi Bazvand, M.R. Ultrasound-assisted matrix solid-phase dispersion coupled with reversed-phase dispersive liquid–liquid microextraction for determination of vitamin C in various matrices. Food Anal. Methods, 2019, 12(9), 1949-1956.
[http://dx.doi.org/10.1007/s12161-019-01547-y]
[15]
Hao, C.; Chen, L.; Dong, H.; Xing, W.; Xue, F.; Cheng, Y. Extraction of flavonoids from scutellariae radix using ultrasound-assisted deep eutectic solvents and evaluation of their anti-inflammatory activities. ACS Omega, 2020, 5(36), 23140-23147.
[http://dx.doi.org/10.1021/acsomega.0c02898] [PMID: 32954164]
[16]
Xiong, Z.; Wang, M.; Guo, H.; Xu, J.; Ye, J.; Zhao, J.; Zhao, L. Ultrasound-assisted deep eutectic solvent as green and efficient media for the extraction of flavonoids from Radix scutellariae. New J. Chem., 2019, 43(2), 644-650.
[http://dx.doi.org/10.1039/C8NJ05604H]
[17]
Zhou, S.; Wu, X.; Huang, Y.; Xie, X.; Lin, Y.; Fan, H.; Luo, L.; Zhang, W.; Tang, J.Z. Microwave-assisted aqueous two-phase extraction of alkaloids from radix sophorae tonkinensis with an ethanol/Na2HPO4 system: Process optimization, composition identification and quantification analysis. Ind. Crops Prod., 2018, 122, 316-328.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.004]
[18]
Liu, X.; Liu, Y.; Shan, C.; Yang, X.; Zhang, Q.; Xu, N.; Xu, L.; Song, W. Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem. X, 2022, 14, 100287-100294.
[http://dx.doi.org/10.1016/j.fochx.2022.100287] [PMID: 35313650]
[19]
Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; Rostagno, M.A. Extraction of flavonoids from natural sources using modern techniques. Front Chem., 2020, 8, 507887-507911.
[http://dx.doi.org/10.3389/fchem.2020.507887] [PMID: 33102442]
[20]
Cheng, Z.; Cheng, L.; Song, H.; Yu, L.; Zhong, F.; Shen, Q.; Hu, H. Aqueous two-phase system for preliminary purification of lignans from fruits of Schisandra chinensis Baill. Separ. Purif. Tech., 2016, 166, 16-25.
[http://dx.doi.org/10.1016/j.seppur.2016.04.013]
[21]
Guo, T.; Su, D.; Huang, Y.; Wang, Y.; Li, Y.H. Ultrasound-assisted aqueous two-phase system for extraction and enrichment of zanthoxylum armatum lignans. Molecules, 2015, 20(8), 15273-15286.
[http://dx.doi.org/10.3390/molecules200815273] [PMID: 26307958]
[22]
Zhang, W.; Liu, X.; Fan, H.; Zhu, D.; Wu, X.; Huang, X.; Tang, J. Separation and purification of alkaloids from Sophora flavescens Ait. by focused microwave-assisted aqueous two-phase extraction coupled with reversed micellar extraction. Ind. Crops Prod., 2016, 86, 231-238.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.052]
[23]
Odabaş, H.İ Koca.; I. Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. Food Bioprod. Process., 2021, 125, 170-180.
[http://dx.doi.org/10.1016/j.fbp.2020.11.007]
[24]
Đorđević, T.; Antov, M. Ultrasound assisted extraction in aqueous two-phase system for the integrated extraction and separation of antioxidants from wheat chaff. Separ. Purif. Tech., 2017, 182, 52-58.
[http://dx.doi.org/10.1016/j.seppur.2017.03.025]
[25]
Xi, J.; Zhou, X.; Wang, Y.; Wei, S. Short-chain alcohol/salt-based aqueous two-phase system as a novel solvent for extraction of plant active ingredients: A review. Trends Food Sci. Technol., 2023, 138, 74-84.
[http://dx.doi.org/10.1016/j.tifs.2023.06.001]
[26]
Patil, S.S.; Pathak, A.; Rathod, V.K. Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: A greener route for extraction of curcuminoids from Curcuma longa. Ultrason. Sonochem., 2021, 70, 105267-105276.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105267] [PMID: 32920301]
[27]
Patil, S.S.; Rathod, V.K. Synergistic effect of ultrasound and three phase partitioning for the extraction of curcuminoids from Curcuma longa and its bioactivity profile. Process Biochem., 2020, 93, 85-93.
[http://dx.doi.org/10.1016/j.procbio.2020.02.031]
[28]
Yan, D.; Ji, Q.; Yu, X.; Li, M.; Abiola Fakayode, O.; Yagoub, A.E.A.; Chen, L.; Zhou, C. Multimode-ultrasound and microwave assisted natural ternary deep eutectic solvent sequential pretreatments for corn straw biomass deconstruction under mild conditions. Ultrason. Sonochem., 2021, 72, 105414-105424.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105414] [PMID: 33316733]
[29]
Yuan, T.; Huang, J.; Gan, L.; Chen, L.; Zhong, J.; Liu, Z.; Wang, L.; Fan, H. Ultrasonic enhancement of aqueous two-phase extraction and acid hydrolysis of flavonoids from malvaviscus arboreus cav. Antioxidants, 2022, 11(10), 2039-2060.
[http://dx.doi.org/10.3390/antiox11102039] [PMID: 36290762]
[30]
Zakaria, F.; Tan, J.K.; Mohd Faudzi, S.M.; Abdul Rahman, M.B.; Ashari, S.E. Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrason. Sonochem., 2021, 81, 105851-105858.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105851] [PMID: 34864545]
[31]
Guo, Y.X.; Han, J.; Zhang, D.Y.; Wang, L.H.; Zhou, L.L. An ammonium sulfate/ethanol aqueous two-phase system combined with ultrasonication for the separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge. Ultrason. Sonochem., 2012, 19(4), 719-724.
[http://dx.doi.org/10.1016/j.ultsonch.2011.12.017] [PMID: 22265019]
[32]
Wang, W.; Yang, J.; Yang, J. Optimization of ultrasound-assisted aqueous two phase extraction of polyphenols from olive leaves. Prep. Biochem. Biotechnol., 2021, 51(8), 821-831.
[http://dx.doi.org/10.1080/10826068.2020.1861012] [PMID: 33346692]
[33]
Li, P.; Xue, H.; Xiao, M.; Tang, J.; Yu, H.; Su, Y.; Cai, X. Ultrasonic-assisted aqueous two-phase extraction and properties of water-soluble polysaccharides from malus hupehensis. Molecules, 2021, 26(8), 2213-2225.
[http://dx.doi.org/10.3390/molecules26082213] [PMID: 33921423]
[34]
Liu, J.; Bai, J.; Shao, C.; Yao, S.; Xu, R.; Duan, S.; Wang, L.; Xu, Y.; Yang, Y. Optimization of ultrasound-assisted aqueous two-phase extraction of polysaccharides from seabuckthorn fruits using response methodology, physicochemical characterization and bioactivities. J. Sci. Food Agric., 2023, 103(6), 3168-3183.
[http://dx.doi.org/10.1002/jsfa.12283] [PMID: 36268589]
[35]
Zhang, D.; Luo, L.; Jin, M.; Zhao, M.; Niu, J.; Deng, S.; Long, X. Efficient isolation of biosurfactant rhamnolipids from fermentation broth via aqueous two-phase extraction with 2-propanol/ammonium sulfate system. Biochem. Eng. J., 2022, 188, 108676-108682.
[http://dx.doi.org/10.1016/j.bej.2022.108676]
[36]
Mai, X.; Liu, Y.; Tang, X.; Wang, L.; Lin, Y.; Zeng, H.; Luo, L.; Fan, H.; Li, P. Sequential extraction and enrichment of flavonoids from Euonymus alatus by ultrasonic-assisted polyethylene glycol-based extraction coupled to temperature-induced cloud point extraction. Ultrason. Sonochem., 2020, 66, 105073-105084.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105073] [PMID: 32247232]
[37]
Yedhu Krishnan, R.; Rajan, K.S. Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Separ. Purif. Tech., 2016, 157, 169-178.
[http://dx.doi.org/10.1016/j.seppur.2015.11.035]
[38]
Zhu, J.; Kou, X.; Wu, C.; Fan, G.; Li, T.; Dou, J.; Shen, D. Enhanced extraction of bioactive natural products using ultrasound-assisted aqueous two-phase system: Application to flavonoids extraction from jujube peels. Food Chem., 2022, 395, 133530.
[http://dx.doi.org/10.1016/j.foodchem.2022.133530] [PMID: 35777209]
[39]
Wang, H.; Jia, Q.; Jiang, J.; Huang, L. Ultrasound assisted aqueous two-phase extraction of anthocyanins from blueberry and its anti-tumor activity. Food Sci. Technol. Res., 2023, 29(4), 319-330.
[http://dx.doi.org/10.3136/fstr.FSTR-D-22-00224]
[40]
Mohseni, M.; Mousavi, M.; Kiani, H.; Tao, Y.; Homayoonfal, M. Ionic liquid-based ultrasonic-assisted extraction of L-citrulline from watermelon rind; Waste Biomass Valor, 2023.
[http://dx.doi.org/10.1007/s12649-023-02142-3]
[41]
Zhang, W.; Zhu, D.; Fan, H.; Liu, X.; Wan, Q.; Wu, X.; Liu, P.; Tang, J.Z. Simultaneous extraction and purification of alkaloids from Sophora flavescens Ait. by microwave-assisted aqueous two-phase extraction with ethanol/ammonia sulfate system. Separ. Purif. Tech., 2015, 141, 113-123.
[http://dx.doi.org/10.1016/j.seppur.2014.11.014]
[42]
Chen, Z.; Zhang, W.; Tang, X.; Fan, H.; Xie, X.; Wan, Q.; Wu, X.; Tang, J.Z. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC. Carbohydr. Polym., 2016, 144, 263-270.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.063] [PMID: 27083817]
[43]
Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed., 2016, 6(3), 239-245.
[http://dx.doi.org/10.1016/j.apjtb.2015.12.010]
[44]
Flieger, J.; Flieger, M. The [DPPH●/DPPH-H]-HPLC-DAD method on tracking the antioxidant activity of pure antioxidants and goutweed (aegopodium podagraria l.) hydroalcoholic extracts. Molecules, 2020, 25(24), 6005-6021.
[http://dx.doi.org/10.3390/molecules25246005] [PMID: 33353137]
[45]
Mohamed, S.A.; Awad, M.A.; El-Dengawy, E.R.F.A.; Abdel-Mageed, H.M.; El-Badry, M.O.; Salah, H.A.; Abdel-Aty, A.M.; Fahmy, A.S. Total phenolic and flavonoid contents and antioxidant activities of sixteen commercial date cultivars grown in Saudi Arabia. RSC Advances, 2016, 6(50), 44814-44819.
[http://dx.doi.org/10.1039/C6RA02831D]
[46]
Zhao, C.; Li, S.; Li, C.; Wang, T.; Tian, Y.; Li, X. Flavonoids from fig (Ficus carica Linn.) leaves: The development of a new extraction method and identification by UPLC-QTOF-MS/MS. Appl. Sci., 2021, 11(16), 7718-7734.
[http://dx.doi.org/10.3390/app11167718]
[47]
Sang, Y.; Hao, Z.; Dai, S.; Gao, Y.; Ge, S.; Xue, H. Optimization of aqueous two-phase extraction of polysaccharides from hawthorn by response surface methodology coupled with genetic algorithm and its antioxidant activity. Stärke, 2023, 75(11-12), 2300094.
[http://dx.doi.org/10.1002/star.202300094]
[48]
Xie, X.; Zhu, D.; Zhang, W.; Huai, W.; Wang, K.; Huang, X.; Zhou, L.; Fan, H. Microwave-assisted aqueous two-phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of four flavonoids in Crotalaria sessiliflora L. Ind. Crops Prod., 2017, 95, 632-642.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.032]
[49]
Chen, X.; Diao, W.; Ma, Y.; Mao, Z. Extraction and purification of ε-poly- L -lysine from fermentation broth using an ethanol/ammonium sulfate aqueous two-phase system combined with ultrafiltration. RSC Advances, 2020, 10(49), 29587-29593.
[http://dx.doi.org/10.1039/D0RA04245E] [PMID: 35521107]
[50]
Zuo, X.; Cao, Y.; Gong, A.; Wang, K. Comparison of two aqueous two-phase systems for extracting microcystin-LR from Algae Pulp. Solvent Extr. Res. Dev. Jpn., 2015, 22(2), 147-157.
[http://dx.doi.org/10.15261/serdj.22.147]
[51]
Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; Hussain, H.I.; Ahmed, S.; Yuan, Z. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online, 2016, 18(1), 18.
[http://dx.doi.org/10.1186/s12575-016-0048-8] [PMID: 27807400]
[52]
Ma, F.Y.; Gu, C.B.; Li, C.Y.; Luo, M.; Wang, W.; Zu, Y.G.; Li, J.; Fu, Y.J. Microwave-assisted aqueous two-phase extraction of isoflavonoids from Dalbergia odorifera T. Chen leaves. Separ. Purif. Tech., 2013, 115, 136-144.
[http://dx.doi.org/10.1016/j.seppur.2013.05.003]
[53]
Le, P.H.; Ho, L.T.T.; Le, D.H.T.; Nguyen, V. Purification of coffee polyphenols extracted from coffee pulps (coffee arabica l.) using aqueous two-phase system. Molecules, 2023, 28(15), 5922.
[http://dx.doi.org/10.3390/molecules28155922] [PMID: 37570892]
[54]
Wu, W.; Jiang, S.; Liu, M.; Tian, S. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. Ultrason. Sonochem., 2021, 80, 105833-105842.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105833] [PMID: 34798525]
[55]
Xue, H.; Xu, J.; Zhang, J.; Wei, Y.; Cai, X.; Tan, J. Modeling, optimization, purification, and characterization of polysaccharides from Lilium lancifolium Thunb. Lebensm. Wiss. Technol., 2022, 162, 113491-113500.
[http://dx.doi.org/10.1016/j.lwt.2022.113491]
[56]
Rezaeepour, R.; Heydari, R.; Ismaili, A. Ultrasound and salt-assisted liquid–liquid extraction as an efficient method for natural product extraction. Anal. Methods, 2015, 7(7), 3253-3259.
[http://dx.doi.org/10.1039/C5AY00150A]
[57]
Kim, E.J.; Yoon, K.Y. Effects of different extraction methods on the physicochemical properties and biological activities of polysaccharides from maca roots. CYTA J. Food, 2023, 21(1), 596-605.
[http://dx.doi.org/10.1080/19476337.2023.2252879]
[58]
Zhou, J.; Zheng, X.; Yang, Q.; Liang, Z.; Li, D.; Yang, X.; Xu, J. Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from Clerodendrum cyrtophyllum Turcz leaves. PLos One, 2013, 8(7), 1-8.
[59]
Jimenez-Champi, D.; Romero-Orejon, F.L.; Moran-Reyes, A.; Muñoz, A.M.; Ramos-Escudero, F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: A review. CYTA J. Food, 2023, 21(1), 418-432.
[http://dx.doi.org/10.1080/19476337.2023.2213746]
[60]
Dobrinčić, A.; Repajić, M.; Garofulić, I.E.; Tuđen, L.; Dragović,-Uzelac, V.; Levaj, B. Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes, 2020, 8(9), 1008.
[http://dx.doi.org/10.3390/pr8091008]
[61]
Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem., 2017, 10, S1145-S1157.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.007]
[62]
Chen, W.; Huang, Y.; Qi, J.; Tang, M.; Zheng, Y.; Zhao, S.; Chen, L. Optimization of ultrasound-assisted extraction of phenolic compounds from areca husk. J. Food Process. Preserv., 2012.
[http://dx.doi.org/10.1111/j.1745-4549.2012.00748.x]
[63]
Lee, E.J.; Yoon, K.Y. Optimization of extraction conditions for functional compounds from thinned unripe apple using β -cyclodextrin-based ultrasound-assisted extraction. CYTA J. Food, 2023, 21(1), 10-19.
[http://dx.doi.org/10.1080/19476337.2022.2156619]
[64]
Aguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M.A. Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food Funct., 2019, 10(8), 4739-4750.
[http://dx.doi.org/10.1039/C9FO00544G] [PMID: 31309208]
[65]
Tao, Y.; Wu, Y.; Han, Y.; Chemat, F.; Li, D.; Show, P.L. Insight into mass transfer during ultrasound-enhanced adsorption/desorption of blueberry anthocyanins on macroporous resins by numerical simulation considering ultrasonic influence on resin properties. Chem. Eng. J., 2020, 380, 122530.
[http://dx.doi.org/10.1016/j.cej.2019.122530]
[66]
Xie, G.; Shen, J.; Luo, J.; Li, D.; Tao, Y.; Song, C.; Han, Y. Simultaneous extraction and preliminary purification of polyphenols from grape pomace using an aqueous two-phase system exposed to ultrasound irradiation: Process characterization and simulation. Front. Nutr., 2022, 9, 993475.
[http://dx.doi.org/10.3389/fnut.2022.993475] [PMID: 36451741]
[67]
Bajkacz, S.; Adamek, J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta, 2017, 168, 329-335.
[http://dx.doi.org/10.1016/j.talanta.2017.02.065] [PMID: 28391863]
[68]
Xing, C.; Cui, W.Q.; Zhang, Y.; Zou, X.S.; Hao, J.Y.; Zheng, S.D.; Wang, T.T.; Wang, X.Z.; Wu, T.; Liu, Y.Y.; Chen, X.Y.; Yuan, S.G.; Zhang, Z.Y.; Li, Y.H. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: Optimization, extraction mechanism and in vitro bioactivities. Ultrason. Sonochem., 2022, 83, 105946-105957.
[http://dx.doi.org/10.1016/j.ultsonch.2022.105946] [PMID: 35151194]
[69]
Li, J.; Wang, R.; Sheng, Z.; Wu, Z.; Chen, C.; Ishfaq, M. Optimization of baicalin, wogonoside, and chlorogenic acid water extraction process from the roots of scutellariae radix and lonicerae japonicae flos using response surface methodology (RSM). Processes, 2019, 7(11), 854.
[http://dx.doi.org/10.3390/pr7110854]
[70]
Um, M.; Han, T.H.; Lee, J.W. Ultrasound-assisted extraction and antioxidant activity of phenolic and flavonoid compounds and ascorbic acid from rugosa rose (Rosa rugosa Thunb.) fruit. Food Sci. Biotechnol., 2017, 27(2), 375-382.
[http://dx.doi.org/10.1007/s10068-017-0247-3] [PMID: 30263760]
[71]
Fang, H.Y.; Wei, Y.Q.; Zhang, M.L.; Liu, W. A novel green extraction technique for extracting flavonoids from folium nelumbinis by changing osmosis pressure. Materials, 2020, 13(18), 4192-4201.
[http://dx.doi.org/10.3390/ma13184192] [PMID: 32967241]
[72]
Wang, W.H.; Li, W.L.; Chen, C.Y.; Chang, M.Y.; Huang, S.L.; Shih, C.H.; Lin, Y.S. Antioxidant ability of Chenopodium formosanum extracted using an ethanol–ammonium sulfate two-phase system. Chem. Biol. Technol. Agric., 2022, 9(1), 14-21.
[http://dx.doi.org/10.1186/s40538-022-00283-6]
[73]
Tan, J.; Cui, P.; Ge, S.; Cai, X.; Li, Q.; Xue, H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. Ultrason. Sonochem., 2022, 84, 105966-105977.
[http://dx.doi.org/10.1016/j.ultsonch.2022.105966] [PMID: 35247682]
[74]
Lasunon, P.; Sengkhamparn, N. Effect of ultrasound-assisted, microwave-assisted and ultrasound-microwave-assisted extraction on pectin extraction from industrial tomato waste. Molecules, 2022, 27(4), 1157-1169.
[http://dx.doi.org/10.3390/molecules27041157] [PMID: 35208946]
[75]
Luo, Q.; Zhang, J.R.; Li, H.B.; Wu, D.T.; Geng, F.; Corke, H.; Wei, X.L.; Gan, R.Y. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants, 2020, 9(9), 785-799.
[http://dx.doi.org/10.3390/antiox9090785] [PMID: 32854245]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy