Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advances in Xanthine Oxidase Inhibitors

Author(s): Zhi-Gang Sun*, Kai-Xiang Wu, Inam Ullah and Hai-Liang Zhu*

Volume 24, Issue 12, 2024

Published on: 13 September, 2023

Page: [1177 - 1186] Pages: 10

DOI: 10.2174/1389557523666230913091558

Price: $65

conference banner
Abstract

Uric acid is a product of purine nucleotide metabolism, and high concentrations of uric acid can lead to hyperuricemia, gout and other related diseases. Xanthine oxidase, the only enzyme that catalyzes xanthine and hypoxanthine into uric acid, has become a target for drug development against hyperuricemia and gout. Inhibition of xanthine oxidase can reduce the production of uric acid, so xanthine oxidase inhibitors are used to treat hyperuricemia and related diseases, including gout. In recent years, researchers have obtained new xanthine oxidase inhibitors through drug design, synthesis, or separation of natural products. This paper summarizes the research on xanthine oxidase inhibitors since 2015, mainly including natural products, pyrimidine derivatives, triazole derivatives, isonicotinamide derivatives, chalcone derivatives, furan derivatives, coumarin derivatives, pyrazole derivatives, and imidazole derivatives, hoping to provide valuable information for the research and development of novel xanthine oxidase inhibitors.

Graphical Abstract

[1]
Keenan, R.T. The biology of urate. Semin. Arthritis Rheum., 2020, 50(S3), S2-S10.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.007] [PMID: 32620198]
[2]
Copur, S.; Demiray, A.; Kanbay, M. Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur. J. Intern. Med., 2022, 103, 4-12.
[http://dx.doi.org/10.1016/j.ejim.2022.04.022] [PMID: 35508444]
[3]
Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet, 2021, 397(10287), 1843-1855.
[http://dx.doi.org/10.1016/S0140-6736(21)00569-9] [PMID: 33798500]
[4]
Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med., 2004, 350(11), 1093-1103.
[http://dx.doi.org/10.1056/NEJMoa035700] [PMID: 15014182]
[5]
Riches, P.L. Genetics of Gout.Gout & Other Crystal Arthropathies; Terkeltaub, R., Ed.; W.B. Saunders: Philadelphia, 2012, pp. 85-93.
[http://dx.doi.org/10.1016/B978-1-4377-2864-4.10007-7]
[6]
Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Alcohol intake and risk of incident gout in men: A prospective study. Lancet, 2004, 363(9417), 1277-1281.
[http://dx.doi.org/10.1016/S0140-6736(04)16000-5] [PMID: 15094272]
[7]
Wu, Z.D.; Yang, X.K.; He, Y.S.; Ni, J.; Wang, J.; Yin, K.J.; Huang, J.X.; Chen, Y.; Feng, Y.T.; Wang, P.; Pan, H.F. Environmental factors and risk of gout. Environ. Res., 2022, 212(Pt C), 113377.
[http://dx.doi.org/10.1016/j.envres.2022.113377] [PMID: 35500858]
[8]
García-Maturano, J.S.; Torres-Ordaz, D.E.; Mosqueda-Gutiérrez, M.; Gómez-Ruiz, C.; Vázquez-Mellado, A.; Tafoya-Amado, A.; Peláez-Ballestas, I.; Burgos-Vargas, R.; Vázquez-Mellado, J. Gout during the SARS-CoV-2 pandemic: Increased flares, urate levels and functional improvement. Clin. Rheumatol., 2022, 41(3), 811-818.
[http://dx.doi.org/10.1007/s10067-021-05994-z] [PMID: 34822044]
[9]
Jakše, B.; Jakše, B.; Pajek, M.; Pajek, J. Uric acid and plant-based nutrition. Nutrients, 2019, 11(8), 1736.
[http://dx.doi.org/10.3390/nu11081736] [PMID: 31357560]
[10]
Murray, J.; Hogan, R.J.; Martin, D.E.; Blahunka, K.; Sancilio, F.D.; Balyan, R.; Lovern, M.; Still, R.; Tripp, R.A. Probenecid inhibits SARS-CoV-2 replication in vivo and in vitro. Sci. Rep., 2021, 11(1), 18085.
[http://dx.doi.org/10.1038/s41598-021-97658-w] [PMID: 34508172]
[11]
Boger, W.P.; Strickland, S.C. Probenecid (benemid); its uses and side-effects in 2,502 patients. AMA Arch. Intern. Med., 1955, 95(1), 83-92.
[http://dx.doi.org/10.1001/archinte.1955.00250070099012] [PMID: 13217507]
[12]
Rødevand, E.; Sletvold, O.; Kvande, K.T. Side effects off allopurinol. Tidsskr. Nor. Laegeforen., 2004, 124(20), 2618-2619.
[PMID: 15534635]
[13]
Sarnesto, A.; Linder, N.; Raivio, K.O. Organ distribution and molecular forms of human xanthine dehydrogenase/xanthine oxidase protein. Lab. Invest., 1996, 74(1), 48-56.
[PMID: 8569197]
[14]
Krenitsky, T.A.; Spector, T.; Hall, W.W. Xanthine oxidase from human liver: Purification and characterization. Arch. Biochem. Biophys., 1986, 247(1), 108-119.
[http://dx.doi.org/10.1016/0003-9861(86)90539-4] [PMID: 3010873]
[15]
Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci., 2000, 97(20), 10723-10728.
[http://dx.doi.org/10.1073/pnas.97.20.10723] [PMID: 11005854]
[16]
Čejkovä, J.; Labský, J.; Vacík, J. Reactive oxygen species (ROS) generated by xanthine oxidase in the corneal epithelium and thelr potential participation in the damage of the corneal epithelium after prolonged use of contact lenses in rabbits. Acta Histochem., 1998, 100(2), 171-184.
[http://dx.doi.org/10.1016/S0065-1281(98)80025-1] [PMID: 9587628]
[17]
Azenabor, A.; Erivona, R.; Adejumo, E.; Ozuruoke, D.; Azenabor, R. Xanthine oxidase activity in type 2 diabetic Nigerians. Diabetes Metab. Syndr., 2019, 13(3), 2021-2024.
[http://dx.doi.org/10.1016/j.dsx.2019.04.022] [PMID: 31235130]
[18]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[19]
Palabıyık, E.; Sulumer, A.N.; Uguz, H.; Avcı, B.; Askın, S.; Askın, H.;; Demir, Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-INDUCED hyperlipidemia in rat kidney, liver, and heart. J. Mol. Recognit., 2023, 36(3), e3004.
[http://dx.doi.org/10.1002/jmr.3004] [PMID: 36537558]
[20]
Nishikawa, T.; Nagata, N.; Shimakami, T.; Shirakura, T.; Matsui, C.; Ni, Y.; Zhuge, F.; Xu, L.; Chen, G.; Nagashimada, M.; Yamashita, T.; Sakai, Y.; Yamashita, T.; Mizukoshi, E.; Honda, M.; Kaneko, S.; Ota, T. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci. Rep., 2020, 10(1), 815.
[http://dx.doi.org/10.1038/s41598-020-57784-3] [PMID: 31965018]
[21]
Nambu, H.; Takada, S.; Maekawa, S.; Matsumoto, J.; Kakutani, N.; Furihata, T.; Shirakawa, R.; Katayama, T.; Nakajima, T.; Yamanashi, K.; Obata, Y.; Nakano, I.; Tsuda, M.; Saito, A.; Fukushima, A.; Yokota, T.; Nio-Kobayashi, J.; Yasui, H.; Higashikawa, K.; Kuge, Y.; Anzai, T.; Sabe, H.; Kinugawa, S. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc. Res., 2021, 117(3), 805-819.
[http://dx.doi.org/10.1093/cvr/cvaa127] [PMID: 32402072]
[22]
Ty, M.C.; Zuniga, M.; Götz, A.; Kayal, S.; Sahu, P.K.; Mohanty, A.; Mohanty, S.; Wassmer, S.C.; Rodriguez, A. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol. Med., 2019, 11(8), e9903.
[http://dx.doi.org/10.15252/emmm.201809903] [PMID: 31265218]
[23]
Kim, Y.J.; Oh, S.H.; Ahn, J.S.; Yook, J.M.; Kim, C.D.; Park, S.H.; Cho, J.H.; Kim, Y.L. The crucial role of xanthine oxidase in CKD progression associated with hypercholesterolemia. Int. J. Mol. Sci., 2020, 21(20), 7444.
[http://dx.doi.org/10.3390/ijms21207444] [PMID: 33050202]
[24]
Bayrak, S.; Öztürk, C.; Demir, Y. Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[25]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[http://dx.doi.org/10.1002/cbdv.202200280] [PMID: 35796520]
[26]
Türkeş, C.; Demir, Y.; Beydemir, Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors. ChemistrySelect, 2022, 7(48), e202204050.
[http://dx.doi.org/10.1002/slct.202204050]
[27]
Liu, H.X.; He, M.T.; Tan, H.B.; Gu, W.; Yang, S.X.; Wang, Y.H.; Li, L.; Long, C.L. Xanthine oxidase inhibitors isolated from Piper nudibaccatum. Phytochem. Lett., 2015, 12, 133-137.
[http://dx.doi.org/10.1016/j.phytol.2015.03.005]
[28]
Lin, S.; Zhang, G.; Liao, Y.; Pan, J. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. Int. J. Biol. Macromol., 2015, 81, 274-282.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.017] [PMID: 26275460]
[29]
Su, Z.R.; Fan, S.Y.; Shi, W.G.; Zhong, B.H. Discovery of xanthine oxidase inhibitors and/or α-glucosidase inhibitors by carboxyalkyl derivatization based on the flavonoid of apigenin. Bioorg. Med. Chem. Lett., 2015, 25(14), 2778-2781.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.016] [PMID: 26022844]
[30]
Ao, G.Z.; Zhou, M.Z.; Li, Y.Y.; Li, S.N.; Wang, H.N.; Wan, Q.W.; Li, H.Q.; Hu, Q.H. Discovery of novel curcumin derivatives targeting xanthine oxidase and urate transporter 1 as anti-hyperuricemic agents. Bioorg. Med. Chem., 2017, 25(1), 166-174.
[http://dx.doi.org/10.1016/j.bmc.2016.10.022] [PMID: 28340987]
[31]
Chen, X.; Zuo, A.; Deng, Z.; Huang, X.; Zhang, X.; Geng, C.; Li, T.; Chen, J. New phenolic glycosides from Curculigo orchioides and their xanthine oxidase inhibitory activities. Fitoterapia, 2017, 122, 144-149.
[http://dx.doi.org/10.1016/j.fitote.2017.09.009] [PMID: 28916257]
[32]
Malik, N.; Dhiman, P.; Khatkar, A. Mechanistic approach towards interaction of newly synthesized Hesperidin derivatives against xanthine oxidase. Int. J. Biol. Macromol., 2019, 135, 864-876.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.017] [PMID: 31163243]
[33]
Lin, H.; Tu, C.; Niu, Y.; Li, F.; Yuan, L.; Li, N.; Xu, A.; Gao, L.; Li, L. Dual actions of norathyriol as a new candidate hypouricaemic agent: Uricosuric effects and xanthine oxidase inhibition. Eur. J. Pharmacol., 2019, 853, 371-380.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.034] [PMID: 31009635]
[34]
Kumar, S.; Pagar, A.D.; Ahmad, F.; Dwibedi, V.; Wani, A.; Bharatam, P.V.; Chhibber, M.; Saxena, S.; Pal Singh, I. Xanthine oxidase inhibitors from an endophytic fungus Lasiodiplodia pseudotheobromae. Bioorg. Chem., 2019, 87, 851-856.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.008] [PMID: 30545575]
[35]
Linani, A.; Benarous, K.; Bou-salah, L.; Yousfi, M. Hispidin, Harmaline, and Harmine as potent inhibitors of bovine xanthine oxidase: Gout treatment, in vitro, ADMET prediction, and SAR studies. Bioorg. Chem., 2021, 112, 104937.
[http://dx.doi.org/10.1016/j.bioorg.2021.104937] [PMID: 33932770]
[36]
Chen, J.; Wang, M.; Wang, M.; Zhang, Y.; Guo, X.; Chen, Y.; Zhang, M.; Sun, J.; Liu, Y.; Liu, C. Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis. Eur. J. Med. Chem., 2022, 237, 114379.
[http://dx.doi.org/10.1016/j.ejmech.2022.114379] [PMID: 35468514]
[37]
Aydin, B.O.; Anil, D.; Demir, Y. Synthesis of N -alkylated pyrazolo[3,4- d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch. Pharm., 2021, 354(5), 2000330.
[http://dx.doi.org/10.1002/ardp.202000330] [PMID: 33502038]
[38]
Ali, F.E.; Salem, O.I.; El-Mokhtar, M.A.; Aboraia, A.S.; Abdel-Moty, S.G.; Abdel–Aal, A.B.M. Design, synthesis and antiproliferative evaluation of lipidated 1, 3-diaryl propenones and their cyclized pyrimidine derivatives as tubulin polymerization inhibitors. Results Chem., 2023, 6(101016)
[39]
Kaur, M.; Kaur, A.; Mankotia, S.; Singh, H.; Singh, A.; Singh, J.V.; Gupta, M.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Synthesis, screening and docking of fused pyrano[3,2- d]pyrimidine derivatives as xanthine oxidase inhibitor. Eur. J. Med. Chem., 2017, 131, 14-28.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.002] [PMID: 28286211]
[40]
Shi, A.; Zhang, L.; Wang, H.; Wang, S.; Yang, M.; Guan, Q.; Bao, K.; Zhang, W. Design, synthesis and bioevaluation of 2-mercapto-6-phenylpyrimidine-4-carboxylic acid derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem., 2018, 155, 590-595.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.009] [PMID: 29920453]
[41]
Mao, Q.; Dai, X.; Xu, G.; Su, Y.; Zhang, B.; Liu, D.; Wang, S. Design, synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2019, 181, 111558.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.061] [PMID: 31369933]
[42]
Sun, M.; Zhao, J.; Mao, Q.; Yan, C.; Zhang, B.; Yang, Y.; Dai, X.; Gao, J.; Lin, F.; Duan, Y.; Zhang, T.; Wang, S. Synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenylpyrimidine derivatives with 4-amino or 4-hydroxy as a pharmacophore element binding with xanthine oxidase active site. Bioorg. Med. Chem., 2021, 38, 116117.
[http://dx.doi.org/10.1016/j.bmc.2021.116117] [PMID: 33838610]
[43]
Zhang, B.; Dai, X.; Bao, Z.; Mao, Q.; Duan, Y.; Yang, Y.; Wang, S. Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives. Eur. J. Med. Chem., 2019, 181, 111559.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.062] [PMID: 31376568]
[44]
Zhang, B.; Duan, Y.; Yang, Y.; Mao, Q.; Lin, F.; Gao, J.; Dai, X.; Zhang, P.; Li, Q.; Li, J.; Dai, R.; Wang, S. Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2022, 227, 113928.
[http://dx.doi.org/10.1016/j.ejmech.2021.113928] [PMID: 34688012]
[45]
Tan, A. Novel 1,2,3-triazole compounds: Synthesis, In vitro xanthine oxidase inhibitory activity, and molecular docking studies. J. Mol. Struct., 2020, 1211, 128060.
[http://dx.doi.org/10.1016/j.molstruc.2020.128060]
[46]
Yagiz, G.; Noma, S.A.A.; Altundas, A.; Al-khafaji, K.; Taskin-Tok, T.; Ates, B. Synthesis, inhibition properties against xanthine oxidase and molecular docking studies of dimethyl N-benzyl-1H-1,2,3-triazole-4,5-dicarboxylate and (N-benzyl-1H-1,2,3-triazole-4,5-diyl)dimethanol derivatives. Bioorg. Chem., 2021, 108, 104654.
[http://dx.doi.org/10.1016/j.bioorg.2021.104654] [PMID: 33493930]
[47]
Zhang, T.; Zhang, Y.; Zhang, Z.; Wang, Z.; Zhang, X.; Hu, S.; Lu, P.; Guo, S.; Meng, F. Discovery of 4-(phenoxymethyl)-1H-1,2,3-triazole derivatives as novel xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2022, 60, 128582.
[http://dx.doi.org/10.1016/j.bmcl.2022.128582] [PMID: 35077850]
[48]
Zafar, H.; Hayat, M.; Saied, S.; Khan, M.; Salar, U.; Malik, R.; Choudhary, M.I.; Khan, K.M. Xanthine oxidase inhibitory activity of nicotino/isonicotinohydrazides: A systematic approach from in vitro, in silico to in vivo studies. Bioorg. Med. Chem., 2017, 25(8), 2351-2371.
[http://dx.doi.org/10.1016/j.bmc.2017.02.044] [PMID: 28302506]
[49]
Zhang, T.; Li, S.; Wang, L.; Sun, Q.; Wu, Q.; Zhang, Y.; Meng, F. Design, synthesis and biological evaluation of N-(4-alkoxy-3-cyanophenyl)isonicotinamide/nicotinamide derivatives as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2017, 141, 362-372.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.051] [PMID: 29032030]
[50]
Yamali, C.; Gul, H.I.; Cakir, T.; Demir, Y.; Gulcin, I. Aminoalkylated phenolic chalcones: investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors. Lett. Drug Des. Discov., 2020, 17(10), 1283-1292.
[http://dx.doi.org/10.2174/1570180817999200520123510]
[51]
Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione S-transferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047.
[http://dx.doi.org/10.1002/jbt.22047] [PMID: 29473699]
[52]
Aslan, H.E.; Demir, Y.; Özaslan, M.S.; Türkan, F.; Beydemir, Ş.; Küfrevioğlu, Ö.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2019, 42(6), 634-640.
[http://dx.doi.org/10.1080/01480545.2018.1463242] [PMID: 29860891]
[53]
Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, Q.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem., 2016, 24(4), 578-587.
[http://dx.doi.org/10.1016/j.bmc.2015.12.024] [PMID: 26762836]
[54]
Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S.A.A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem., 2019, 91, 103149.
[http://dx.doi.org/10.1016/j.bioorg.2019.103149] [PMID: 31382060]
[55]
Tang, H.J.; Zhang, X.W.; Yang, L.; Li, W.; Li, J.H.; Wang, J.X.; Chen, J. Synthesis and evaluation of xanthine oxidase inhibitory and antioxidant activities of 2-arylbenzo[ b]furan derivatives based on salvianolic acid C. Eur. J. Med. Chem., 2016, 124, 637-648.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.019] [PMID: 27614410]
[56]
Tang, H.J.; Li, W.; Zhou, M.; Peng, L.Y.; Wang, J.X.; Li, J.H.; Chen, J. Design, synthesis and biological evaluation of novel xanthine oxidase inhibitors bearing a 2-arylbenzo[b]furan scaffold. Eur. J. Med. Chem., 2018, 151, 849-860.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.096] [PMID: 29684895]
[57]
Hong, Y.; Zhu, Y.Y.; He, Q.; Gu, S.X. Indole derivatives as tubulin polymerization inhibitors for the development of promising anticancer agents. Bioorg. Med. Chem., 2022, 55, 116597.
[http://dx.doi.org/10.1016/j.bmc.2021.116597] [PMID: 34995858]
[58]
Gündoğdu, S.; Türkeş, C.; Arslan, M.; Demir, Y.; Beydemir, Ş. New isoindole-1, 3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 2019, 4(45), 13347-13355.
[http://dx.doi.org/10.1002/slct.201903458]
[59]
Song, J.U.; Choi, S.P.; Kim, T.H.; Jung, C.K.; Lee, J.Y.; Jung, S.H.; Kim, G.T. Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(6), 1254-1258.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.055] [PMID: 25704891]
[60]
Gao, J.; Liu, X.; Zhang, B.; Mao, Q.; Zhang, Z.; Zou, Q.; Dai, X.; Wang, S. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2020, 190, 112077.
[http://dx.doi.org/10.1016/j.ejmech.2020.112077] [PMID: 32014678]
[61]
Fais, A.; Era, B.; Asthana, S.; Sogos, V.; Medda, R.; Santana, L.; Uriarte, E.; Matos, M.J.; Delogu, F.; Kumar, A. Coumarin derivatives as promising xanthine oxidase inhibitors. Int. J. Biol. Macromol., 2018, 120(Pt A), 1286-1293.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.001] [PMID: 30189275]
[62]
Era, B.; Delogu, G.L.; Pintus, F.; Fais, A.; Gatto, G.; Uriarte, E.; Borges, F.; Kumar, A.; Matos, M.J. Looking for new xanthine oxidase inhibitors: 3-Phenylcoumarins versus 2-phenylbenzofurans. Int. J. Biol. Macromol., 2020, 162, 774-780.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.152] [PMID: 32574739]
[63]
Joshi, G.; Sharma, M.; Kalra, S.; Gavande, N.S.; Singh, S.; Kumar, R. Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition. Bioorg. Chem., 2021, 107, 104620.
[http://dx.doi.org/10.1016/j.bioorg.2020.104620] [PMID: 33454509]
[64]
Hassan, M.Z.; Alsayari, A.; Asiri, Y.I.; Bin Muhsinah, A. Synthesis of new pyrazole hybrids as potential anticancer agents with xanthine oxidase inhibitory activity. Anticancer. Agents Med. Chem., 2022, 22(12), 2303-2309.
[http://dx.doi.org/10.2174/1871520622666220110162651] [PMID: 35016597]
[65]
Chen, S.; Zhang, T.; Wang, J.; Wang, F.; Niu, H.; Wu, C.; Wang, S. Synthesis and evaluation of 1-hydroxy/methoxy-4-methyl-2-phenyl-1H-imidazole-5-carboxylic acid derivatives as non-purine xanthine oxidase inhibitors. Eur. J. Med. Chem., 2015, 103, 343-353.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.056] [PMID: 26363870]
[66]
Zhang, T.; Lv, Y.; Lei, Y.; Liu, D.; Feng, Y.; Zhao, J.; Chen, S.; Meng, F.; Wang, S. Design, synthesis and biological evaluation of 1-hydroxy-2-phenyl-4-pyridyl-1H-imidazole derivatives as xanthine oxidase inhibitors. Eur. J. Med. Chem., 2018, 146, 668-677.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.060] [PMID: 29407989]
[67]
Tomovic, K.; Ilic, B.S.; Smelcerovic, Z.; Miljkovic, M.; Yancheva, D.; Kojic, M.; Mavrova, A.T.; Kocic, G.; Smelcerovic, A. Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. Chem. Biol. Interact., 2020, 315, 108873.
[http://dx.doi.org/10.1016/j.cbi.2019.108873] [PMID: 31669219]
[68]
Kantar, G.K.; Baltaş, N.; Menteşe, E.; Şaşmaz, S. Microwave-assisted synthesis and investigation of xanthine oxidase inhibition of new phthalonitrile and phthalocyanines containing morpholino substituted 1,2,4-triazole-3-one. J. Organomet. Chem., 2015, 787, 8-13.
[http://dx.doi.org/10.1016/j.jorganchem.2015.03.033]
[69]
Hu, Q.; Zhou, M.; Zhu, H.; Lu, G.; Zheng, D.; Li, H.; Hao, K. (E)-2-(4-bromophenyl)-1-(2, 4-dihydroxyphenyl)ethanone oxime is a potential therapeutic agent for treatment of hyperuricemia through its dual inhibitory effects on XOD and URAT1. Biomed. Pharmacother., 2017, 86, 88-94.
[http://dx.doi.org/10.1016/j.biopha.2016.12.002] [PMID: 27951420]
[70]
Fatima, I.; Zafar, H.; Khan, K.M.; Saad, S.M.; Javaid, S.; Perveen, S.; Choudhary, M.I. Synthesis, molecular docking and xanthine oxidase inhibitory activity of 5-aryl-1H-tetrazoles. Bioorg. Chem., 2018, 79, 201-211.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.021] [PMID: 29772470]
[71]
Sato, D.; Kisen, T.; Kumagai, M.; Ohta, K. Synthesis, structure-activity relationships, and mechanistic studies of 5-arylazo-tropolone derivatives as novel xanthine oxidase (XO) inhibitors. Bioorg. Med. Chem., 2018, 26(2), 536-542.
[http://dx.doi.org/10.1016/j.bmc.2017.12.017] [PMID: 29274704]
[72]
Figueiredo, J.; Serrano, J.L.; Cavalheiro, E.; Keurulainen, L.; Yli-Kauhaluoma, J.; Moreira, V.M.; Ferreira, S.; Domingues, F.C.; Silvestre, S.; Almeida, P. Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. Eur. J. Med. Chem., 2018, 143, 829-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.070] [PMID: 29223098]
[73]
Zhang, L.; Wang, S.; Yang, M.; Shi, A.; Wang, H.; Guan, Q.; Bao, K.; Zhang, W. Design, synthesis and bioevaluation of 3-oxo-6-aryl-2,3-dihydropyridazine-4-carbohydrazide derivatives as novel xanthine oxidase inhibitors. Bioorg. Med. Chem., 2019, 27(9), 1818-1823.
[http://dx.doi.org/10.1016/j.bmc.2019.03.027] [PMID: 30885567]
[74]
Gao, J.; Zhang, Z.; Zhang, B.; Mao, Q.; Dai, X.; Zou, Q.; Lei, Y.; Feng, Y.; Wang, S. Novel 3-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-1,2,4-oxadiazol-5(4H)-ones as promising xanthine oxidase inhibitors: Design, synthesis and biological evaluation. Bioorg. Chem., 2020, 95, 103564.
[http://dx.doi.org/10.1016/j.bioorg.2019.103564] [PMID: 31927335]
[75]
Gajić, M.; Džambaski, Z; Ilić, B.S.; Kocić, G.; Bondžić,, B.P.; Šmelcerović, A. Synthesis and analysis of 4-oxothiazolidines as potential dual inhibitors of deoxyribonuclease I and xanthine oxidase. Chem. Biol. Interact., 2021, 345, 109536.
[http://dx.doi.org/10.1016/j.cbi.2021.109536] [PMID: 34058176]
[76]
Rashad, A.Y.; Kassab, S.E.; Daabees, H.G.; Abdel Moneim, A.E.; Rostom, S.A.F. Febuxostat-based amides and some derived heterocycles targeting xanthine oxidase and COX inhibition. Synthesis, in vitro and in vivo biological evaluation, molecular modeling and in silico ADMET studies. Bioorg. Chem., 2021, 113, 104948.
[http://dx.doi.org/10.1016/j.bioorg.2021.104948] [PMID: 34052736]
[77]
Zhang, L.; Tian, J.; Cheng, H.; Yang, Y.; Yang, Y.; Ye, F.; Xiao, Z. Identification of novel xanthine oxidase inhibitors via virtual screening with enhanced characterization of molybdopterin binding groups. Eur. J. Med. Chem., 2022, 230, 114101.
[http://dx.doi.org/10.1016/j.ejmech.2022.114101] [PMID: 35063733]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy