Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Quinoline Derivatives as Promising Scaffolds for Antitubercular Activity: A Comprehensive Review

Author(s): Mohammad Owais, Arun Kumar*, Syed Misbahul Hasan, Kuldeep Singh, Iqbal Azad*, Arshad Hussain, Suvaiv and Mohd Akil

Volume 24, Issue 13, 2024

Published on: 05 January, 2024

Page: [1238 - 1251] Pages: 14

DOI: 10.2174/0113895575281039231218112953

Price: $65

Abstract

Background: Heterocyclic compounds and their derivatives play a significant role in the design and development of novel quinoline drugs. Among the various pharmacologically active heterocyclic compounds, quinolines stand out as the most significant rings due to their broad pharmacological roles, specifically antitubercular activity, and their presence in plant-based compounds. Quinoline is also known as benzpyridine, benzopyridine, and 1-azanaphthalene. It has a benzene ring fused with a pyridine ring, and both rings share two carbon atoms. The importance of quinoline lies in its incorporation as a key component in various natural compounds found in medicinal plant families like Fumariaceae, Berberidaceae, Rutaceae, Papavaraceae, and others.

Objective: This article is expected to have a significant impact on the advancement of effective antitubercular drugs. Through harnessing the potent activity of quinoline derivatives, the research aims to make valuable contributions to combating tuberculosis more efficiently and ultimately reducing the global burden of this infectious disease.

Methods: Numerous nitrogen-containing heterocyclic compounds exhibit significant potential as antitubercular agents. These chemicals have fused aromatic nitrogen-heterocyclic nuclei that can change the number of electrons they have, which can change their chemical, physical, and biological properties. This versatility comes from their ability to bind with the receptors in multiple modes, a critical aspect of drug pharmacological screening. Among these compounds, quinoline stands out as it incorporates a stable fusion of a benzene ring with a pyridine nucleus. Quinolines have demonstrated a diverse range of pharmacological activities, including but not limited to anti-tubercular, anti-tumor, anticoagulant, anti-inflammatory, antioxidant, antiviral, antimalarial, anti-HIV, and antimicrobial effects.

Results: Some molecules, such as lone-paired nitrogen species, include pyrrole, pyrazole, and quinoline. These molecules contain nitrogen and take part in metabolic reactions with other molecules inside the cell. However, an excessive accumulation of reactive nitrogen species can lead to cytotoxicity, resulting in damage to essential biological macromolecules. Among these compounds, quinoline stands out as the oldest and most effective one, exhibiting a wide range of significant properties such as antitubercular, antimicrobial, anti-inflammatory, antioxidant, analgesic, and anticonvulsant activities. Notably, naturally occurring quinoline compounds, such as quinine, have proven to be potent antimalarial drugs.

Conclusion: This review highlights quinoline derivatives' antitubercular potential, emphasizing recent research advancements. Utilizing IC50 values, the study emphasizes the efficacy of various quinoline substitutions, hybrids, and electron-withdrawing groups against MTB H37Rv. Continued research is essential for developing potent, low-toxicity quinoline derivatives to combat tuberculosis.

Graphical Abstract

[1]
Brooks, J.T.; Kaplan, J.E.; Holmes, K.K.; Benson, C.; Pau, A.; Masur, H. HIV-associated opportunistic infections--going, going, but not gone: The continued need for prevention and treatment guidelines. Clin. Infect. Dis., 2009, 48(5), 609-611.
[http://dx.doi.org/10.1086/596756] [PMID: 19191648]
[2]
World Health Organization (WHO). Global tuberculosis report., Available from: https://www.who.int/teams/global-tuberculosis-programme/data
[3]
Engohang-Ndong, J. Antimycobacterial drugs currently in Phase II clinical trials and preclinical phase for tuberculosis treatment. Expert Opin. Investig. Drugs, 2012, 21(12), 1789-1800.
[http://dx.doi.org/10.1517/13543784.2012.724397] [PMID: 22991970]
[4]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[5]
Manske, R.H. The chemistry of quinolines. Chem. Rev., 1942, 30(1), 113-144.
[http://dx.doi.org/10.1021/cr60095a006]
[6]
Prescott, T.A.K.; Sadler, I.H.; Kiapranis, R.; Maciver, S.K. Lunacridine from Lunasia amara is a DNA intercalating topoisomerase II inhibitor. J. Ethnopharmacol., 2007, 109(2), 289-294.
[http://dx.doi.org/10.1016/j.jep.2006.07.036] [PMID: 16963212]
[7]
Srivastava, V.; Negi, A.S.; Kumar, J.K.; Gupta, M.M.; Khanuja, S.P.S. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorg. Med. Chem., 2005, 13(21), 5892-5908.
[http://dx.doi.org/10.1016/j.bmc.2005.05.066] [PMID: 16129603]
[8]
Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry, 2000, 54(2), 115-120.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[9]
Du, W. Towards new anticancer drugs: A decade of advances in synthesis of camptothecins and related alkaloids. Tetrahedron, 2003, 59(44), 8649-8687.
[http://dx.doi.org/10.1016/S0040-4020(03)01203-1]
[10]
Byler, K.G.; Wang, C.; Setzer, W.N. Quinoline alkaloids as intercalative topoisomerase inhibitors. J. Mol. Model., 2009, 15(12), 1417-1426.
[http://dx.doi.org/10.1007/s00894-009-0501-6] [PMID: 19424733]
[11]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[12]
Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B.A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U.S.; Rao, V.J. Synthesis of multisubstitutedquinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg. Med. Chem. BI., 2006, 14(13), 4600-4609.
[http://dx.doi.org/10.1016/j.bmc.2006.02.020]
[13]
Venkat Reddy, G.; Ravi Kanth, S.; Maitraie, D.; Narsaiah, B.; Shanthan Rao, P.; Hara Kishore, K.; Murthy, U.S.N.; Ravi, B.; Ashok Kumar, B.; Parthasarathy, T. Design, synthesis, structureactivity relationship and antibacterial activity series of novel imidazo fused quinolone carboxamides. Eur. J. Med. Chem., 2009, 44(4), 1570-1578.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.024] [PMID: 18775585]
[14]
Fu, H.G.; Li, Z.W.; Hu, X.X.; Si, S.Y.; You, X.F.; Tang, S.; Wang, Y.X.; Song, D.Q. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules, 2019, 24(3), 548.
[http://dx.doi.org/10.3390/molecules24030548] [PMID: 30717338]
[15]
Kharkar, P.S.; Deodhar, M.N.; Kulkarni, V.M. Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine. Med. Chem. Res., 2009, 18(6), 421-432.
[http://dx.doi.org/10.1007/s00044-008-9138-8]
[16]
Kumar, S.; Bawa, S.; Drabu, S.; Panda, B.P. Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents. Med. Chem. Res., 2011, 20(8), 1340-1348.
[http://dx.doi.org/10.1007/s00044-010-9463-6]
[17]
Nayak, G.; Shrivastava, B.; Singhai, A. Synthesis and antimicrobial activity of azetidin-2-one fused 2-chloro-3-formyl quinoline derivatives. Orient. J. Chem., 2016, 32(4), 1977-1982.
[http://dx.doi.org/10.13005/ojc/320423]
[18]
Yang, G.Z.; Zhu, J.K.; Yin, X.D.; Yan, Y.F.; Wang, Y.L.; Shang, X.F.; Liu, Y.Q.; Zhao, Z.M.; Peng, J.W.; Liu, H. Design, synthesis, and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J. Agric. Food Chem., 2019, 67(41), 11340-11353.
[http://dx.doi.org/10.1021/acs.jafc.9b04224] [PMID: 31532201]
[19]
Fang, Y.M.; Zhang, R.R.; Shen, Z.H.; Wu, H.K.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H. Synthesis, antifungal activity, and sar study of some new 6‐perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem., 2018, 55(1), 240-245.
[http://dx.doi.org/10.1002/jhet.3031]
[20]
Akula, M.; Yogeeswari, P.; Sriram, D.; Jha, M.; Bhattacharya, A. Synthesis and anti-tubercular activity of fused thieno-/furoquinoline compounds. RSC Advances, 2016, 6(52), 46073-46080.
[http://dx.doi.org/10.1039/C6RA03187K]
[21]
Tanwar, B.; Kumar, A.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new antitubercular leads. Bioorg. Med. Chem. Lett., 2016, 26(24), 5960-5966.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.082] [PMID: 27839684]
[22]
Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118.
[http://dx.doi.org/10.1021/jm900003c] [PMID: 19271749]
[23]
Dinakaran, M.; Senthilkumar, P.; Yogeeswari, P.; China, A.; Nagaraja, V.; Sriram, D. Novel ofloxacin derivatives: Synthesis, antimycobacterial and toxicological evaluation. Bioorg. Med. Chem. Lett., 2008, 18(3), 1229-1236.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.110] [PMID: 18068979]
[24]
Senthilkumar, P.; Dinakaran, M.; Yogeeswari, P.; Sriram, D.; China, A.; Nagaraja, V. Synthesis and antimycobacterial activities of novel 6-nitroquinolone-3-carboxylic acids. Eur. J. Med. Chem., 2009, 44(1), 345-358.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.031] [PMID: 18502542]
[25]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J.F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: Potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[http://dx.doi.org/10.1016/j.bmc.2003.09.007] [PMID: 14604664]
[26]
Ghosh, J.; Swarup, V.; Saxena, A.; Das, S.; Hazra, A.; Paira, P.; Banerjee, S.; Mondal, N.B.; Basu, A. Therapeutic effect of a novel anilidoquinoline derivative, 2-(2-methyl-quinoline-4ylamino)-N-(2-chlorophenyl)-acetamide, in Japanese encephalitis: correlation with in vitro neuroprotection. Int. J. Antimicrob. Agents, 2008, 32(4), 349-354.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.05.001] [PMID: 18674886]
[27]
Massari, S.; Daelemans, D.; Manfroni, G.; Sabatini, S.; Tabarrini, O.; Pannecouque, C.; Cecchetti, V. Studies on anti-HIV quinolones: New insights on the C-6 position. Bioorg. Med. Chem., 2009, 17(2), 667-674.
[http://dx.doi.org/10.1016/j.bmc.2008.11.056] [PMID: 19091580]
[28]
Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1948-1956.
[http://dx.doi.org/10.1016/j.bmc.2009.01.038] [PMID: 19217787]
[29]
McNulty, J.; Vemula, R.; Bordón, C.; Yolken, R.; Jones-Brando, L. Synthesis and anti-toxoplasmosis activity of 4-arylquinoline-2-carboxylate derivatives. Org. Biomol. Chem., 2014, 12(2), 255-260.
[http://dx.doi.org/10.1039/C3OB41539B] [PMID: 24276426]
[30]
Ma, X.; Zhou, W.; Brun, R. Synthesis, in vitro antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones. Bioorg. Med. Chem. Lett., 2009, 19(3), 986-989.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.078] [PMID: 19095449]
[31]
Hochegger, P.; Faist, J.; Seebacher, W.; Saf, R.; Mäser, P.; Kaiser, M.; Weis, R. Antiprotozoal activities of tetrazole-quinolines with aminopiperidine linker. Med. Chem., 2019, 15(4), 409-416.
[http://dx.doi.org/10.2174/1573406414666181015115101] [PMID: 30324885]
[32]
Chibale, K.; Moss, J.R.; Blackie, M.; van Schalkwyk, D.; Smith, P.J. New amine and urea analogs of ferrochloroquine: Synthesis, antimalarial activity in vitro and electrochemical studies. Tetrahedron Lett., 2000, 41(32), 6231-6235.
[http://dx.doi.org/10.1016/S0040-4039(00)01036-4]
[33]
Sureshkumar, B.; Mary, Y.S.; Panicker, C.Y.; Suma, S.; Armaković, S.; Armaković, S.J.; Van Alsenoy, C.; Narayana, B. Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic, DFT and MD study. Arab. J. Chem., 2020, 13(1), 632-648.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.006]
[34]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[35]
Leatham, P.A.; Bird, H.A.; Wright, V.; Seymour, D.; Gordon, A. A double blind study of antrafenine, naproxen and placebo in osteoarthrosis. Eur. J. Rheumatol. Inflamm., 1983, 6(2), 209-211.
[PMID: 6673985]
[36]
Mahamoud, A.; Chevalier, J.; Davin-Regli, A.; Barbe, J.; Pagès, J.M. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets, 2006, 7(7), 843-847.
[http://dx.doi.org/10.2174/138945006777709557] [PMID: 16842215]
[37]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[38]
Denny, W.A.; Wilson, W.R.; Ware, D.C.; Atwell, G.J.; Milbank, J.B.; Stevenson, R.J. Anticancer 2,3-dihydro-1H-pyrrolo[3,2-f]quinoline complexes of cobalt and chromium. U.S. Patent 7064117B2, 2006.
[39]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[40]
Wilson, W.D.; Zhao, M.; Patterson, S.E.; Wydra, R.L.; Janda, L.; Strekowski, L. Design of RNA interactive anti-HIV agents: Unfused aromatic intercalators. Med. Chem. Res., 1992, 2, 102-110.
[41]
Strekowski, L.; Mokrosz, J.L.; Honkan, V.A.; Czarny, A.; Cegla, M.T.; Wydra, R.L.; Patterson, S.E.; Schinazi, R.F. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents. J. Med. Chem., 1991, 34(5), 1739-1746.
[http://dx.doi.org/10.1021/jm00109a031] [PMID: 2033597]
[42]
a) Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37, 2129-2137.
[http://dx.doi.org/10.1021/jm00040a003];
b) Amy Sarah, G.; Jacques, H.G. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3, 432-442.
[43]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium Tuberculosis. Sci., 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[44]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[45]
Rustomjee, R.; Diacon, A.H.; Allen, J.; Venter, A.; Reddy, C.; Patientia, R.F.; Mthiyane, T.C.P.; De Marez, T.; van Heeswijk, R.; Kerstens, R.; Koul, A.; De Beule, K.; Donald, P.R.; McNeeley, D.F. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob. Agents Chemother., 2008, 52(8), 2831-2835.
[http://dx.doi.org/10.1128/AAC.01204-07] [PMID: 18505852]
[46]
Mao, J.; Yuan, H.; Wang, Y.; Wan, B.; Pieroni, M.; Huang, Q.; van Breemen, R.B.; Kozikowski, A.P.; Franzblau, S.G. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters. J. Med. Chem., 2009, 52(22), 6966-6978.
[http://dx.doi.org/10.1021/jm900340a] [PMID: 19863050]
[47]
Nava-Zuazo, C.; Estrada-Soto, S.; Guerrero-Álvarez, J.; León-Rivera, I.; Molina-Salinas, G.M.; Said-Fernández, S.; Chan-Bacab, M.J.; Cedillo-Rivera, R.; Moo-Puc, R.; Mirón-López, G.; Navarrete-Vazquez, G. Design, synthesis, and in vitro antiprotozoal, antimycobacterial activities of N-2-[(7-chloroquinolin-4-yl)amino]ethylureas. Bioorg. Med. Chem., 2010, 18(17), 6398-6403.
[http://dx.doi.org/10.1016/j.bmc.2010.07.008] [PMID: 20674375]
[48]
Yang, C.L.; Tseng, C.H.; Chen, Y.L.; Lu, C.M.; Kao, C.L.; Wu, M.H.; Tzeng, C.C. Identification of benzofuro[2,3- b]quinoline derivatives as a new class of antituberculosis agents. Eur. J. Med. Chem., 2010, 45(2), 602-607.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.050] [PMID: 19926361]
[49]
Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.045] [PMID: 20056418]
[50]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.022] [PMID: 20537437]
[51]
Eswaran, S.; Adhikari, A.V.; Ajay Kumar, R. New 1,3-oxazolo[4,5-c]quinoline derivatives: Synthesis and evaluation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(3), 957-966.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.036] [PMID: 20034708]
[52]
Balamurugan, K.; Jeyachandran, V.; Perumal, S.; Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. A microwave-assisted, facile, regioselective Friedländer synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno-[3,2- b]quinolines. Eur. J. Med. Chem., 2010, 45(2), 682-688.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.011] [PMID: 19944499]
[53]
Upadhayaya, R.S.; Shinde, P.D.; Sayyed, A.Y.; Kadam, S.A.; Bawane, A.N.; Poddar, A.; Plashkevych, O.; Földesi, A.; Chattopadhyaya, J. Synthesis and structure of azole-fused indeno[2,1-c]quinolines and their anti-mycobacterial properties. Org. Biomol. Chem., 2010, 8(24), 5661-5673.
[http://dx.doi.org/10.1039/c0ob00445f] [PMID: 20927480]
[54]
Thomas, K.D.; Adhikari, A.V.; Chowdhury, I.H.; Sandeep, T.; Mahmood, R.; Bhattacharya, B.; Sumesh, E. Design, synthesis and docking studies of quinoline-oxazolidinone hybrid molecules and their antitubercular properties. Eur. J. Med. Chem., 2011, 46(10), 4834-4845.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.049] [PMID: 21880400]
[55]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[56]
Thomas, K.D.; Adhikari, A.V.; Chowdhury, I.H.; Sumesh, E.; Pal, N.K. New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur. J. Med. Chem., 2011, 46(6), 2503-2512.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.039] [PMID: 21489660]
[57]
Gonec, T.; Bobal, P.; Sujan, J.; Pesko, M.; Guo, J.; Kralova, K.; Pavlacka, L.; Vesely, L.; Kreckova, E.; Kos, J.; Coffey, A.; Kollar, P.; Imramovsky, A.; Placek, L.; Jampilek, J. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules, 2012, 17(1), 613-644.
[http://dx.doi.org/10.3390/molecules17010613] [PMID: 22233564]
[58]
Tukulula, M.; Little, S.; Gut, J.; Rosenthal, P.J.; Wan, B.; Franzblau, S.G.; Chibale, K. The design, synthesis, in silico ADME profiling, antiplasmodial and antimycobacterial evaluation of new arylamino quinoline derivatives. Eur. J. Med. Chem., 2012, 57, 259-267.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.047] [PMID: 23064162]
[59]
Mungra, D.C.; Kathrotiya, H.G.; Ladani, N.K.; Patel, M.P.; Patel, R.G. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]-quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents. Chin. Chem. Lett., 2012, 23(12), 1367-1370.
[http://dx.doi.org/10.1016/j.cclet.2012.11.007]
[60]
Gonçalves, R.S.B.; Kaiser, C.R.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; de Souza, M.V.N.; Wardell, J.L.; Wardell, S.M.S.V.; Henriques, M.G.M.O.; Costa, T. Mefloquine-oxazolidine derivatives, derived from mefloquine and arenecarbaldehydes: In vitro activity including against the multidrug-resistant tuberculosis strain T113. Bioorg. Med. Chem., 2012, 20(1), 243-248.
[http://dx.doi.org/10.1016/j.bmc.2011.11.006] [PMID: 22142615]
[61]
Khunt, R.C.; Khedkar, V.M.; Coutinho, E.C. Synthesis and 3DQSAR analysis of 2-chloroquinoline derivatives as H37 RV MTB inhibitors. Chem. Biol. Drug Des., 2013, 82(6), 669-684.
[http://dx.doi.org/10.1111/cbdd.12178] [PMID: 23790070]
[62]
Chandra, S.Y.; Iqbal, A.; Abdul, R.K. Exploring the therapeutic potential of chalcones in oncology: A comprehensive review. Curr. Bioact. Comp., 2023, 2023, 0115734072266590231023094928.
[http://dx.doi.org/10.2174/0115734072266590231023094928]
[63]
Mistry, B.M.; Jauhari, S. Quinoline-based azetidinone and thiazolidinone analogues as antimicrobial and antituberculosis agents. Med. Chem. Res., 2013, 22, 647-658.
[http://dx.doi.org/10.1007/s00044-012-0061-7]
[64]
Mistry, B.M.; Jauhari, S. Synthesis and in vitro antimicrobial and anti-tubercular evaluation of some quinoline-based azitidinone and thiazolidinone analogues. Med. Chem. Res., 2013, 22(2), 635-646.
[http://dx.doi.org/10.1007/s00044-012-0060-8]
[65]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R. Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs. Bioorg. Med. Chem. Lett., 2014, 24(14), 3126-3130.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.002] [PMID: 24856067]
[66]
Zhou, F.W.; Lei, H.S.; Fan, L.; Jiang, L.; Liu, J.; Peng, X.M.; Xu, X.R.; Chen, L.; Zhou, C.H.; Zou, Y.Y.; Liu, C.P.; He, Z.Q.; Yang, D.C. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(8), 1912-1917.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.010] [PMID: 24684842]
[67]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-Aminoquinoline-β-lactam conjugates: Synthesis, antimalarial, and antitubercular evaluation. Chem. Biol. Drug Des., 2014, 83(2), 191-197.
[http://dx.doi.org/10.1111/cbdd.12225] [PMID: 24034147]
[68]
Kanani, M.B.; Patel, M.P. Design and synthesis of new (bis)trifluoromethyl-promoted N-aryl biquinoline derivatives as antitubercular and antimicrobial agents. Med. Chem. Res., 2015, 24(2), 563-575.
[http://dx.doi.org/10.1007/s00044-014-1140-8]
[69]
Garudachari, B.; Isloor, A.M. Substituted quinoline derivatives as potent biological agents. Adv. Mat. Res., 2014, 995, 61-84.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.995.61]
[70]
Patel, H.M. Synthesis of new mannich products bearing quinolinenucleous using reusable ionic liquid and antitubercularevaluation. Green Sustain. Chem., 2015, 5(4), 137.
[http://dx.doi.org/10.4236/gsc.2015.54017]
[71]
Ladani, G.G.; Patel, M.P. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: Synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J. Chem., 2015, 39(12), 9848-9857.
[http://dx.doi.org/10.1039/C5NJ02566D]
[72]
Rao, N.S.; Shaik, A.B.; Routhu, S.R.; Hussaini, S.M.A.; Sunkari, S.; Rao, A.V.S.; Reddy, A.M.; Alarifi, A.; Kamal, A. New quinoline linked chalcone and pyrazoline conjugates: Molecular properties prediction, antimicrobial and antitubercular activities. ChemistrySelect, 2017, 2(10), 2989-2996.
[http://dx.doi.org/10.1002/slct.201602022]
[73]
Somagond, S.M.; Kamble, R.R.; Kattimani, P.P.; Shaikh, S.K.J.; Dixit, S.R.; Joshi, S.D.; Devarajegowda, H.C. Design, docking, and synthesis of quinoline‐2h‐1,2, 4‐triazol‐3 (4h) ‐ones as potent anticancer and antitubercular agents. ChemistrySelect, 2018, 3(7), 2004-2016.
[http://dx.doi.org/10.1002/slct.201702279]
[74]
Shobhashana, P.G.; Prasad, P.; Kalola, A.G.; Patel, M.P. Synthesis of imidazole derivatives bearing quinoline nucleus catalyzed by can and their antimicrobial, antitubercular and molecular docking studies. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2018, 4(3), 175.
[75]
Macabeo, A.P.; Mathias, M.L.; Quimque, M.T.; Pueblos, K.R.; Ali, M.T.; Franzblau, S.G. Synthesis, antitubercular activity and molecular docking studies of benzyl-modified 8-hydroxyquinolines. Philipp. J. Health Res. Dev., 2019, 23(3), 1-9.
[76]
T G,. S.; Subramanian, S.; Eswaran, S. Design, synthesis and study of antibacterial and antitubercular activity of quinolinehydrazonehybrids. Heterocycl. Commun., 2020, 26(1), 137-147.
[http://dx.doi.org/10.1515/hc-2020-0109]
[77]
Lagdhir, M.; Pandya, C.; Pandy, A.; Vekariya, R.H.; Rajani, D.P. Design and synthesis of new quinoline hybrid derivatives and their antimicrobial, antimalarial and antitubercular activities. Indian J. Chem. Sec. B, 2021, 60, 986-998.
[78]
Abdelrahman, M.A.; Almahli, H.; Al-Warhi, T.; Majrashi, T.A.; Abdel-Aziz, M.M.; Eldehna, W.M.; Said, M.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi and extensively drug-resistant mycobacterium tuberculosis. Molecules, 2022, 27(24), 8807.
[http://dx.doi.org/10.3390/molecules27248807] [PMID: 36557937]
[79]
Alcaraz, M.; Sharma, B.; Roquet-Banères, F.; Conde, C.; Cochard, T.; Biet, F.; Kumar, V.; Kremer, L. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur. J. Med. Chem., 2022, 239, 114531.
[http://dx.doi.org/10.1016/j.ejmech.2022.114531] [PMID: 35759907]
[80]
Gnanavelu, K.; K S, V.K.; Eswaran, S.; Sivashanmugam, K. Novel quinoline-piperazine hybrids: The design, synthesis and evaluation of antibacterial and antituberculosis properties. RSC Med. Chem., 2022, 14(1), 183-189.
[http://dx.doi.org/10.1039/D2MD00260D] [PMID: 36760744]
[81]
Ibrahim, M.; Saleh, N.A.; Elshemey, W.M.; Elsayed, A.A. Fullerene derivative as anti-HIV protease inhibitor: Molecular modeling and QSAR approaches. Mini Rev. Med. Chem., 2012, 12(6), 447-451.
[http://dx.doi.org/10.2174/138955712800493762] [PMID: 22587761]
[82]
Ibrahim, M.; Saleh, N.A.; Hameed, A.J.; Elshemey, W.M.; Elsayed, A.A. Structural and electronic properties of new fullerene derivatives and their possible application as HIV-1 protease inhibitors. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(2), 702-709.
[http://dx.doi.org/10.1016/j.saa.2009.11.042] [PMID: 20044306]
[83]
Kamal, U.; Javed, N.M.; Arun, K. Biological potential of benzoxazole derivatives: An updated review. Asian J. Pharm. Clin. Res., 2020, 13(8), 28-41.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i8.37958]
[84]
Azad, I.; Khan, T.; Ahmad, N.; Khan, A.R.; Akhter, Y. Updates on drug designing approach through computational strategies: A review. Future Sci. OA, 2023, 9(5), FSO862.
[http://dx.doi.org/10.2144/fsoa-2022-0085] [PMID: 37180609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy