Abstract
Background: Severe COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a kind of viral pneumonia induced by infection with the coronavirus that causes ARDS. It involves symptoms that are a combination of viral pneumonia and ARDS. Antiviral or immunosuppressive medicines are used to treat many COVID-19 patients. Several drugs are now undergoing clinical studies in order to see if they can be repurposed in the future.
Material and Methods: In this study, in silico biomarker-targeted methodologies, such as target/ molecule virtual screening by docking technique and drug repositioning strategy, as well as data mining approach and meta-analysis of investigational data, were used.
Results: In silico findings of used combination of drug repurposing and high-throughput docking methods presented acetaminophen, ursodiol, and β-carotene as a three-drug therapy regimen to treat ARDS induced by viral pneumonia in addition to inducing direct antiviral effects against COVID-19 viral infection.
Conclusion: In the current study, drug repurposing and high throughput docking methods have been employed to develop combination drug regimens as multiple-molecule drugs for the therapy of COVID-19 and ARDS based on a multiple-target therapy strategy. This approach offers a promising avenue for the treatment of COVID-19 and ARDS, and highlights the potential benefits of drug repurposing in the fight against the current pandemic.
Graphical Abstract