Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Anthriscus sylvestris: An overview on Bioactive Compounds and Anticancer Mechanisms from a Traditional Medicinal Plant to Modern Investigation

Author(s): Mengyu Zhang, Xiaoyun Ji, Yuxin Li, Xin Chen, Xiaoqing Wu, Rui Tan* and Hezhong Jiang*

Volume 24, Issue 12, 2024

Published on: 26 January, 2024

Page: [1162 - 1176] Pages: 15

DOI: 10.2174/0113895575271848231116095447

Price: $65

Abstract

Anthriscus sylvestris (L.) Hoffm. Gen. is a biennial or perennial herb commonly found in China. It has a long history of use in traditional Chinese medicine to treat various ailments such as cough, gastric disorders, spleen deficiency, and limb weakness. Recently, its potential as an anticancer agent has gained considerable attention and has been the subject of extensive research focusing on extract efficacy, identification of active compounds, and proposed molecular mechanisms. Nevertheless, further high-quality research is still required to fully evaluate its potential as an anticancer drug.

This review aims to comprehensively summarize the anticancer properties exhibited by the active components found in Anthriscus sylvestris.

We conducted a comprehensive search, collation, and analysis of published articles on anticancer activity and active compounds of A. sylvestris using various databases that include, but are not limited to, PubMed, Web of Science, Science Direct and Google Scholar.

The primary chemical composition of A. sylvestris consists of phenylpropanoids, flavonoids, steroids, fatty acids, and organic acids, showcasing an array of pharmacological activities like anticancer, antioxidant, anti-aging, and immunoregulatory properties. Thus, this review highlights the active compounds isolated from A. sylvestris extracts, which provide potential leads for the development of novel anticancer drugs and a better understanding of the plant's pharmacological effects, particularly its anticancer mechanism of action.

[1]
Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 2019, 9(11), 258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[2]
Zhang, Y.; Lu, P.; Qin, H.; Zhang, Y.; Sun, X.; Song, X.; Liu, J.; Peng, H.; Liu, Y.; Nwafor, E.O.; Li, J.; Liu, Z. Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomed. Pharmacother., 2021, 133, 111072.
[http://dx.doi.org/10.1016/j.biopha.2020.111072] [PMID: 33378971]
[3]
Ji, L.; Li, Q.; He, Y.; Zhang, X.; Zhou, Z.; Gao, Y.; Fang, M.; Yu, Z.; Rodrigues, R.M.; Gao, Y.; Li, M. Therapeutic potential of traditional chinese medicine for the treatment of NAFLD: A promising drug potentilla discolor bunge. Acta Pharm. Sin. B, 2022, 12(9), 3529-3547.
[http://dx.doi.org/10.1016/j.apsb.2022.05.001] [PMID: 36176915]
[4]
Guo, R.; Luo, X.; Liu, J.; Liu, L.; Wang, X.; Lu, H. Omics strategies decipher therapeutic discoveries of traditional Chinese medicine against different diseases at multiple layers molecular-level. Pharmacol. Res., 2020, 152, 104627.
[http://dx.doi.org/10.1016/j.phrs.2020.104627] [PMID: 31904505]
[5]
White, N.J. Qinghaosu (artemisinin): The price of success. Science, 2008, 320(5874), 330-334.
[http://dx.doi.org/10.1126/science.1155165] [PMID: 18420924]
[6]
Liu, B.Y.; He, L.Y.; Liang, Z.W.; Tong, X.Y.; Hu, J.Q.; Jiao, Q.; Ni, Q.; Liu, X.M.; Xie, Y.M.; Li, P.; Gao, F.Z.; Wen, T.C.; Liu, W.M. Effect of glucocorticoid with traditional Chinese medicine in severe acute aespiratory syndrome (SARS). Zhongguo Zhongyao Zazhi, 2005, 30(23), 1874-1877.
[PMID: 16499032]
[7]
Lyu, M.; Fan, G.; Xiao, G.; Wang, T.; Xu, D.; Gao, J.; Ge, S.; Li, Q.; Ma, Y.; Zhang, H.; Wang, J.; Cui, Y.; Zhang, J.; Zhu, Y.; Zhang, B. Traditional chinese medicine in COVID-19. Acta Pharm. Sin. B, 2021, 11(11), 3337-3363.
[http://dx.doi.org/10.1016/j.apsb.2021.09.008] [PMID: 34567957]
[8]
Lin, L.; Yan, L.; Liu, Y.; Yuan, F.; Li, H.; Ni, J. Incidence and death in 29 cancer groups in 2017 and trend analysis from 1990 to 2017 from the Global Burden of Disease Study. J. Hematol. Oncol., 2019, 12(1), 96.
[http://dx.doi.org/10.1186/s13045-019-0783-9] [PMID: 31511035]
[9]
Martel, J.; Ko, Y.F.; Ojcius, D.M.; Lu, C.C.; Chang, C.J.; Lin, C.S.; Lai, H.C.; Young, J.D. Immunomodulatory properties of plants and mushrooms. Trends Pharmacol. Sci., 2017, 38(11), 967-981.
[http://dx.doi.org/10.1016/j.tips.2017.07.006] [PMID: 28863984]
[10]
Nie, J.; Zhao, C.; Deng, L.; Chen, J.; Yu, B.; Wu, X.; Pang, P.; Chen, X. Efficacy of traditional Chinese medicine in treating cancer. Biomed. Rep., 2016, 4(1), 3-14.
[http://dx.doi.org/10.3892/br.2015.537] [PMID: 26870326]
[11]
Zhang, X.; Qiu, H.; Li, C.; Cai, P.; Qi, F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci. Trends, 2021, 15(5), 283-298.
[http://dx.doi.org/10.5582/bst.2021.01318] [PMID: 34421064]
[12]
Wang, Z.; Qi, F.; Cui, Y.; Zhao, L.; Sun, X.; Tang, W.; Cai, P. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics. Biosci. Trends, 2018, 12(3), 220-239.
[http://dx.doi.org/10.5582/bst.2018.01144] [PMID: 30012913]
[13]
Orčić, D.; Berežni, S.; Mimica-Dukić, N. Phytochemical and biochemical studies of wild chervil (Anthriscus sylvestris). Biol. Serbica, 2022, 44, 1.
[14]
Darbyshire, S.J.; Hoeg, R.; Haverkort, J. The biology of Canadian weeds. 111. Anthriscus sylvestris (L.). Hoffm. Can. J. Plant Sci., 1999, 79(4), 671-682.
[http://dx.doi.org/10.4141/P98-128]
[15]
Xia, G.M.; Li, Z.Y.; Chen, H.M. Regeneration of Plants from Protoplasts of Anthriscus sylvestris (L.) Hoffm. (Woodland Beakchervil). Biotechnol. Agricult. Forest., 1996, 38, 14-20.
[http://dx.doi.org/10.1007/978-3-662-09368-9_2]
[16]
Kurihara, T.; Kikuchi, M. Studies on the constituents of Anthriscus sylvestris Hoffm. II. On the components of the flowers and leaves (author’s transl). Yakugaku Zasshi, 1979, 99(6), 602-606.
[http://dx.doi.org/10.1248/yakushi1947.99.6_602] [PMID: 536891]
[17]
Kozawa, M.; Morita, N.; Hata, K. Chemical components of the roots of Anthriscus sylvestris Hoffm. I. Structures of an acyloxycarboxylic acid and a new phenylpropanoidester, anthriscusin (author’s transl) Yakugaku Zasshi, 1978, 98(11), 1486-1490.
[http://dx.doi.org/10.1248/yakushi1947.98.11_1486] [PMID: 739385]
[18]
Bos, R.; Koulman, A.; Woerdenbag, H.J.; Quax, W.J.; Pras, N. Volatile components from Anthriscus sylvestris (L.). Hoffm. J. Chromatogr. A, 2002, 966(1-2), 233-238.
[http://dx.doi.org/10.1016/S0021-9673(02)00704-5] [PMID: 12214699]
[19]
Kim, S.B.; Lee, A.Y.; Chun, J.M.; Lee, A.R.; Kim, H.S.; Seo, Y.S.; Moon, B.C.; Kwon, B.I. Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. J. Ethnopharmacol., 2019, 232, 165-175.
[http://dx.doi.org/10.1016/j.jep.2018.12.016] [PMID: 30552991]
[20]
Tu, X.; Ma, C.; Xu, Y.; Gao, Y.; Niu, S.; Tang, J.; Geng, Y.; Jiang, H. Tentative study of Anthriscus extracts repressing the proliferation of lung cancer cell A549 and H460. Zhonghua Zhongyiyao Xuekan, 2012, 30(1), 60-62.
[21]
Chen, H.; Jiang, H.Z.; Li, Y.C.; Wei, G.Q.; Geng, Y.; Ma, C.Y. Antitumor constituents from Anthriscus sylvestris (L.). Hoffm. Asian Pac. J. Cancer Prev., 2014, 15(6), 2803-2807.
[http://dx.doi.org/10.7314/APJCP.2014.15.6.2803] [PMID: 24761904]
[22]
Reuther, K.; Claßen-Bockhoff, R. Diversity behind uniformity inflorescence architecture and flowering sequence in Apiaceae-Apioideae. Plant Divers. Evol., 2010, 128(1-2), 181-220.
[http://dx.doi.org/10.1127/1869-6155/2010/0128-0009]
[23]
Spalik, K.; Woodell, S.R. Regulation of pollen production in Anthriscus sylvestris, an andromonoecious species. Int. J. Plant Sci., 1994, 155(6), 750-754.
[http://dx.doi.org/10.1086/297214]
[24]
Hansson, M.L. Biomass partitioning and its effect on reproduction in a monocarpic perennial (Anthriscus sylvestris). Response to nitrogen and light supply. Acta Bot. Neerl., 1996, 45(3), 345-354.
[http://dx.doi.org/10.1111/j.1438-8677.1996.tb00521.x]
[25]
Chang, J.; Guan, B.; Ge, Y.; Chan, Y.G. Comparative studies on phenotypic plasticity of two herbs, Changium smyrnioides and Anthriscus sylvestris. J. Zhejiang Univ. Sci., 2004, 5(6), 656-662.
[http://dx.doi.org/10.1631/jzus.2004.0656]
[26]
Yin, Y.; Meng, H.; Yi, F.; Yin, Y.; Meng, H.; Yi, F. Application of High-altitude Plants in Anti-aging Cosmetics. Asian J. Beauty Cosmetol., 2019, 17(3), 411-420.
[http://dx.doi.org/10.20402/ajbc.2019.0309]
[27]
Kim, S.; Kim, H-R.; Kim, S-J.; Kim, S-Y. Comparison of Main Compounds and Physiological Activities of Anthriscus sylvestris (L.). Hoffm. Roots and Aerial Parts Extracts. Korean J. Pharmacogn., 2021, 52(2), 77-83.
[28]
Orčić, D.; Berežni, S.; Škorić, D.; Mimica-Dukić, N. Comprehensive study of anthriscus sylvestris lignans. Phytochemistry, 2021, 192, 112958.
[http://dx.doi.org/10.1016/j.phytochem.2021.112958] [PMID: 34560578]
[29]
Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol., 2021, 63(1), 180-209.
[http://dx.doi.org/10.1111/jipb.13054] [PMID: 33325112]
[30]
Kozawa, M.; Baba, K.; Matsuyama, Y.; Kido, T.; Sakai, M.; Takemoto, T. Components of the root of Anthriscus sylvestris Hoffm. II. Insecticidal activity. Chem. Pharm. Bull., 1982, 30(8), 2885-2888.
[http://dx.doi.org/10.1248/cpb.30.2885]
[31]
Kozawa, M.; Morita, N.; Hata, K. Structure of anthriscusin, a new phenylpropanoid ester from the roots of Anthriscus sylvestris Hoffm. Chem. Pharm. Bull., 1978, 26(4), 1337-1338.
[http://dx.doi.org/10.1248/cpb.26.1337]
[32]
Du, C.; Lei, B.; Ning, N.; Fan, J.; Zhang, X.; Ma, C.; Jiang, H. A new phenylpropanoid ester from the roots of Anthriscus sylvestris and its chemotaxonomic significance. Biochem. Syst. Ecol., 2020, 93, 104144.
[http://dx.doi.org/10.1016/j.bse.2020.104144]
[33]
Huan, Z.H.A.N.G. A New Compound From Anthriscus sylvestris (L.) hoffm and activity research. Res. Prac. Chinese Med., 2017, 31(1), 25-27.
[34]
Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.G.; Donca, V.I.; Alexescu, T.G.; Para, I.; Dogaru, G. The effects of flavonoids in cardiovascular diseases. Molecules, 2020, 25(18), 4320.
[http://dx.doi.org/10.3390/molecules25184320] [PMID: 32967119]
[35]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[36]
Milovanovic, M.; Picuric-Jovanovic, K.; Vucelic-Radovic, B.; Vrbaski, Z. Antioxidant effects of flavonoids of anthriscus sylvestris in lard. J. Am. Oil Chem. Soc., 1996, 73(6), 773-776.
[http://dx.doi.org/10.1007/BF02517954]
[37]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[38]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[39]
Jeong, G.S.; Kwon, O.K.; Park, B.Y.; Oh, S.R.; Ahn, K.S.; Chang, M.J.; Oh, W.K.; Kim, J.C.; Min, B.S.; Kim, Y.C.; Lee, H.K. Lignans and coumarins from the roots of Anthriscus sylvestris and their increase of caspase-3 activity in HL-60 cells. Biol. Pharm. Bull., 2007, 30(7), 1340-1343.
[http://dx.doi.org/10.1248/bpb.30.1340] [PMID: 17603178]
[40]
Korade, Z.; Heffer, M.; Mirnics, K. Medication effects on developmental sterol biosynthesis. Mol. Psychiatry, 2022, 27(1), 490-501.
[http://dx.doi.org/10.1038/s41380-021-01074-5] [PMID: 33820938]
[41]
Maleki Lajayer, H.; Norouzi, R.; Shahi-Gharahlar, A. Essential oil components, phenolic content and antioxidant activity of Anthriscus cerefolium and Anthriscus sylvestris from Iran. J. Horticult. Posth. Res., 2020, 3(2), 355-366.
[42]
Kuiper, P.J.C.; Stuiver, B. Cyclopropane Fatty acids in relation to earliness in spring and drought tolerance in plants. Plant Physiol., 1972, 49(3), 307-309.
[http://dx.doi.org/10.1104/pp.49.3.307] [PMID: 16657950]
[43]
Velescu, B.S.; Anuţa, V.; Nițulescu, G.M.; Olaru, O.T.; Orțan, A.; Ionescu, D.; Ghica, M.V.; Drăgoi, C.M.; Dinu Pîrvu, C. Pharmaceutical assessment of Romanian crops of Anthriscus sylvestris(Apiaceae). Farmacia, 2017, 65, 824-831.
[44]
Lee, S.A.; Moon, S.M.; Han, S.H.; Hwang, E.J.; Hong, J.H.; Park, B.R.; Choi, M.S.; Ahn, H.; Kim, J.S.; Kim, H.J.; Chun, H.S.; Kim, D.K.; Kim, C.S. In vivo and in vitro anti-inflammatory effects of aqueous extract of Anthriscus sylvestris leaves. J. Med. Food, 2018, 21(6), 585-595.
[http://dx.doi.org/10.1089/jmf.2017.4089] [PMID: 29377739]
[45]
Yao, C.; Zhang, J.; Li, J.; Wei, W.; Wu, S.; Guo, D. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat. Prod. Rep., 2021, 38(9), 1618-1633.
[http://dx.doi.org/10.1039/D0NP00057D] [PMID: 33511969]
[46]
Su, X.L.; Wang, J.W.; Che, H.; Wang, C.F.; Jiang, H.; Lei, X.; Zhao, W.; Kuang, H.X.; Wang, Q.H. Clinical application and mechanism of traditional Chinese medicine in treatment of lung cancer. Chin. Med. J., 2020, 133(24), 2987-2997.
[http://dx.doi.org/10.1097/CM9.0000000000001141] [PMID: 33065603]
[47]
Yan, S. Systems Biology and its Application in TCM Formulas Research; Elsevier, 2018, pp. 3-18.
[http://dx.doi.org/10.1016/B978-0-12-812744-5.00001-1]
[48]
Jiao, X.; Jin, X.; Ma, Y.; Yang, Y.; Li, J.; Liang, L.; Liu, R.; Li, Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput. Biol. Chem., 2021, 90, 107402.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107402] [PMID: 33338839]
[49]
Ma, C.Y.; Tu, X.Q.; Niu, S.Z.; Gao, Y.R.; Tang, J.; Geng, Y.; Jiang, H.Z. The observation for the inhibitory effect of petroleum ether extract of Anthriscus on the cell proliferation of lung cancer cell A549 and H460. Hebei Med. J., 2011, 33(13), 1925-1926.
[50]
Cho, E.J.; Choi, J.M.; Kim, H.M.; Choi, K.; Ku, J.; Park, K.W.; Kim, J.; Lee, S. Antibacterial activity and protective effect against gastric cancer by Anthriscus sylvestris fractions. Hortic. Environ. Biotechnol., 2013, 54(4), 326-330.
[http://dx.doi.org/10.1007/s13580-013-0170-3]
[51]
Yadav, P.; Yadav, R.; Jain, S.; Vaidya, A. Caspase-3: A primary target for natural and synthetic compounds for cancer therapy. Chem. Biol. Drug Des., 2021, 98(1), 144-165.
[http://dx.doi.org/10.1111/cbdd.13860] [PMID: 33963665]
[52]
Xu, Y.J. The Effect and Mechanism Anthriscus sylvestris Inhibits Colon Cancer Inflammatory Microenvironment by STAT3 Signal Channel; Southwest Jiaotong University, 2019.
[53]
Lei, B.T. Studies on Antineoplastic Activity of Secondary Metabolites from Anthriscus sylvestris; Southwest Jiaotong University, 2015.
[54]
Ma, X.H. The Study of the Antitumor Activity and Mechanism of the Anthriscus sylvestris (L.) Hoffm’ Extracts and Monomers; Southwest Jiaotong University, 2013.
[55]
Zhang, T. The Study of the anti-tumor activity and mechanism of Colon Cancer of Anthricin Combined with Fluorouracil; Southwest Jiaotong University, 2017.
[56]
Wu, S.S. Effect and Mechanism Research on Three-Dimensional Multicellular Spheroids Models of Colon and Lung Cancer of Anthricin Combined with Fluorouracil; Southwest Jiaotong University, 2016.
[57]
Fan, Y.; Ma, Z.; Zhao, L.; Wang, W.; Gao, M.; Jia, X.; Ouyang, H.; He, J. Anti-tumor activities and mechanisms of Traditional Chinese medicines formulas: A review. Biomed. Pharmacother., 2020, 132, 110820.
[http://dx.doi.org/10.1016/j.biopha.2020.110820] [PMID: 33035836]
[58]
Wang, K.; Chen, Q.; Shao, Y.; Yin, S.; Liu, C.; Liu, Y.; Wang, R.; Wang, T.; Qiu, Y.; Yu, H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother., 2021, 133, 111044.
[http://dx.doi.org/10.1016/j.biopha.2020.111044] [PMID: 33378952]
[59]
Cai, C.; Wu, Q.; Hong, H.; He, L.; Liu, Z.; Gu, Y.; Zhang, S.; Wang, Q.; Fan, X.; Fang, J. In silico identification of natural products from Traditional Chinese Medicine for cancer immunotherapy. Sci. Rep., 2021, 11(1), 3332.
[http://dx.doi.org/10.1038/s41598-021-82857-2] [PMID: 33558586]
[60]
Teodor, E.D.; Moroeanu, V.; Radu, G.L. Lignans from medicinal plants and their anticancer effect. Mini Rev. Med. Chem., 2020, 20(12), 1083-1090.
[http://dx.doi.org/10.2174/1389557520666200212110513] [PMID: 32048969]
[61]
Mottaghi, S.; Abbaszadeh, H. A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur. J. Pharmacol., 2022, 928, 175089.
[http://dx.doi.org/10.1016/j.ejphar.2022.175089] [PMID: 35688183]
[62]
Falade, A.O.; Adewole, K.E.; Ekundayo, T.C. Therapeutic potentials of endophytes for healthcare sustainability. Egyptian J. Basic Appl. Sci., 2021, 8(1), 117-135.
[http://dx.doi.org/10.1080/2314808X.2021.1913083]
[63]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[64]
Khaled, M.; Jiang, Z.Z.; Zhang, L.Y. Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J. Ethnopharmacol., 2013, 149(1), 24-34.
[http://dx.doi.org/10.1016/j.jep.2013.06.021] [PMID: 23792585]
[65]
Shi, Y.; Liu, S.; Ahmad, S.; Gao, Q. Targeting key transporters in tumor glycolysis as a novel anticancer strategy. Curr. Top. Med. Chem., 2018, 18(6), 454-466.
[http://dx.doi.org/10.2174/1568026618666180523105234] [PMID: 29788889]
[66]
Zhou, Y.; Guo, Y.; Tam, K.Y. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin. Ther. Pat., 2022, 32(4), 441-453.
[http://dx.doi.org/10.1080/13543776.2022.2027912] [PMID: 35001793]
[67]
Kooshki, L.; Mahdavi, P.; Fakhri, S.; Akkol, E.K.; Khan, H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors, 2022, 48(2), 359-383.
[http://dx.doi.org/10.1002/biof.1799] [PMID: 34724274]
[68]
Wu, M.; Jiang, Z.; Duan, H.; Sun, L.; Zhang, S.; Chen, M.; Wang, Y.; Gao, Q.; Song, Y.; Zhu, X.; Zhang, L. Deoxypodophyllotoxin triggers necroptosis in human non-small cell lung cancer NCI-H460 cells. Biomed. Pharmacother., 2013, 67(8), 701-706.
[http://dx.doi.org/10.1016/j.biopha.2013.06.002] [PMID: 23896261]
[69]
Rashid, M.; Zadeh, L.R.; Baradaran, B.; Molavi, O.; Ghesmati, Z.; Sabzichi, M.; Ramezani, F. Up-down regulation of HIF-1α; in cancer progression. Gene, 2021, 798, 145796.
[http://dx.doi.org/10.1016/j.gene.2021.145796] [PMID: 34175393]
[70]
Yang, Y.; Liu, L.; Sun, J.; Wang, S.; Yang, Z.; Li, H.; Huang, N.; Zhao, W. Deoxypodophyllotoxin inhibits non-small cell lung cancer cell growth by reducing HIF-1α;-Mediated glycolysis. Front. Oncol., 2021, 11, 629543.
[http://dx.doi.org/10.3389/fonc.2021.629543] [PMID: 33732648]
[71]
Jan, R.; Chaudhry, G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218.
[http://dx.doi.org/10.15171/apb.2019.024] [PMID: 31380246]
[72]
Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[73]
Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep., 2019, 39(1), BSR20180992.
[http://dx.doi.org/10.1042/BSR20180992] [PMID: 30530866]
[74]
Kim, H.Y.; Lee, S.G.; Oh, T.J.; Lim, S.; Kim, S.H.; Lee, H.; Kim, Y.S.; Choi, H.K. Antiproliferative and apoptotic activity of chamaecyparis obtusa leaf extract against the HCT116 human colorectal cancer cell line and investigation of the bioactive compound by gas chromatography-mass spectrometry-based metabolomics. Molecules, 2015, 20(10), 18066-18082.
[http://dx.doi.org/10.3390/molecules201018066] [PMID: 26445036]
[75]
Li, Z.; Geng, Y.; Chen, Y.Y.; Wu, S.S.; Ma, C.Y.; Zhang, T.; Yang, Y. Anthricin combined with fluorouracil on Sw480 three-multicellular spheroids models and the mechanism. Zhonghua Zhongyiyao Xuekan, 2017, 35(12), 3134-3137.
[76]
Gamage, C.D.B.; Park, S.Y.; Yang, Y.; Zhou, R.; Taş, İ; Bae, W.K.; Kim, K.K.; Shim, J.H.; Kim, E.; Yoon, G.; Kim, H. Deoxypodophyllotoxin exerts anti-cancer effects on colorectal cancer cells through induction of apoptosis and suppression of tumorigenesis. Int. J. Mol. Sci., 2019, 20(11), 2612.
[http://dx.doi.org/10.3390/ijms20112612] [PMID: 31141929]
[77]
Li, Y-N.; Ning, N.; Song, L.; Geng, Y.; Fan, J-T.; Ma, C-Y.; Jiang, H-Z. Derivatives of deoxypodophyllotoxin induce apoptosis through bcl-2/bax proteins expression. Anti-Cancer. Agents Med. Chem., 2021, 21(5), 611-620.
[78]
Jung, C.H.; Kim, H.; Ahn, J.; Jung, S.K.; Um, M.Y.; Son, K.-H.; Kim, T.W.; Ha, T.Y. Anthricin isolated from Anthriscus sylvestris (L.) Hoffm. inhibits the growth of breast cancer cells by inhibiting Akt/mTOR signaling, and its apoptotic effects are enhanced by autophagy inhibition. Evid.-Based Complemen. Altern. Med., 2013, 2013
[79]
Benzina, S.; Harquail, J.; Jean, S.; Beauregard, A-P. Colquhoun, D Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anti-Cancer. Agents Med. Chem., 2015, 15(1), 79-88.
[80]
He, S.; Shao, Y.; Fan, L.; Che, Z.; Xu, H.; Zhi, X.; Wang, J.; Yao, X.; Qu, H. Synthesis and quantitative structure-activity relationship (QSAR) study of novel 4-acyloxypodophyllotoxin derivatives modified in the A and C rings as insecticidal agents. J. Agric. Food Chem., 2013, 61(3), 618-625.
[http://dx.doi.org/10.1021/jf305011n] [PMID: 23278333]
[81]
Demény, M.A.; Virág, L. The PARP enzyme family and the hallmarks of cancer part 1. cell intrinsic hallmarks. Cancers, 2021, 13(9), 2042.
[http://dx.doi.org/10.3390/cancers13092042] [PMID: 33922595]
[82]
Zhang, Y.; Chen, S.; Wei, C.; Rankin, G.O.; Ye, X.; Chen, Y.C. Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur. J. Med. Chem., 2018, 147, 218-226.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.084] [PMID: 29438890]
[83]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[84]
Witkiewicz, A.K.; Kumarasamy, V.; Sanidas, I.; Knudsen, E.S. Cancer cell cycle dystopia: Heterogeneity, plasticity, and therapy. Trends Cancer, 2022, 8(9), 711-725.
[http://dx.doi.org/10.1016/j.trecan.2022.04.006] [PMID: 35599231]
[85]
Shin, S.Y.; Yong, Y.; Kim, C.G.; Lee, Y.H.; Lim, Y. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett., 2010, 287(2), 231-239.
[http://dx.doi.org/10.1016/j.canlet.2009.06.019] [PMID: 19616373]
[86]
Shin, S.Y.; Yong, Y.; Lee, Y.H. Effect of deoxypodophyllotoxin isolated from Anthriscus sylvestris roots on the expression of cell cycle-regulatory proteins in hela cells. J. Korean Soc. Appl. Biol. Chem., 2010, 53(3), 304-309.
[http://dx.doi.org/10.3839/jksabc.2010.047]
[87]
Kwak, A.W.; Lee, M.H.; Yoon, G.; Cho, S.S.; Choi, J.S.; Chae, J.I.; Shim, J.H. Deoxypodophyllotoxin, a lignan from Anthriscus sylvestris, induces apoptosis and cell cycle arrest by inhibiting the EGFR signaling pathways in esophageal squamous cell carcinoma cells. Int. J. Mol. Sci., 2020, 21(18), 6854.
[http://dx.doi.org/10.3390/ijms21186854] [PMID: 32961992]
[88]
Xiao, M.; Fan, X.; Fu, Y.; Zhou, Y.; Liu, S.; Peng, S. Deoxypodophyllotoxin induces cell cycle arrest and apoptosis in human cholangiocarcinoma cells. Oncol. Lett., 2018, 16(3), 3177-3182.
[http://dx.doi.org/10.3892/ol.2018.8978] [PMID: 30127912]
[89]
Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073.
[http://dx.doi.org/10.2147/OTT.S161109]
[90]
Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis., 2021, 8(3), 287-297.
[http://dx.doi.org/10.1016/j.gendis.2020.06.005] [PMID: 33997176]
[91]
Seo, J.H.; Yoon, G.; Park, S.; Shim, J.H.; Chae, J.I.; Jeon, Y.J. Deoxypodophyllotoxin induces ROS-mediated apoptosis by modulating the PI3K/AKT and p38 MAPK-dependent signaling in oral squamous cell carcinoma. J. Microbiol. Biotechnol., 2022, 32(9), 1103-1109.
[http://dx.doi.org/10.4014/jmb.2207.07012] [PMID: 36039387]
[92]
Zhou, Y.J.; Zheng, K.I.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Ma, H.L.; Chen, Y.P.; George, J.; Zheng, M.H. Metabolic-associated fatty liver disease is associated with severity of COVID-19. Liver Int., 2020, 40(9), 2160-2163.
[http://dx.doi.org/10.1111/liv.14575] [PMID: 32573883]
[93]
Chiu, L.C.M.; Ho, T.S.; Wong, E.Y.L.; Ooi, V.E.C. Ethyl acetate extract of Patrinia scabiosaefolia downregulates anti-apoptotic Bcl-2/Bcl-XL expression, and induces apoptosis in human breast carcinoma MCF-7 cells independent of caspase-9 activation. J. Ethnopharmacol., 2006, 105(1-2), 263-268.
[http://dx.doi.org/10.1016/j.jep.2005.11.007] [PMID: 16361073]
[94]
Jain, R.; Hussein, M.A.; Pierce, S.; Martens, C.; Shahagadkar, P.; Munirathinam, G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol. Res., 2022, 178, 106138.
[http://dx.doi.org/10.1016/j.phrs.2022.106138] [PMID: 35192957]
[95]
Chen, J.; Yuan, C.-B.; Yang, B.; Zhou, X. Baicalin inhibits EMT through PDK1/AKT signaling in human nonsmall cell lung cancer. J. Oncol., 2021, 2021.
[96]
Cheng, H.; Xu, T.; Hu, Y.; Shu, Q.; Xu, W.; Fan, C.; Zhou, G. Two new aryltetralin-type lignans from Camellia oleifera husk. Nat. Prod. Res., 2023, 1-8.
[http://dx.doi.org/10.1080/14786419.2023.2172005] [PMID: 36752387]
[97]
Liu, J.; Ding, D.; Liu, F.; Chen, Y. Rhein inhibits the progression of chemoresistant lung cancer cell lines via the Stat3/Snail/MMP2/MMP9 pathway BioMed Res. Int., 2022, 2022.
[98]
Chen, X.; Guo, J.; Bao, J.; Lu, J.; Wang, Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): A systematic review. Med. Res. Rev., 2014, 34(4), 768-794.
[http://dx.doi.org/10.1002/med.21304] [PMID: 24123144]
[99]
Chang, H-B.; Chen, B-H. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. Int. J. Nanomedicine, 2015, 10, 5059-5080.
[PMID: 26345201]
[100]
Sultana, S.; Munir, N.; Mahmood, Z.; Riaz, M.; Akram, M.; Rebezov, M.; Kuderinova, N.; Moldabayeva, Z.; Shariati, M.A.; Rauf, A.; Rengasamy, K.R.R. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed. Pharmacother., 2021, 135, 111078.
[http://dx.doi.org/10.1016/j.biopha.2020.111078] [PMID: 33433356]
[101]
Ma, W.; Zhou, Y.; Lou, W.; Wang, B.; Li, B.; Liu, X.; Yang, J.; Yang, B.; Liu, J.; Di, D. Mechanism regulating the inhibition of lung cancer A549 cell proliferation and structural analysis of the polysaccharide Lycium barbarum. Food Biosci., 2022, 47, 101664.
[http://dx.doi.org/10.1016/j.fbio.2022.101664]
[102]
Xiong, D.; Qin, Y.; Xu, W.; He, R.; Wu, H.; Wei, D.; Zeng, J.; Dang, Y.; Chen, G. A network pharmacology-based analysis of multi-target, multi-pathway, multi-compound treatment for ovarian serous cystadenocarcinoma. Clin. Drug Investig., 2018, 38(10), 909-925.
[http://dx.doi.org/10.1007/s40261-018-0683-8] [PMID: 30097905]
[103]
Wang, Y.; Fan, X.; Qu, H.; Gao, X.; Cheng, Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr. Top. Med. Chem., 2012, 12(12), 1356-1362.
[http://dx.doi.org/10.2174/156802612801319034] [PMID: 22690682]
[104]
Fu, M. Drug discovery from traditional Chinese herbal medicine using high content imaging technology. J. Trad. Chinese Med. Sci., 2021, 8(3), 198-204.
[http://dx.doi.org/10.1016/j.jtcms.2021.07.005]
[105]
Park, J.; Jeong, D.; Song, M.; Kim, B. Recent advances in anti-metastatic approaches of herbal medicines in 5 major cancers: From traditional medicine to modern drug discovery. Antioxidants, 2021, 10(4), 527.
[http://dx.doi.org/10.3390/antiox10040527] [PMID: 33801741]
[106]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[107]
Nia, H.T.; Munn, L.L.; Jain, R.K. Physical traits of cancer. Science, 2020, 370(6516), eaaz0868.
[http://dx.doi.org/10.1126/science.aaz0868] [PMID: 33122355]
[108]
Hojman, P.; Gehl, J.; Christensen, J.F.; Pedersen, B.K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab., 2018, 27(1), 10-21.
[http://dx.doi.org/10.1016/j.cmet.2017.09.015] [PMID: 29056514]
[109]
Vishwakarma, M.; Piddini, E. Outcompeting cancer. Nat. Rev. Cancer, 2020, 20(3), 187-198.
[http://dx.doi.org/10.1038/s41568-019-0231-8] [PMID: 31932757]
[110]
Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol., 2021, 33(3), 127-148.
[http://dx.doi.org/10.1093/intimm/dxaa078] [PMID: 33337480]
[111]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[112]
Sucher, N.J. The application of Chinese medicine to novel drug discovery. Expert Opin. Drug Discov., 2013, 8(1), 21-34.
[http://dx.doi.org/10.1517/17460441.2013.739602] [PMID: 23170842]
[113]
ZHANG, T.J. Research approaches of quality marker (Q-marker) of Chinese materia medica formula based on “five principles”. Chin. Tradit. Herbal Drugs, 2018, 1-13.
[114]
Luo, D.; Chen, N.H.; Wang, W.Z.; Zhang, J.H.; Li, C.J.; Zhuo, X.F.; Tu, Z.C.; Wu, Z.N.; Fan, C.L.; Zhang, H.P.; Li, Y-L.; Wang, G-C.; Zhang, Y-B. Structurally diverse MATRINE-BASED alkaloids with anti-inflammatory effects from Sophora alopecuroides. Chin. J. Chem., 2021, 39(12), 3339-3346.
[http://dx.doi.org/10.1002/cjoc.202100526]
[115]
Orčić, D.; Berežni, S.; Mimica-Dukić, N. Quantitative HPLC–UV study of lignans in anthriscus sylvestris. Molecules, 2022, 27(18), 6072.
[http://dx.doi.org/10.3390/molecules27186072] [PMID: 36144804]
[116]
Hong, J.H.; Lee, M.J.; Jo, Y.I.; Moon, S.M.; Lee, S.A.; Kim, C.S. Analytical method validation of cynaroside in domestic Anthriscus sylvestris (L.) Hoffm. leaves extract for standardization as a functional ingredient using RP-HPLC. J. Korean Soci. Food Sci. Nutr., 2021, 50(4), 395-402.
[117]
Lee, S.A.; Moon, S.M.; Han, S.H.; Hwang, E.J.; Park, B.R.; Kim, J.S.; Kim, D.K.; Kim, C.S. Chondroprotective effects of aqueous extract of Anthriscus sylvestris leaves on osteoarthritis in vitro and in vivo through MAPKs and NF-κB signaling inhibition. Biomed. Pharmacother., 2018, 103, 1202-1211.
[http://dx.doi.org/10.1016/j.biopha.2018.04.183] [PMID: 29864899]
[118]
Shan, C.; Zhao, L.; Shi, Y.; Zhang, S.; Wu, H.; Yang, M.; Yang, Q.; Wu, J. Transcriptome analyses reveal the expression profile of genes related to lignan biosynthesis in Anthriscus sylvestris L. Hoffm. Gen. Physiol. Mol. Biol. Plants, 2022, 28(2), 333-346.
[http://dx.doi.org/10.1007/s12298-022-01156-w] [PMID: 35400889]
[119]
Talluri, S.; Kamal, M.A.; Malla, R.R. Novel computational methods for cancer drug design. Curr. Med. Chem., 2023.
[PMID: 37016530]
[120]
Bitencourt-Ferreira, G.; Villarreal, M.A.; Quiroga, R.; Biziukova, N.; Poroikov, V.; Tarasova, O.; de Azevedo Junior, W.F. Exploring scoring function space: Developing computational models for drug discovery. Curr. Med. Chem., 2023.
[PMID: 36944627]
[121]
Wang, Z.; Li, S. Network pharmacology in quality control of traditional Chinese medicines. Chin. Herb. Med., 2022, 14(4), 477-478.
[http://dx.doi.org/10.1016/j.chmed.2022.09.001] [PMID: 36405067]
[122]
Wahab, S.; Ahmad, I.; Irfan, S.; Siddiqua, A.; Usmani, S.; Ahmad, M.P. Pharmacological Efficacy and Safety of Glycyrrhiza glabra in the treatment of respiratory tract infections. Mini Rev. Med. Chem., 2022, 22(11), 1476-1494.
[http://dx.doi.org/10.2174/1389557521666210927153001] [PMID: 34579633]
[123]
Liu, Y.Q.; Zhou, G.B. Promising anticancer activities and mechanisms of action of active compounds from the medicinal herb Centipeda minima (L.) A. Braun & Asch. Phytomedicine, 2022, 106, 154397.
[http://dx.doi.org/10.1016/j.phymed.2022.154397] [PMID: 36084403]
[124]
Shirani, Z.; Song, H.; Bhatnagar, A. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total Environ., 2020, 745, 140789.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140789] [PMID: 32721620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy