Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Quantification of Rutin, an Anti-glycating Drug, in Selected Euphorbia Species by Florescence Spectroscopy and Partial Least Squares Regression Analysis

Author(s): Maroof Ali, Ajmal Khan*, Syed Abdullah Gilani, Liaqat Ali, Rabia Maqsood, Amjad Hussain, Hamida Al Rabani, Najeeb Ur Rehman, Farah Jabeen, Fazal Mabood*, Ahmed Al-Harrasi* and Javid Hussain*

Volume 20, Issue 2, 2024

Published on: 28 January, 2024

Page: [125 - 132] Pages: 8

DOI: 10.2174/0115734110283961240111045656

Price: $65

Abstract

Background: Rutin is a natural flavonol that showed excellent antiglycation activity with an IC50 value of 294.5 ± 1.5 μM. In the current study, three selected plant species of Euphorbia, i.e., Euphorbia helioscopia, Euphorbia larica, and Euphorbia wallichii, were analyzed for the quantification of rutin.

Methods: The quantification was done through a newly developed method of Emission spectroscopy coupled with Partial Least Square Regression (PLSR) and UV-visible spectroscopy as a parallel cross-validation method.

Results: The spectroscopic results indicated the highest rutin concentration in the roots of E. helioscopia (11.25 mg/100 g) followed by roots of E. wallichii (9.93 mg/100 g), leaves of E. helioscopia and the whole plant of E. larica (9.41 mg/100 g). The leaves of E. wallichii (8.66 mg/100 g) were found to contain the lowest concentration of rutin among all the tested samples.

Conclusion: The present method is one of the simple, robust, and non-destructive methods to carry out the quantitative estimation of rutin in plants.

Graphical Abstract

[1]
Middleton, E. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol., 1998, 439, 175-182.
[2]
Robles, C.; Greff, S.; Pasqualini, V.; Garzino, S.; Bousquet-Mélou, A.; Fernandez, C.; Korboulewsky, N.; Bonin, G. Phenols and flavonoids in Aleppo pine needles as bioindicators of air pollution. J. Environ. Qual., 2003, 32(6), 2265-2271.
[http://dx.doi.org/10.2134/jeq2003.2265] [PMID: 14674550]
[3]
de Groot, H.; Rauen, U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam. Clin. Pharmacol., 1998, 12(3), 249-255.
[http://dx.doi.org/10.1111/j.1472-8206.1998.tb00951.x] [PMID: 9646056]
[4]
Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric., 2000, 80(7), 985-1012.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985:AID-JSFA572>3.0.CO;2-7]
[5]
Yilmaz, Y.; Toledo, R.T. Health aspects of functional grape seed constituents. Trends Food Sci. Technol., 2004, 15(9), 422-433.
[http://dx.doi.org/10.1016/j.tifs.2004.04.006]
[6]
Harborne, J. Nature, distribution and function of plant flavonoids. Plant Flavon. Biol. Med., 1985, 22-26, 1986.
[7]
Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (Fagopyrum esculentumMoench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem., 1999, 47(11), 4649-4652.
[http://dx.doi.org/10.1021/jf990186p] [PMID: 10552865]
[8]
Javed, H.; Khan, M.M.; Ahmad, A.; Vaibhav, K.; Ahmad, M.E.; Khan, A.; Ashafaq, M.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; Islam, F. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience, 2012, 210, 340-352.
[http://dx.doi.org/10.1016/j.neuroscience.2012.02.046] [PMID: 22441036]
[9]
Tao, J.; Hu, Q.; Yang, J.; Li, R.; Li, X.; Lu, C.; Chen, C.; Wang, L.; Shattock, R.; Ben, K. In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Res., 2007, 75(3), 227-233.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.008] [PMID: 17459492]
[10]
Nasrollahzadeh, M.; Mohammad Sajadi, S.; Babaei, F.; Maham, M. Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. J. Colloid Interface Sci., 2015, 450, 374-380.
[http://dx.doi.org/10.1016/j.jcis.2015.03.033] [PMID: 25854504]
[11]
Demirkiran, O.; Topcu, G.; Hussain, J.; Uddin Ahmad, V.; Choudhary, M.I. Structure elucidation of two new unusual monoterpene glycosides from Euphorbia decipiens, by 1D and 2D NMR experiments. Magn. Reson. Chem., 2011, 49(10), 673-677.
[http://dx.doi.org/10.1002/mrc.2795] [PMID: 21898586]
[12]
Tang, Q.; Su, Z.; Han, Z.; Ma, X.; Xu, D.; Liang, Y.; Cao, H.; Wang, X.; Qu, X.; Hoffman, A.; Liu, H.; Gu, D.; Qiu, D. LC–MS method for detecting prostratin in plant extracts and identification of a high-yielding population of Euphorbia fischeriana. Phytochem. Lett., 2012, 5(1), 214-218.
[http://dx.doi.org/10.1016/j.phytol.2011.12.011]
[13]
Alabri, Z.K.; Hussain, J.; Mabood, F.; Rehman, N.U.; Ali, L.; Al-Harrasi, A.; Hamaed, A.; Khan, A.L.; Rizvi, T.S.; Jabeen, F.; Khan, A.; Naureen, Z.; Farooq, S. Fluorescence spectroscopy-partial least square regression method for the quantification of quercetin in Euphorbia masirahensis. Measurement, 2018, 121, 355-359.
[http://dx.doi.org/10.1016/j.measurement.2018.02.036]
[14]
Abdallah, Y.M.; Shalabi, K. Comprehensive study of the behavior of copper inhibition in 1 M HNO3 by Euphorbia Helioscopia linn. extract as green inhibitor. Prot. Met. Phys. Chem. Surf., 2015, 51(2), 275-284.
[http://dx.doi.org/10.1134/S2070205115020021]
[15]
Cateni, F.; Zilic, J.; Altieri, T.; Zacchigna, M.; Procida, G.; Gaggeri, R.; Rossi, D.; Collina, S. Lipid metabolites with free-radical scavenging activity from Euphorbia helioscopia L. Chem. Phys. Lipids, 2014, 181, 90-98.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.03.001] [PMID: 24657341]
[16]
Badshah, L.; Hussain, F. People preferences and use of local medicinal flora in District Tank, Pakistan. J. Med. Plants Res., 2011, 5(1), 22-29.
[17]
Barla, A. Secondary metabolites from Euphorbia helioscopia and their vasodepressor activity. Turk. J. Chem., 2006, 30(3), 325-332.
[18]
Al-Mahmooli, I.H.; Al-Bahri, Y.S.; Al-Sadi, A.M.; Deadman, M.L. First report of euphorbia larica dieback caused by fusarium brachygibbosum in Oman. Plant Dis., 2013, 97(5), 687-687.
[http://dx.doi.org/10.1094/PDIS-09-12-0828-PDN] [PMID: 30722217]
[19]
Khuseib Hamed Al-Rashdi, F.; Al-Sadi, A.M.; Al-Riyamy, B.Z.; Maharachchikumbura, S.N. Alternaria alternata and Neocosmospora sp. from the medicinal plant Euphorbia larica exhibit antagonistic activity against Fusarium sp., a plant pathogenic fungus. All Life, 2020, 13(1), 223-232.
[http://dx.doi.org/10.1080/26895293.2020.1759702]
[20]
Divakar, M.C.; Al-Siyabi, A.; Varghese, S.S. Al- Rubaie, M. The practice of ethnomedicine in the northern and southern provinces of Oman. Oman Med. J., 2016, 31(4), 245-252.
[http://dx.doi.org/10.5001/omj.2016.49] [PMID: 27403235]
[21]
Jassbi, A.R. Chemistry and biological activity of secondary metabolites in Euphorbia from Iran. Phytochemistry, 2006, 67(18), 1977-1984.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.030] [PMID: 16889806]
[22]
Pan, L.; Zhou, P.; Zhang, X.; Peng, S.; Ding, L.; Qiu, S.X. Skeleton-rearranged pentacyclic diterpenoids possessing a cyclobutane ring from Euphorbia wallichii. Org. Lett., 2006, 8(13), 2775-2778.
[http://dx.doi.org/10.1021/ol0608552] [PMID: 16774254]
[23]
Ali, M.; Ahmed, S.; Saleem, M. Spirowallichiione: A rearranged multiflorane from Euphorbia wallichii Hook F. (Euphorbiaceae). Molecules, 2008, 13(2), 405-411.
[http://dx.doi.org/10.3390/molecules13020405] [PMID: 18305427]
[24]
Zhang, X.; Wang, H.; Sheng, J.; Luo, X. A new guaiane diterpenoid from Euphorbia wallichii. Nat. Prod. Res., 2006, 20(1), 89-92.
[http://dx.doi.org/10.1080/14786410500045382] [PMID: 16286316]
[25]
En-Nakra, F.; Uzun, D.; Hasdemir, E. Voltammetric determination of rutin in fruit juice samples using a 2 mercaptobenzothiazole coated pencil graphite electrode. J. Food Compos. Anal., 2021, 104, 104183.
[http://dx.doi.org/10.1016/j.jfca.2021.104183]
[26]
Ali, M.; Aldosari, A.; Tng, D.Y.P.; Ullah, M.; Hussain, W.; Ahmad, M.; Hussain, J.; Khan, A.; Hussain, H.; Sher, H.; Bussmann, R.W.; Shao, J-W. Traditional uses of plants by indigenous communities for veterinary practices at Kurram District, Pakistan. Ethnobot. Res. Appl., 2019, 18, 1-19.
[http://dx.doi.org/10.32859/era.18.24.1-19]
[27]
da Silva, J.G.; Magarelli, G.; Pedroza, T.M.; Cavalcante, R.S.; de Souza, J.R.; da Silva, J.P.; Carrão-Panizzi, M.C.; de Castro, C.S.P. Determination of total isoflavones and rutin in seeds, roots, and leaves of Brazilian soybean cultivars by using voltammetric methods. J. Agricult. Food Res., 2021, 3, 100113.
[http://dx.doi.org/10.1016/j.jafr.2021.100113]
[28]
Magarelli, G.; Lima, L.H.C.; da Silva, J.G. SouzaDe, J.R.; de Castro, C.S.P. Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods. Microchem. J., 2014, 117, 149-155.
[http://dx.doi.org/10.1016/j.microc.2014.06.019]
[29]
Kicel, A.; Owczarek, A.; Michel, P.; Skalicka-Woźniak, K.; Kiss, A.K.; Olszewska, M.A. Application of HPCCC, UHPLC-PDA-ESI-MS 3 and HPLC-PDA methods for rapid, one-step preparative separation and quantification of rutin in Forsythia flowers. Ind. Crops Prod., 2015, 76, 86-94.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.019]
[30]
Rodríguez-Valdovinos, K.Y.; Salgado-Garciglia, R.; Vázquez-Sánchez, M.; Álvarez-Bernal, D.; Oregel-Zamudio, E.; Ceja-Torres, L.F.; Medina-Medrano, J.R. Quantitative analysis of rutin by HPTLC and in vitro antioxidant and antibacterial activities of phenolic-rich extracts from Verbesina sphaerocephala. Plants, 2021, 10(3), 475.
[http://dx.doi.org/10.3390/plants10030475] [PMID: 33802461]
[31]
Alam, P.; Parvez, M.K.; Arbab, A.H.; Al-Dosari, M.S. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis. Pharm. Biol., 2017, 55(1), 1317-1323.
[http://dx.doi.org/10.1080/13880209.2017.1300175] [PMID: 28283004]
[32]
Doshi, G.; Une, H. Quantification of quercetin and rutin from Benincasa hispida seeds and Carissa congesta roots by high-performance thin layer chromatography and high-performance liquid chromatography. Pharmacognosy Res., 2016, 8(1), 37-42.
[http://dx.doi.org/10.4103/0974-8490.171098] [PMID: 26941534]
[33]
Rane, S.; Adhyapak, A.; Gharge, S.; Koli, R.; Singadi, R.; Halagali, P. UV and HPTLC-based approaches towards rutin determination in abutilon theophrasti extract. J. Pharmaceut. Sci. Res., 2023, 14(7), 790-794.
[34]
Pandey, J.; Bastola, T.; Tripathi, J.; Tripathi, M.; Rokaya, R.K.; Dhakal, B.; Bhandari, R.; Poudel, A. Estimation of total quercetin and rutin content in Malus domestica of Nepalese origin by HPLC method and determination of their antioxidative activity. J. Food Qual., 2020, 2020, 8853426.
[http://dx.doi.org/10.1155/2020/8853426]
[35]
Yao, T.; Song, J.; Yan, H.; Chen, S. Functionalized aqueous biphasic system coupled with HPLC for highly sensitive detection of quinolones in milk. Lebensm. Wiss. Technol., 2023, 173, 114398.
[http://dx.doi.org/10.1016/j.lwt.2022.114398]
[36]
Yao, T.; Li, H.; Ren, Y.; Feng, M.; Hu, Y.; Yan, H.; Peng, L. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech., 2022, 282, 120034.
[http://dx.doi.org/10.1016/j.seppur.2021.120034]
[37]
Yao, T.; Feng, C.; Chen, W.; Chen, S. Selective separation and simultaneous recoveries of amino acids by temperature-sensitive magnetic ionic liquid aqueous biphasic system. J. Mol. Liq., 2023, 371, 121099.
[http://dx.doi.org/10.1016/j.molliq.2022.121099]
[38]
Yao, T.; Li, Q.; Li, H.; Peng, L.; Liu, Y.; Du, K. Extractive resolution of racemic phenylalanine and preparation of optically pure product by chiral magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech., 2021, 274, 119024.
[http://dx.doi.org/10.1016/j.seppur.2021.119024]
[39]
Nayak, A.; Matta, G.; Uniyal, D.P. Hydrochemical characterization of groundwater quality using chemometric analysis and water quality indices in the foothills of Himalayas. Environ. Dev. Sustain., 2022, 25(12), 1-32.
[PMID: 36118735]
[40]
Nayak, A.; Matta, G.; Prasad Uniyal, D.; Kumar, A.; Kumar, P.; Pant, G. Assessment of potentially toxic elements in groundwater through interpolation, pollution indices, and chemometric techniques in Dehradun in Uttarakhand State. Environ. Sci. Pollut. Res. Int., 2023, 1-23.
[http://dx.doi.org/10.1007/s11356-023-27419-x] [PMID: 37184800]
[41]
Matta, G.; Kumar, A.; Nayak, A.; Kumar, P.; Pant, G. Pollution complexity quantification using NPI and HPI of River Ganga system in Himalayan Region. Proc. Indian Natl. Sci. Acad. A Phys. Sci., 2022, 88(4), 651-663.
[http://dx.doi.org/10.1007/s43538-022-00111-3]
[42]
Mohamed Amine, B.; zeghadnia,; Nesrine, B.; Matta, G.; Boranen, S. Drinking water quality assessment using principal component analysis: Case study of the town of souk ahras, Algeria. Egypt. J. Chem., 2021, 64(6), 3069-3075.
[http://dx.doi.org/10.21608/ejchem.2021.53654.3112]
[43]
Matta, G.; Kumar, A.; Nayak, A.; Kumar, P. Appraisal of spatial–temporal variation and pollution source estimation of Ganga River system through pollution indices and environmetrics in Upper Ganga basin. Appl. Water Sci., 2022, 12(3), 33.
[http://dx.doi.org/10.1007/s13201-021-01552-9]
[44]
Ali, M.; Yar, P.; Khan, S.; Muhammad, S.; Hussain, W.; Hussain, K.; Hussain, G.; Aneva, I.Y.; Yue Phin Tng, D.; Bussmann, R.W. Land use and land cover modification and its impact on biodiversity and the ecosystem services in District Kurram, Pakistan. Bol. Latinoam. Caribe Plantas Med. Aromat., 2022, 21(3), 365-388.
[45]
Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 1964, 36(8), 1627-1639.
[http://dx.doi.org/10.1021/ac60214a047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy