Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Study on the Chemical Composition of the Mainstream Cherry-red Tobacco Smoke

Author(s): Yong Li, Tao Pang*, Yihan Zhang, Junli Shi, Zhongbang Song and Zhaoli Xu

Volume 20, Issue 2, 2024

Published on: 29 January, 2024

Page: [115 - 124] Pages: 10

DOI: 10.2174/0115734110280007240110042158

Price: $65

Abstract

Introduction: Cherry-red tobacco is a flue-cured variant that possesses a distinctive “sticky rice” flavor, which is highly valued by the tobacco industry. However, the value of cherryred tobacco is dubious due to the possible health risks associated with tobacco-specific nitrosamines (TSNAs).

Objective: This study aimed to investigate the chemical origin of the “sticky rice” flavor and to assess the potential health hazards of TSNAs.

Methods: An optimized untargeted analysis with gas chromatography-mass spectrometry and a targeted analysis with liquid chromatography-tandem mass spectrometry were conducted.

Result: Over one hundred compounds were identified and quantified. Cherry-red tobacco and the normal control showed significant differences in forty-three of these compounds. Pyridine alkaloids and their derivatives constituted the main difference. Nornicotine, a demethylated product of nicotine in cherry-red tobacco, was confirmed to be pyrolyzed to 3-ethylpyridine, 3-methylpyridine, and other homologues, and transferred to the smoke during smoking. The smoke of cherry-red tobacco was found to contain much higher levels of N’-nitrosonornicotine, a TSNA derived from nornicotine, than that of normal flue-cured tobacco, while the levels of the other detected TSNAs were lower. The two types of tobacco had similar total amounts of the four TSNAs.

Conclusion: The pyrolysis of nornicotine into 3-ethylpyridine and its homologues during smoking may be the main cause of the “sticky rice” flavor of cherry-red tobacco. The level of TSNAs does not reflect the difference in health risk between cherry-red tobacco and the control.

Graphical Abstract

[1]
Chakrabarti, M.; Meekins, K.M.; Gavilano, L.B.; Siminszky, B. Inactivation of the cytochrome P450 gene CYP82E2 by degenerative mutations was a key event in the evolution of the alkaloid profile of modern tobacco. New Phytol., 2007, 175(3), 565-574.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02116.x] [PMID: 17635231]
[2]
Hall, J.L.; Weybrew, J.A.; Mann, T.J. Conversion of nicotine to nornicotine in grafts between cherry-red tobacco and related materials. Plant Physiol., 1965, 40(1), 45-48.
[http://dx.doi.org/10.1104/pp.40.1.45] [PMID: 16656067]
[3]
Siminszcky, B.; Dewey, R.E. Study on the principle of nicotine to nornicotine and development of related genetic resources. Acta Tabacaria Sin., 2006, 12(4), 65-66.
[4]
Song, Z.; Sui, X.; Zhang, Y.; Wang, Y.; Zhao, G.; Li, Y.; Wang, B.; Liu, J.; Xie, Y.; Yang, S.; Gu, H. The CYP82E4 expression pattern and nicotine conversion rate in cherry-red tobacco. Acta Tabacaria Sinica, 2021, 27(06), 75-80.
[http://dx.doi.org/10.16472/j.chinatobacco.2021.019]
[5]
Wada, E. Conversion of nicotine to nornicotine in Cherry Red tobacco during flue-curing. Arch. Biochem. Biophys., 1956, 62(2), 471-475.
[http://dx.doi.org/10.1016/0003-9861(56)90145-X] [PMID: 13328135]
[6]
Wada, E.; Ihida, M. The enzymic oxidation of chlorogenic and caffeic acids in the presence of nornicotine. Arch. Biochem. Biophys., 1957, 71(2), 393-402.
[http://dx.doi.org/10.1016/0003-9861(57)90050-4] [PMID: 13471042]
[7]
Liu, Y.; Zhu, X.; Wang, F.; Ying, T.; Li, P.; Huang, Z.X.; Tan, X. Probing the role of the bridging C509 between the [Fe4S4] cubane and the [NipNid] centre in the A-cluster of acetyl-coenzyme A synthase. Chem. Commun., 2011, 47(4), 1291-1293.
[http://dx.doi.org/10.1039/C0CC03587D] [PMID: 21103478]
[8]
Siminszky, B.; Gavilano, L.; Bowen, S.W.; Dewey, R.E. Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc. Natl. Acad. Sci., 2005, 102(41), 14919-14924.
[http://dx.doi.org/10.1073/pnas.0506581102] [PMID: 16192354]
[9]
Weeks, W.W.; Campos, M.P.; Moldoveanu, S. Biochemical and model chemical reactions for the basis of red pigment in flue-cured tobacco. J. Agric. Food Chem., 1993, 41(8), 1321-1328.
[http://dx.doi.org/10.1021/jf00032a030]
[10]
Weeks, W.W.; Campos, M.P.; Moldoveanu, S. Pyrolysis of cherry red tobacco and 1-deoxy-1-[(S)-2-(3-pyridyl)-1-pyrrolidinyl]-beta-D-fructose (pyranose and furanose isomers) Amadori products of cherry red tobacco. J. Agric. Food Chem., 1995, 43(8), 2247-2253.
[http://dx.doi.org/10.1021/jf00056a052]
[11]
Li, Y.; Pang, T.; Shi, J.; Zou, C.; Wang, Y.; Song, Z.; Gu, H.; Sui, X. Analysis of flavor compounds of cherry-red tobacco. Chin. Tob. Sci., 2021, 42(04), 78-84.
[http://dx.doi.org/10.13496/j.issn.1007-5119.2021.04.012]
[12]
Li, Y.; Pang, T.; Shi, J.; Bai, G.; Sui, X.; Chen, X. Structure elucidation and quantitation of 11 N'-n-acylnornicotines in cherry-red tobacco. J. Chromatogr. Sci., 2022, 61(5), 403-409.
[PMID: 35567797]
[13]
Liu, Z.; Zhang, F.; Liu, Z.; Han, J.; Mao, D.; Hong, L.; Tang, S.; Wei, J.; Li, Z.; Wang, Y. Comparative analysis of aroma components of cinnabar and common tobacco leaves by HS-SPME-GC/MS and their sensory differences. Tob. Sci. Technol., 2020, 53(7), 54-61.
[http://dx.doi.org/10.1016/j.jpba.2007.08.030]
[14]
Zhang, Z.; Dong, G.; Yin, P.; Zhao, Z.; Wang, B.; He, Z. Study on the formation mechanism and chemical characteristics of cherryred tobacco; China Food Industry, 2022. pp. 09.
[15]
Liu, F.; Zhang, Y.; Pu, X.; Cai, N.; Sui, X.; Rengel, Z.; Chen, Q.; Song, Z. Physiological and molecular changes in cherry red tobacco in response to iron deficiency stress. Front. Plant Sci., 2022, 13861081
[http://dx.doi.org/10.3389/fpls.2022.861081] [PMID: 35392517]
[16]
Gao, Q.; Sha, Y.; Wu, D.; Liu, B.; Chen, C.; Fang, D. Analysis of the volatile components emitted from cut tobacco processing by gas chromatography/mass spectrometry thermal desorption system. Talanta, 2012, 101, 198-202.
[http://dx.doi.org/10.1016/j.talanta.2012.08.050] [PMID: 23158312]
[17]
Li, Y.; Pang, T.; Li, Y.; Wang, X.; Li, Q.; Lu, X.; Xu, G. Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves. J. Sep. Sci., 2011, 34(12), 1447-1454.
[http://dx.doi.org/10.1002/jssc.201100106] [PMID: 21560246]
[18]
Ishizaki, A.; Kataoka, H. A sensitive method for the determination of tobacco-specific nitrosamines in mainstream and sidestream smokes of combustion cigarettes and heated tobacco products by online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2019, 1075, 98-105.
[http://dx.doi.org/10.1016/j.aca.2019.04.073] [PMID: 31196428]
[19]
Li, Y.; Pang, T.; Shi, J.; Lu, X.; Deng, J.; Lin, Q. Simultaneous determination of alkaloids and their related tobacco-specific nitrosamines in tobacco leaves using LC-MS-MS. J. Chromatogr. Sci., 2015, 53(10)bmv082
[http://dx.doi.org/10.1093/chromsci/bmv082] [PMID: 26116833]
[20]
Gong, C.; Zhou, Y.; Yang, H. ,Eds.; Introduction for three stages curing of flue-cured tobacco; Science Press: Beijing, 2006.
[21]
Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods, 2015, 12(6), 523-526.
[http://dx.doi.org/10.1038/nmeth.3393] [PMID: 25938372]
[22]
Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; Kind, T.; Beal, P.; Arita, M.; Fiehn, O. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods, 2018, 15(1), 53-56.
[http://dx.doi.org/10.1038/nmeth.4512] [PMID: 29176591]
[23]
Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmüller, E.; Dörmann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; Willmitzer, L.; Fernie, A.R.; Steinhauser, D. GMD@CSB.DB: The golm metabolome database. Bioinformatics, 2005, 21(8), 1635-1638.
[http://dx.doi.org/10.1093/bioinformatics/bti236] [PMID: 15613389]
[24]
Balasubrahmanyam, S.N.; Quin, L.D. pyrolytic degradation of nornicotine and myosmine. Tob. Sci., 1962, 6(31), 135-138.
[25]
Lv, J.; Wei, R.; Liang, Y.; Zheng, S. Synthesis of 3-ethylpyridine, a new tobacco flavor. Acta Tianjin Inst. Technol., 1995, (2), 71-75.
[26]
Chakrabarti, M.; Bowen, S.W.; Coleman, N.P.; Meekins, K.M.; Dewey, R.E.; Siminszky, B. CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway. Plant Mol. Biol., 2008, 66(4), 415-427.
[http://dx.doi.org/10.1007/s11103-007-9280-6] [PMID: 18196465]
[27]
Kang, P.L.; Shang, C.; Liu, Z.P. Glucose to 5-hydroxymethylfurfural: Origin of site-selectivity resolved by machine learning based reaction sampling. J. Am. Chem. Soc., 2019, 141(51), 20525-20536.
[http://dx.doi.org/10.1021/jacs.9b11535] [PMID: 31799842]
[28]
Mayes, H.B.; Nolte, M.W.; Beckham, G.T.; Shanks, B.H.; Broadbelt, L.J. The alpha–bet(a) of glucose pyrolysis: Computational and experimental investigations of 5-hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustain. Chem. Eng., 2014, 2(6), 1461-1473.
[http://dx.doi.org/10.1021/sc500113m]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy