Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Targeting STAT3 Enzyme for Cancer Treatment

Author(s): Sowmiya Arun, Praveen Kumar Patel, Kaviarasan Lakshmanan, Kalirajan Rajangopal, Gomathi Swaminathan and Gowramma Byran*

Volume 24, Issue 13, 2024

Published on: 29 January, 2024

Page: [1252 - 1261] Pages: 10

DOI: 10.2174/0113895575254012231024062619

Price: $65

conference banner
Abstract

A category of cytoplasmic transcription factors called STATs mediates intracellular signaling, which is frequently generated at receptors on cell surfaces and subsequently sent to the nucleus. STAT3 is a member of a responsible for a variety of human tumor forms, including lymphomas, hematological malignancies, leukemias, multiple myeloma and several solid tumor types. Numerous investigations have demonstrated constitutive STAT3 activation lead to cancer development such as breast, head and neck, lung, colorectal, ovarian, gastric, hepatocellular, and prostate cancers. It's possible to get a hold of the book here. Tumor cells undergo apoptosis when STAT3 activation is suppressed. This review highlights the STAT3 activation and inhibition which can be used for further studies.

Graphical Abstract

[1]
Zou, S.; Tong, Q.; Liu, B.; Huang, W.; Tian, Y.; Fu, X. Targeting STAT3 in cancer immunotherapy. Mol. Cancer, 2020, 19(1), 145.
[http://dx.doi.org/10.1186/s12943-020-01258-7] [PMID: 32972405]
[2]
Bournazou, E.; Bromberg, J. Targeting the tumor microenvironment. JAK-STAT, 2013, 2(2), e23828.
[http://dx.doi.org/10.4161/jkst.23828] [PMID: 24058812]
[3]
Christofi, T.; Baritaki, S.; Falzone, L.; Libra, M.; Zaravinos, A. Current perspectives in cancer immunotherapy. Cancers (Basel), 2019, 11(10), 1472.
[http://dx.doi.org/10.3390/cancers11101472] [PMID: 31575023]
[4]
Lin, W.H.; Chang, Y.W.; Hong, M.X.; Hsu, T.C.; Lee, K.C.; Lin, C.; Lee, J.L. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene, 2021, 40(4), 791-805.
[http://dx.doi.org/10.1038/s41388-020-01566-8] [PMID: 33262462]
[5]
Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J.; Sato, Y.; Kataoka, M.; Ogawsa, S.; Haga, N.; Kojima, Y. Interleukin-6 induces drug resistance in renal cell carcinoma. Fukushima J. Med. Sci., 2018, 64(3), 103-110.
[http://dx.doi.org/10.5387/fms.2018-15] [PMID: 30369518]
[6]
Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; Ramón y Cajal, S.; Megías, D.; Hernández-Encinas, E.; Blanco-Aparicio, C.; Martínez, L.; Zarzuela, E.; Muñoz, J.; Fustero-Torre, C.; Piñeiro-Yáñez, E.; Hernández-Laín, A.; Bertero, L.; Poli, V.; Sanchez-Martinez, M.; Menendez, J.A.; Soffietti, R.; Bosch-Barrera, J.; Valiente, M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med., 2018, 24(7), 1024-1035.
[http://dx.doi.org/10.1038/s41591-018-0044-4] [PMID: 29892069]
[7]
Resemann, H.K.; Watson, C.J.; Lloyd-Lewis, B. The Stat3 paradox: A killer and an oncogene. Mol. Cell. Endocrinol., 2014, 382(1), 603-611.
[http://dx.doi.org/10.1016/j.mce.2013.06.029] [PMID: 23827176]
[8]
Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; Somlo, G.; Jandial, R.; Ann, D.; Hanash, S.; Jove, R.; Yu, H. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab., 2018, 27(1), 136-150.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.11.001] [PMID: 29249690]
[9]
Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci., 2018, 27(12), 1984-2009.
[http://dx.doi.org/10.1002/pro.3519] [PMID: 30267440]
[10]
Lee, H.; Pal, S.K.; Reckamp, K.; Figlin, R.A.; Yu, H. STAT3: A target to enhance antitumor immune response. Curr. Top. Microbiol. Immunol., 2010, 344, 41-59.
[http://dx.doi.org/10.1007/82_2010_51] [PMID: 20517723]
[11]
Fathi, N.; Rashidi, G.; Khodadadi, A.; Shahi, S.; Sharifi, S. STAT3 and apoptosis challenges in cancer. Int. J. Biol. Macromol., 2018, 117, 993-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.121] [PMID: 29782972]
[12]
Pérez, C.; Mondéjar, R.; García-Díaz, N.; Cereceda, L.; León, A.; Montes, S.; Durán Vian, C.; Pérez Paredes, M.G.; González-Morán, A.; Alegre de Miguel, V.; Sanz Anquela, J.M.; Frias, J.; Limeres, M.A.; González, L.M.; Martín Dávila, F.; Beltrán, M.; Mollejo, M.; Méndez, J.R.; González, M.A.; González García, J.; López, R.; Gómez, A.; Izquierdo, F.; Ramos, R.; Camacho, C.; Rodriguez-Pinilla, S.M.; Martínez, N.; Vaqué, J.P.; Ortiz-Romero, P.L.; Piris, M.A. Advanced-stage mycosis fungoides: role of the signal transducer and activator of transcription 3, nuclear factor-κB and nuclear factor of activated T cells pathways. Br. J. Dermatol., 2020, 182(1), 147-155. [research article].
[PMID: 31049933]
[13]
Zamaraev, A.V.; Kopeina, G.S.; Zhivotovsky, B.; Lavrik, I.N. Cell death controlling complexes and their potential therapeutic role. Cell. Mol. Life Sci., 2015, 72(3), 505-517.
[http://dx.doi.org/10.1007/s00018-014-1757-2] [PMID: 25323133]
[14]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[15]
Fulda, S.; Debatin, K.-M. Caspase activation in cancer therapy. In: Madame Curie Bioscience Database;
[16]
Indran, I.R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta Bioenerg., 2011, 1807(6), 735-745.
[http://dx.doi.org/10.1016/j.bbabio.2011.03.010] [PMID: 21453675]
[17]
Loh, C.Y.; Arya, A.; Naema, A.F.; Wong, W.F.; Sethi, G.; Looi, C.Y. Signal Transducer and Activator of Transcription (STATs) proteins in cancer and inflammation: Functions and therapeutic implication. Front. Oncol., 2019, 9.
[http://dx.doi.org/10.3389/fonc.2019.00048]
[18]
Subramaniam, A; Shanmugam, MK; Perumal, E; Li, F; Nachiyappan, A; Dai, X Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation, and invasion of hepatocellular carcinoma. Biochim Biophys Acta BBA - Rev Cancer, 2013, 1835(1), 46-60.
[19]
Rozovski, U.; Calin, G.A.; Setoyama, T.; D’Abundo, L.; Harris, D.M.; Li, P.; Liu, Z.; Grgurevic, S.; Ferrajoli, A.; Faderl, S.; Burger, J.A.; O’Brien, S.; Wierda, W.G.; Keating, M.J.; Estrov, Z. Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells. Mol. Cancer, 2013, 12(1), 50.
[http://dx.doi.org/10.1186/1476-4598-12-50] [PMID: 23725032]
[20]
Abroun, S.; Saki, N.; Ahmadvand, M.; Asghari, F.; Salari, F.; Rahim, F. STATs: An old story, yet mesmerizing. Cell J., 2015, 17(3), 395-411.
[PMID: 26464811]
[21]
üntelmann, B.; Staab, J.; Herrmann-Lingen, C.; Meyer, T. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites. PLOS ONE, 2014, 9(5), e97633.
[http://dx.doi.org/10.1371/journal.pone.0097633]
[22]
Wake, M.S.; Watson, C.J. STAT3 the oncogene - still eluding therapy? FEBS J., 2015, 282(14), 2600-2611.
[http://dx.doi.org/10.1111/febs.13285] [PMID: 25825152]
[23]
Zhang, H.X.; Yang, P.L.; Li, E.M.; Xu, L.Y. STAT3beta, a distinct isoform from STAT3. Int. J. Biochem. Cell Biol., 2019, 110, 130-139.
[http://dx.doi.org/10.1016/j.biocel.2019.02.006] [PMID: 30822557]
[24]
Chakraborty, A.; Dyer, K.F.; Cascio, M.; Mietzner, T.A.; Tweardy, D.J. Identification of a novel Stat3 recruitment and activation motif within the granulocyte colony-stimulating factor receptor. Blood, 1999, 93(1), 15-24.
[PMID: 9864141]
[25]
Wang, X.; Chu, Q.; Jiang, X.; Y, Y.; Wang, L.; Cui, Y.; Lu, J.; Teng, L.; Wang, D. Sarcodon imbricatus polysaccharides improve mouse hematopoietic function after cyclophosphamide-induced damage via G-CSF mediated JAK2/STAT3 pathway Cell Death Dise. 2018, 9(6)
[26]
Chun, K.S.; Jang, J.H.; Kim, D.H. Perspectives regarding the intersections between stat3 and oxidative metabolism in cancer. Cells, 2020, 9(10), 2202.
[http://dx.doi.org/10.3390/cells9102202] [PMID: 33003453]
[27]
Hughes, K.; Watson, C. The multifaceted role of STAT3 in mammary gland involution and breast cancer. Int. J. Mol. Sci., 2018, 19(6), 1695.
[http://dx.doi.org/10.3390/ijms19061695] [PMID: 29875329]
[28]
Wang, S.; Wang, Y.; Huang, Z.; Wei, H.; Wang, X.; Shen, R.; Lan, W.; Zhong, G.; Lin, J. Stattic sensitizes osteosarcoma cells to epidermal growth factor receptor inhibitors via blocking the interleukin 6-induced STAT3 pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2021, 53(12), 1670-1680.
[http://dx.doi.org/10.1093/abbs/gmab146] [PMID: 34693451]
[29]
Zhang, X.; Yue, P.; Fletcher, S.; Zhao, W.; Gunning, P.T.; Turkson, J. A novel small-molecule disrupts Stat3 SH2 domain–phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem. Pharmacol., 2010, 79(10), 1398-1409.
[http://dx.doi.org/10.1016/j.bcp.2010.01.001] [PMID: 20067773]
[30]
Wang, Y.; Liu, S.; Jiang, G.; Zhai, W.; Yang, L.; Li, M.; Chang, Z.; Zhu, B. NOK associates with c-Src and promotes c-Src-induced STAT3 activation and cell proliferation. Cell. Signal., 2020, 75, 109762.
[http://dx.doi.org/10.1016/j.cellsig.2020.109762] [PMID: 32871210]
[31]
Sonoda, K. Expression of activated signal transducer and activator Stat3 as a predictor of poor prognosis in cervical cancer. Expert Rev. Obstet. Gynecol., 2010, 5(2), 161-164. [research article]
[http://dx.doi.org/10.1586/eog.10.1]
[32]
Geletu, M.; Adan, H.; Niit, M.; Arulanandam, R.; Carefoot, E.; Hoskin, V.; Sina, D.; Elliott, B.; Gunning, P.; Raptis, L. Modulation of Akt vs. Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp. Cell Res., 2021, 404(1), 112601.
[http://dx.doi.org/10.1016/j.yexcr.2021.112601] [PMID: 33957118]
[33]
Rébé, C.; Végran, F.; Berger, H.; Ghiringhelli, F. STAT3 activation. JAK-STAT, 2013, 2(1), e23010.
[http://dx.doi.org/10.4161/jkst.23010] [PMID: 24058791]
[34]
Gough, D.J.; Koetz, L.; Levy, D.E. The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation. PLoS One, 2013, 8(11), e83395.
[http://dx.doi.org/10.1371/journal.pone.0083395] [PMID: 24312439]
[35]
Fagard, R.; Metelev, V.; Souissi, I.; Baran-Marszak, F. STAT3 inhibitors for cancer therapy. JAK-STAT, 2013, 2(1), e22882.
[http://dx.doi.org/10.4161/jkst.22882] [PMID: 24058788]
[36]
Galoczova, M.; Coates, P.; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell. Mol. Biol. Lett., 2018, 23, 12.
[http://dx.doi.org/10.1186/s11658-018-0078-0] [PMID: 29588647]
[37]
Guanizo, A.C.; Fernando, C.D.; Garama, D.J.; Gough, D.J. STAT3: a multifaceted oncoprotein. Growth Factors, 2018, 36(1-2), 1-14.
[http://dx.doi.org/10.1080/08977194.2018.1473393] [PMID: 29873274]
[38]
Mirzaei, S.; Gholami, M.H.; Hushmandi, K.; Hashemi, F.; Zabolian, A.; Canadas, I.; Zarrabi, A.; Nabavi, N.; Aref, A.R.; Crea, F.; Wang, Y.; Ashrafizadeh, M.; Kumar, A.P. Correction: The long and short non-coding RNAs modulating EZH2 signaling in cancer. J. Hematol. Oncol., 2022, 15(1), 50.
[http://dx.doi.org/10.1186/s13045-022-01276-6] [PMID: 35524266]
[39]
Lokau, J.; Schoeder, V.; Haybaeck, J.; Garbers, C. Jak-stat signaling induced by interleukin-6 family cytokines in hepatocellular carcinoma. Cancers (Basel), 2019, 11(11), 1704.
[http://dx.doi.org/10.3390/cancers11111704] [PMID: 31683891]
[40]
Dittrich, A.; Hessenkemper, W.; Schaper, F. Systems biology of IL-6, IL-12 family cytokines. Cytokine Growth Factor Rev., 2015, 26(5), 595-602.
[http://dx.doi.org/10.1016/j.cytogfr.2015.07.002] [PMID: 26187858]
[41]
Verhoeven, Y.; Tilborghs, S.; Jacobs, J.; De Waele, J.; Quatannens, D.; Deben, C.; Prenen, H.; Pauwels, P.; Trinh, X.B.; Wouters, A.; Smits, E.L.J.; Lardon, F.; van Dam, P.A. The potential and controversy of targeting STAT family members in cancer. Semin. Cancer Biol., 2020, 60, 41-56.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.002] [PMID: 31605750]
[42]
Ng, I.H.W.; Ng, D.C.H.; Jans, D.A.; Bogoyevitch, M.A. Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. Biochem. J., 2012, 447(1), 125-136.
[http://dx.doi.org/10.1042/BJ20120941] [PMID: 22799634]
[43]
Martincuks, A.; Andryka, K.; Küster, A.; Schmitz-Van de Leur, H.; Komorowski, M.; Müller-Newen, G. Nuclear translocation of STAT3 and NF-κB are independent of each other but NF-κB supports expression and activation of STAT3. Cell. Signal., 2017, 32, 36-47.
[http://dx.doi.org/10.1016/j.cellsig.2017.01.006] [PMID: 28089769]
[44]
Kojima, H.; Inoue, T.; Kunimoto, H.; Nakajima, K. IL-6-STAT3 signaling and premature senescence. JAK-STAT, 2013, 2(4), e25763.
[http://dx.doi.org/10.4161/jkst.25763] [PMID: 24416650]
[45]
Kruczyk, M.; Przanowski, P.; Dabrowski, M.; Swiatek-Machado, K.; Mieczkowski, J.; Wallerman, O.; Ronowicz, A.; Piotrowski, A.; Wadelius, C.; Kaminska, B.; Komorowski, J. Integration of genome-wide of Stat3 binding and epigenetic modification mapping with transcriptome reveals novel Stat3 target genes in glioma cells. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(11), 1341-1350.
[http://dx.doi.org/10.1016/j.bbagrm.2014.07.010] [PMID: 25111868]
[46]
Durant, L.; Watford, W.T.; Ramos, H.L.; Laurence, A.; Vahedi, G.; Wei, L.; Takahashi, H.; Sun, H.W.; Kanno, Y.; Powrie, F.; O’Shea, J.J. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity, 2010, 32(5), 605-615.
[http://dx.doi.org/10.1016/j.immuni.2010.05.003] [PMID: 20493732]
[47]
Cendrowski, J.; Mamińska, A.; Miaczynska, M. Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev., 2016, 32, 63-73.
[http://dx.doi.org/10.1016/j.cytogfr.2016.07.002] [PMID: 27461871]
[48]
Garama, D.J.; White, C.L.; Balic, J.J.; Gough, D.J. Mitochondrial STAT3: Powering up a potent factor. Cytokine, 2016, 87, 20-25.
[http://dx.doi.org/10.1016/j.cyto.2016.05.019] [PMID: 27269970]
[49]
Gai, L.; Zhu, Y.; Zhang, C.; Meng, X. Targeting canonical and non-canonical STAT signaling pathways in renal diseases. Cells, 2021, 10(7), 1610.
[http://dx.doi.org/10.3390/cells10071610] [PMID: 34199002]
[50]
Elich, M.; Sauer, K. Regulation of hematopoietic cell development and function through phosphoinositides. Front. Immunol., 2018, 9, 931.
[http://dx.doi.org/10.3389/fimmu.2018.00931] [PMID: 29780388]
[51]
Haghikia, A.; Ricke-Hoch, M.; Stapel, B.; Gorst, I.; Hilfiker-Kleiner, D. STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovasc. Res., 2014, 102(2), 281-289.
[http://dx.doi.org/10.1093/cvr/cvu034] [PMID: 24518140]
[52]
Quinton, L.J.; Blahna, M.T.; Jones, M.R.; Allen, E.; Ferrari, J.D.; Hilliard, K.L.; Zhang, X.; Sabharwal, V.; Algül, H.; Akira, S.; Schmid, R.M.; Pelton, S.I.; Spira, A.; Mizgerd, J.P. Hepatocytespecific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice. J. Clin. Invest., 2012, 122(5), 1758-1763.
[http://dx.doi.org/10.1172/JCI59408] [PMID: 22466650]
[53]
Wang, H.; Lafdil, F.; Kong, X.; Gao, B. Signal transducer and activator of transcription 3 in liver diseases: A novel therapeutic target. Int. J. Biol. Sci., 2011, 7(5), 536-550.
[http://dx.doi.org/10.7150/ijbs.7.536] [PMID: 21552420]
[54]
Vickers, N.J. Animal communication: When I’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[55]
Ren, J.Y.; Song, J.X.; Lu, M.Y.; Chen, H. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regul. Pept., 2011, 169(1-3), 49-57.
[http://dx.doi.org/10.1016/j.regpep.2011.04.004] [PMID: 21554904]
[56]
Shaw, P.E. Could STAT3 provide a link between respiration and cell cycle progression? Cell Cycle, 2010, 9(21), 4294-4296.
[http://dx.doi.org/10.4161/cc.9.21.13677] [PMID: 20962592]
[57]
Kang, J.H.; Jang, Y.S.; Lee, H.J.; Lee, C.Y.; Shin, D.Y.; Oh, S.H. Inhibition of STAT3 signaling induces apoptosis and suppresses growth of lung cancer: Good and bad. Lab. Anim. Res., 2019, 35(1), 30.
[http://dx.doi.org/10.1186/s42826-019-0030-0] [PMID: 32257917]
[58]
Liang, J.; Wang, D.; Renaud, G.; Wolfsberg, T.G.; Wilson, A.F.; Burgess, S.M. The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish stat3/socs3a pathway: Regulator of hair cell regeneration. J. Neurosci., 2012, 32(31), 10662-10673.
[http://dx.doi.org/10.1523/JNEUROSCI.5785-10.2012] [PMID: 22855815]
[59]
Timme, S.; Ihde, S.; Fichter, C.D.; Waehle, V.; Bogatyreva, L.; Atanasov, K.; Kohler, I.; Schöpflin, A.; Geddert, H.; Faller, G.; Klimstra, D.; Tang, L.; Reinheckel, T.; Hauschke, D.; Busch, H.; Boerries, M.; Werner, M.; Lassmann, S. STAT3 expression, activity and functional consequences of STAT3 inhibition in esophageal squamous cell carcinomas and Barrett’s adenocarcinomas. Oncogene, 2014, 33(25), 3256-3266.
[http://dx.doi.org/10.1038/onc.2013.298] [PMID: 23912451]
[60]
Aigner, P.; Mizutani, T.; Horvath, J.; Eder, T.; Heber, S.; Lind, K.; Just, V.; Moll, H.P.; Yeroslaviz, A.; Fischer, M.J.M.; Kenner, L.; Győrffy, B.; Sill, H.; Grebien, F.; Moriggl, R.; Casanova, E.; Stoiber, D. STAT3β is a tumor suppressor in acute myeloid leukemia. Blood Adv., 2019, 3(13), 1989-2002.
[http://dx.doi.org/10.1182/bloodadvances.2018026385] [PMID: 31270081]
[61]
Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal., 2017, 15(1), 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[62]
Vainchenker, W.; Constantinescu, S.N. JAK/STAT signaling in hematological malignancies. Oncogene, 2013, 32(21), 2601-2613.
[http://dx.doi.org/10.1038/onc.2012.347] [PMID: 22869151]
[63]
Jatiani, S.S.; Baker, S.J.; Silverman, L.R.; Reddy, E.P. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer, 2010, 1(10), 979-993.
[http://dx.doi.org/10.1177/1947601910397187] [PMID: 21442038]
[64]
Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci., 2024, 117(8), 1281-1283. [Available from: https://journals.biologists.com/jcs/research]
[65]
Park, K.W.; Lin, C.Y.; Lee, Y.S. Expression of Suppressor of Cytokine Signaling-3 (SOCS3) and its role in neuronal death after complete spinal cord injury. Exp. Neurol., 2014, 261, 65-75.
[http://dx.doi.org/10.1016/j.expneurol.2014.06.013] [PMID: 24959867]
[66]
Vogel, T.P.; Milner, J.D.; Cooper, M.A. The ying and yang of STAT3 in human disease. J. Clin. Immunol., 2015, 35(7), 615-623.
[http://dx.doi.org/10.1007/s10875-015-0187-8] [PMID: 26280891]
[67]
Yuan, J.; Zhang, F.; Niu, R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci. Rep., 2015, 5, 17663.
[http://dx.doi.org/10.1038/srep17663] [PMID: 26631279]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy