Abstract
Background: Scutellariae Radix, one of the most widely used herbs in Traditional Chinese Medicine, exhibits various biological activities due to its chemical components, which stand out for a number of flavonoids. In this study, Ultrasound-assisted aqueous two-phase extraction (UAATPE) was employed for the first time to obtain a high extraction rate and high purity of flavonoids from Scutellariae Radix.
Methods: The Box-Behnken response surface method (RSM) was utilized to optimize the extraction conditions with the application of the new aqueous two-phase system (ATPS) composed of ethanol and ammonium sulfate. The major influence factors, including ethanol concentration, ammonium sulfate concentration, liquid-to-solid ratio, sonication time, and extraction temperature, were investigated by the single-factor experiment. The compositional characterization of flavonoids was characterized with HPLC-UV. Scanning electron microscopy (SEM) was applied to research the surface morphology of raw material. Furthermore, the bioactivities of the extract obtained by UA-ATPE were studied in vitro.
Results: The optimal extraction conditions were as follows: the ethanol content was 26.12% (w/w), the ammonium sulfate content was 20.02% (w/w), the liquid-to-solid ratio was 40 mL/g, the sonication time was 5 min with the ultrasonic power of 250 W, and the operating process was performed at room temperature. Compared with the traditional extraction methods, UA-ATPE exhibited higher extraction efficiency and better extraction selectivity. The DPPH and ABTS radical scavenging tests showed that enriched products possessed strong antioxidant activity.
Conclusion: The study confirmed that the developed method of UA-ATPE could be used as an efficient, eco-friendly, and low-consumption method for the extraction and purification of flavonoids from Scutellariae Radix.
Graphical Abstract
[http://dx.doi.org/10.1016/j.indcrop.2014.10.013]
[http://dx.doi.org/10.3390/ijms231911042] [PMID: 36232344]
[http://dx.doi.org/10.3390/pharmaceutics14102148] [PMID: 36297583]
[http://dx.doi.org/10.1016/j.jep.2022.115238] [PMID: 35351576]
[http://dx.doi.org/10.1016/j.indcrop.2012.11.041]
[http://dx.doi.org/10.3390/molecules27175627] [PMID: 36080389]
[http://dx.doi.org/10.1080/10826068.2018.1466158] [PMID: 30621500]
[http://dx.doi.org/10.1007/s11947-011-0573-z]
[http://dx.doi.org/10.3390/molecules22122216] [PMID: 29236089]
[http://dx.doi.org/10.1080/00218839.2020.1772529]
[http://dx.doi.org/10.1080/14786419.2018.1512996] [PMID: 30580592]
[http://dx.doi.org/10.1111/jfpp.16602]
[http://dx.doi.org/10.1007/s12161-019-01547-y]
[http://dx.doi.org/10.1021/acsomega.0c02898] [PMID: 32954164]
[http://dx.doi.org/10.1039/C8NJ05604H]
[http://dx.doi.org/10.1016/j.indcrop.2018.06.004]
[http://dx.doi.org/10.1016/j.fochx.2022.100287] [PMID: 35313650]
[http://dx.doi.org/10.3389/fchem.2020.507887] [PMID: 33102442]
[http://dx.doi.org/10.1016/j.seppur.2016.04.013]
[http://dx.doi.org/10.3390/molecules200815273] [PMID: 26307958]
[http://dx.doi.org/10.1016/j.indcrop.2016.03.052]
[http://dx.doi.org/10.1016/j.fbp.2020.11.007]
[http://dx.doi.org/10.1016/j.seppur.2017.03.025]
[http://dx.doi.org/10.1016/j.tifs.2023.06.001]
[http://dx.doi.org/10.1016/j.ultsonch.2020.105267] [PMID: 32920301]
[http://dx.doi.org/10.1016/j.procbio.2020.02.031]
[http://dx.doi.org/10.1016/j.ultsonch.2020.105414] [PMID: 33316733]
[http://dx.doi.org/10.3390/antiox11102039] [PMID: 36290762]
[http://dx.doi.org/10.1016/j.ultsonch.2021.105851] [PMID: 34864545]
[http://dx.doi.org/10.1016/j.ultsonch.2011.12.017] [PMID: 22265019]
[http://dx.doi.org/10.1080/10826068.2020.1861012] [PMID: 33346692]
[http://dx.doi.org/10.3390/molecules26082213] [PMID: 33921423]
[http://dx.doi.org/10.1002/jsfa.12283] [PMID: 36268589]
[http://dx.doi.org/10.1016/j.bej.2022.108676]
[http://dx.doi.org/10.1016/j.ultsonch.2020.105073] [PMID: 32247232]
[http://dx.doi.org/10.1016/j.seppur.2015.11.035]
[http://dx.doi.org/10.1016/j.foodchem.2022.133530] [PMID: 35777209]
[http://dx.doi.org/10.3136/fstr.FSTR-D-22-00224]
[http://dx.doi.org/10.1007/s12649-023-02142-3]
[http://dx.doi.org/10.1016/j.seppur.2014.11.014]
[http://dx.doi.org/10.1016/j.carbpol.2016.02.063] [PMID: 27083817]
[http://dx.doi.org/10.1016/j.apjtb.2015.12.010]
[http://dx.doi.org/10.3390/molecules25246005] [PMID: 33353137]
[http://dx.doi.org/10.1039/C6RA02831D]
[http://dx.doi.org/10.3390/app11167718]
[http://dx.doi.org/10.1002/star.202300094]
[http://dx.doi.org/10.1016/j.indcrop.2016.11.032]
[http://dx.doi.org/10.1039/D0RA04245E] [PMID: 35521107]
[http://dx.doi.org/10.15261/serdj.22.147]
[http://dx.doi.org/10.1186/s12575-016-0048-8] [PMID: 27807400]
[http://dx.doi.org/10.1016/j.seppur.2013.05.003]
[http://dx.doi.org/10.3390/molecules28155922] [PMID: 37570892]
[http://dx.doi.org/10.1016/j.ultsonch.2021.105833] [PMID: 34798525]
[http://dx.doi.org/10.1016/j.lwt.2022.113491]
[http://dx.doi.org/10.1039/C5AY00150A]
[http://dx.doi.org/10.1080/19476337.2023.2252879]
[http://dx.doi.org/10.1080/19476337.2023.2213746]
[http://dx.doi.org/10.3390/pr8091008]
[http://dx.doi.org/10.1016/j.arabjc.2013.02.007]
[http://dx.doi.org/10.1111/j.1745-4549.2012.00748.x]
[http://dx.doi.org/10.1080/19476337.2022.2156619]
[http://dx.doi.org/10.1039/C9FO00544G] [PMID: 31309208]
[http://dx.doi.org/10.1016/j.cej.2019.122530]
[http://dx.doi.org/10.3389/fnut.2022.993475] [PMID: 36451741]
[http://dx.doi.org/10.1016/j.talanta.2017.02.065] [PMID: 28391863]
[http://dx.doi.org/10.1016/j.ultsonch.2022.105946] [PMID: 35151194]
[http://dx.doi.org/10.3390/pr7110854]
[http://dx.doi.org/10.1007/s10068-017-0247-3] [PMID: 30263760]
[http://dx.doi.org/10.3390/ma13184192] [PMID: 32967241]
[http://dx.doi.org/10.1186/s40538-022-00283-6]
[http://dx.doi.org/10.1016/j.ultsonch.2022.105966] [PMID: 35247682]
[http://dx.doi.org/10.3390/molecules27041157] [PMID: 35208946]
[http://dx.doi.org/10.3390/antiox9090785] [PMID: 32854245]