Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

A Review of the Leishmanicidal Properties of Lectins

Author(s): Yasmim A. Grangeiro, Ana L.E. Santos, Flávia E.V. Barbosa, Renato R. Roma, Racquel O.S. Souza, Cláudio G.L Silva and Claudener S. Teixeira*

Volume 25, Issue 6, 2024

Published on: 26 January, 2024

Page: [443 - 453] Pages: 11

DOI: 10.2174/0113892037275751231221053730

Price: $65

Abstract

Lectins are proteins widely distributed among plants, animals and microorganisms that have the ability to recognize and interact with specific carbohydrates. They have varied biological activities, such as the inhibition of the progression of infections caused by fungi, bacteria, viruses and protozoa, which is related to the interaction of these proteins with the carbohydrates present in the cell walls of these microorganisms. Leishmaniasis are a group of endemic infectious diseases caused by protozoa of the genus Leishmania. In vitro and in vivo tests with promastigotes and amastigotes of Leishmania demonstrated that lectins have the ability to interact with glycoconjugates present on the cell surface of the parasite, it prevents their development through various mechanisms of action, such as the production of ROS and alteration of membrane integrity, and can also interact with defense cells present in the human body, thus showing that these molecules can be considered alternative pharmacological targets for the treatment of leishmaniasis. The objective of the present work is to carry out a bibliographic review on lectins with leishmanicidal activity, emphasizing the advances and perspectives of research in this theme. Through the analysis of the selected studies, we were able to conclude that lectins have great potential for inhibiting the development of leishmaniasis. However, there are still few studies on this subject.

Graphical Abstract

[1]
Peumans, W.J.; Van Damme, E. Lectins as plant defense proteins. Plant Physiol., 1995, 109(2), 347-352.
[http://dx.doi.org/10.1104/pp.109.2.347] [PMID: 7480335]
[2]
Povineli, K.L.; Finardi Filho, F. The multiple functions of plant lectins. Nutrire, 2002, 24, 135-156.
[3]
Cavada, B.S.; Santos, C.F.; Grangeiro, T.B.; Nunes, E.P.; Sales, P.V.P.; Ramos, R.L.; De Sousa, F.A.M.; Crisostomo, C.V.; Calvete, J.J. Purification and characterization of a lectin from seeds of Vatairea macrocarpa duke. Phytochemistry, 1998, 49(3), 675-680.
[http://dx.doi.org/10.1016/S0031-9422(98)00144-7] [PMID: 9779593]
[4]
Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem., 1988, 263(20), 9557-9560.
[http://dx.doi.org/10.1016/S0021-9258(19)81549-1] [PMID: 3290208]
[5]
Singh, R.S.; Walia, A.K.; Kennedy, J.F. Structural aspects and biomedical applications of microfungal lectins. Int. J. Biol. Macromol., 2019, 134, 1097-1107.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.093] [PMID: 31103591]
[6]
Saha, R.K.; Acharya, S.; Jamiruddin, M.; Roy, P.; Islam, M.S.; Shovon, S.S.H. Antimicrobial effects of a crude plant lectin isolated from the stem of Tinospora tomentosa. J. phytopharm., 2014, 3(1), 44-51.
[http://dx.doi.org/10.31254/phyto.2014.3107]
[7]
Auth, J.; Fröba, M.; Große, M.; Rauch, P.; Ruetalo, N.; Schindler, M.; Morokutti-Kurz, M.; Graf, P.; Dolischka, A.; Prieschl-Grassauer, E.; Setz, C.; Schubert, U. Lectin from Triticum vulgaris (WGA) inhibits infection with SARS-CoV-2 and its variants of concern alpha and beta. Int. J. Mol. Sci., 2021, 22(19), 10205.
[http://dx.doi.org/10.3390/ijms221910205] [PMID: 34638545]
[8]
Azevedo, I.M.F.; Silva, R.B.D.; Pinheiro, A.D.A.; Carneiro, R.F.; Nascimento Neto, L.G.D. Evaluation of the antitumor activity of the lectin isolated from the marine sponge Chondrilla caribensis. Rev. Multidiscip. Edu. Envir, 2021, 2(2), 42.
[http://dx.doi.org/10.51189/rema/1270]
[9]
Dias, L.P.; Santos, A.L.E.; Araújo, N.M.S.; Silva, R.R.S.; Santos, M.H.C.; Roma, R.R.; Rocha, B.A.M.; Oliveira, J.T.A.; Teixeira, C.S. Machaerium acutifolium lectin alters membrane structure and induces ROS production in Candida parapsilosis. Int. J. Biol. Macromol., 2020, 163, 19-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.236] [PMID: 32599250]
[10]
Santos, A.L.E.; Leite, G.O.; Carneiro, R.F.; Roma, R.R.; Santos, V.F.; Santos, M.H.C.; Pereira, R.O.; Silva, R.C.; Nagano, C.S.; Sampaio, A.H.; Rocha, B.A.M.; Delatorre, P.; Campos, A.R.; Teixeira, C.S. Purification and biophysical characterization of a mannose/N-acetyl-d-glucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Arch. Biochem. Biophys., 2019, 664, 149-156.
[http://dx.doi.org/10.1016/j.abb.2019.02.009] [PMID: 30772259]
[11]
Santos, V.F.; Araújo, A.C.J.; Silva, A.L.F.; Almeida, D.V.; Freitas, P.R.; Santos, A.L.E.; Rocha, B.A.M.; Garcia, W.; Leme, A.M.; Bondan, E.; Borges, F.T.; Cutrim, B.S.; Silva, L.C.N.; Coutinho, H.D.M.; Teixeira, C.S. Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int. J. Biol. Macromol., 2020, 146, 841-852.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.207] [PMID: 31726163]
[12]
Sousa, A.R.O.; Andrade, F.R.N.; Chaves, R.P.; Sousa, B.L.; Lima, D.B.; Souza, R.O.S.; da Silva, C.G.L.; Teixeira, C.S.; Sampaio, A.H.; Nagano, C.S.; Carneiro, R.F. Structural characterization of a galectin isolated from the marine sponge Chondrilla caribensis with leishmanicidal potential. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(12), 129992.
[http://dx.doi.org/10.1016/j.bbagen.2021.129992] [PMID: 34508835]
[13]
Aranda-Souza, M.Â.; de Lorena, V.M.B.; Dos Santos Correia, M.T.; de Figueiredo, R.C.B.Q. In vitro effect of Bothrops leucurus lectin (BLL) against Leishmania amazonensis and Leishmania braziliensis infection. Int. J. Biol. Macromol., , 2018, 120(Pt A), 431-439.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.064]
[14]
Carneiro, R.F.; Aguiar, E.S.; Santos, V.F.; Santos, A.L.E.; Santos, M.H.C.; Roma, R.R.; Silva, R.R.S.; Leal, M.L.M.B.; Silva, L.T.; Rocha, B.A.M.; Silva, C.G.L.; Nagano, C.S.; Sampaio, A.H.; Souza, R.O.S.; Teixeira, C.S. Elucidation of the primary structure and molecular modeling of Parkia pendula lectin and in vitro evaluation of the leishmanicidal activity. Process Biochem., 2021, 101, 1-10.
[http://dx.doi.org/10.1016/j.procbio.2020.11.004]
[15]
Thomazelli, A.P.F.S.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; da Silva, S.S.; Alvarenga, D.S.; Panis, C.; Cataneo, A.H.D.; Bordignon, J.; Silveira, G.F.; Yamauchi, L.M.; de Sá, J.P.S.R.; Felipe, I.; Pavanelli, W.R.; Conchon-Costa, I. Concanavalin-A displays leishmanicidal activity by inducing ROS production in human peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol., 2018, 40(5), 387-392.
[http://dx.doi.org/10.1080/08923973.2018.1510960] [PMID: 30183425]
[16]
Alemayehu, B.; Alemayehu, M. Leishmaniasis: A review on parasite, vector and reservoir host J. Health Sci, 2017, 11
[http://dx.doi.org/10.21767/1791-809X.1000519]
[17]
Brazil Health Surveillance Guide, 1st ed; Ministry of Health: Brasilia, 2016.
[18]
Brazil Ministry of Health from A to Z. 2022. Available at: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/l Accessed on: January 6, 2023.
[19]
Lainson, R.; Shaw, J.J. Evolution, classification and geographical distribution, 1987, , 1-120. Available from: https://patua.iec.gov-.br/handle/iec/2715
[20]
Tabbabi, A. Review of leishmaniasis in the Middle East and North Africa. Afr. Health Sci., 2019, 19(1), 1329-1337.
[http://dx.doi.org/10.4314/ahs.v19i1.4] [PMID: 31148958]
[21]
de Freitas, R.C.; Marcili, A. Skin changes secondary to Leishmania sp. infection: Literature review. BJD, 2020, 6, 19328-19346.
[http://dx.doi.org/10.34117/bjdv6n4-195]
[22]
Wyrepkowski, C.D.C.; Paz, A.C.; Jensen, B.B.; Franco, A.M.R. Pharmacological aspects of drug therapy used for cutaneous leishmaniasis: A literature review. REAS, 2020, 12, e3352-e3352.
[http://dx.doi.org/10.25248/reas.e3352.2020]
[23]
Assis, R.R.; Ibraim, I.C.; Noronha, F.S.; Turco, S.J.; Soares, R.P. Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: modulation of innate immune system and variations in carbohydrate structure. PLoS Negl. Trop. Dis., 2012, 6(2), e1543.
[http://dx.doi.org/10.1371/journal.pntd.0001543] [PMID: 22389743]
[24]
Pereira, L.O.R.; Sousa, C.S.; Ramos, H.C.P.; Torres-Santos, E.C.; Pinheiro, L.S.; Alves, M.R.; Cuervo, P.; Romero, G.A.S.; Boité, M.C.; Porrozzi, R.; Cupolillo, E. Insights from Leishmania (Viannia) guyanensis in vitro behavior and intercellular communication. Parasit. Vectors, 2021, 14(1), 556.
[http://dx.doi.org/10.1186/s13071-021-05057-x] [PMID: 34711290]
[25]
Galvis-Ovallos, F.; Silva, R.A.; Silva, V.G.D.; Sabio, P.B.; Galati, E.A.B. In vitro insights of Leishmania (Viannia) species related to their outcomes and virulence in American tegumentary leishmaniasis. Int. J. Health Sci., 2020, 1(1), 1-15.
[http://dx.doi.org/10.22533/at.ed.1592127091]
[26]
Benedetti, M.S.G.; Pezente, L.G. Epidemiological aspects of visceral leishmaniasis in the extreme North of Brazil. BJHR, 2020, 3, 14203-14226.
[http://dx.doi.org/10.34119/bjhrv3n5-224]
[27]
Tanure, A.; Peixoto, J.C.; Afonso, M.M.S.; Duarte, R.; Pinheiro, A.C.; Coelho, S.V.B.; Barata, R.A. Identification of sandflies (Diptera: Psychodidae: Phlebotominae) blood meals in an endemic leishmaniasis area in brazil. Rev. Inst. Med. Trop. São Paulo, 2015, 57(4), 321-324.
[http://dx.doi.org/10.1590/S0036-46652015000400008] [PMID: 26422156]
[28]
Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E. Human leishmaniasis in Brazil: A general review. Rev. Assoc. Med. Bras., 2018, 64(3), 281-289.
[http://dx.doi.org/10.1590/1806-9282.64.03.281] [PMID: 29641786]
[29]
Brito, G.S.; Aguiar, J.V.C.; de Sousa de Almeida, M.; Silva Ponte, I.; Costa Neta, B.M.; Silva, F.S. Influence of moonlight on male mating aggregations of nyssomyia whitmani, a vector of american cutaneous leishmaniasis in Brazil. J. Med. Entomol., 2020, 57(5), 1648-1652.
[http://dx.doi.org/10.1093/jme/tjaa048] [PMID: 32270870]
[30]
Killick-Kendrick, R. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). D.G. Young, M.A. Duncan, Memoirs of the American entomological institute, 54. Gainesville, Florida, USA: Associated Publishers. Trans. R. Soc. Trop. Med. Hyg., 1994, 89(1), 125.
[http://dx.doi.org/10.1016/0035-9203(95)90687-8]
[31]
Butenko, A.; Kostygov, A.Y.; Sádlová, J.; Kleschenko, Y.; Bečvář, T.; Podešvová, L.; Macedo, D.H.; Žihala, D.; Lukeš, J.; Bates, P.A.; Volf, P.; Opperdoes, F.R.; Yurchenko, V. Comparative genomics of Leishmania (Mundinia). BMC Genomics, 2019, 20(1), 726.
[http://dx.doi.org/10.1186/s12864-019-6126-y] [PMID: 31601168]
[32]
Aguiar, F.P.; Rodrigues, K.R. Visceral leishmaniasis in Brazil: Review article RUC, 2020, 19(1), 192-204. Retrieved from: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/2119
[33]
Sacks, D.; Kamhawi, S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu. Rev. Microbiol., 2001, 55(1), 453-483.
[http://dx.doi.org/10.1146/annurev.micro.55.1.453] [PMID: 11544364]
[34]
Holanda, V.N.; da Silva, W.V.; do Nascimento, P.H.; Oliveira, R.N.; Lima, V.L.M.R.; de Figueiredo, C.B.Q. Challenges and perspectives in the treatment of tegumentary leishmaniasis: Literature review. Rev. Interfaces, Health, Humanities and Technol., 2018, 6, 140-157.
[http://dx.doi.org/10.16891/619]
[35]
Guimarães, A.C.; Nogueira, P.M.; Silva, S.O.; Sadlova, J.; Pruzinova, K.; Hlavacova, J.; Melo, M.N.; Soares, R.P. Lower galactosylation levels of the Lipophosphoglycan from Leishmania (Leishmania) major-like strains affect interaction with Phlebotomus papatasi and Lutzomyia longipalpis. Mem. Inst. Oswaldo Cruz, 2018, 113(5), e170333.
[http://dx.doi.org/10.1590/0074-02760170333] [PMID: 29513819]
[36]
Turco, S.J.; Späth, G.F.; Beverley, S.M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol., 2001, 17(5), 223-226.
[http://dx.doi.org/10.1016/S1471-4922(01)01895-5] [PMID: 11323305]
[37]
Male, D. Immunology, 8. Ed; Elsevier Publisher: Brazil, 2014.
[38]
Barbosa, J.M.; Fontes, R.M.; Frutuoso, M.S.; Praciano, C.C.; Oliveira, L.S.M.; Carneiro, T.R.; Pompeu, M.M.L. Evaluation of Dioclea violacea lectin-induced agglutination (DVL) to infective forms of Leishmania amazonensis XXII Brazilian Congress of Parasitology, São Paulo, J Trop Pathol, 2011, 40
[39]
Cabezas, Y.; Legentil, L.; Robert-Gangneux, F.; Daligault, F.; Belaz, S.; Nugier-Chauvin, C.; Tranchimand, S.; Tellier, C.; Gangneux, J.P.; Ferrières, V. Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Org. Biomol. Chem., 2015, 13(31), 8393-8404.
[http://dx.doi.org/10.1039/C5OB00563A] [PMID: 26130402]
[40]
Turco, S.J. Trypanosomatid surface and secreted carbohydrates. In: Molecular Medical Parasitology; Academic Press, 2003; 10, pp. 225-240.
[http://dx.doi.org/10.1016/B978-012473346-6/50013-2]
[41]
de Freitas, J.C.; Pinheiro, D.C. Cellular and molecular aspects of immune response to Leishmania spp Rev. port. science vet., , 2010, 109, 11-20.
[42]
Lázaro-Souza, M.; Matte, C.; Lima, J.B.; Arango Duque, G.; Quintela-Carvalho, G.; de Carvalho Vivarini, Á.; Moura-Pontes, S.; Figueira, C.P.; Jesus-Santos, F.H.; Gazos Lopes, U.; Farias, L.P.; Araújo-Santos, T.; Descoteaux, A.; Borges, V.M. Leishmania infantum Lipophosphoglycan-deficient mutants: A tool to study host cell-parasite interplay. Front. Microbiol., 2018, 9, 626.
[http://dx.doi.org/10.3389/fmicb.2018.00626] [PMID: 29675001]
[43]
Valente, M.; Castillo-Acosta, V.M.; Vidal, A.E.; González-Pacanowska, D. Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: Prospects for therapeutic intervention. Parasitology, 2019, 146(14), 1743-1754.
[http://dx.doi.org/10.1017/S0031182019001355] [PMID: 31603063]
[44]
de Saldanha, R.R.; Martins-Papa, M.C.; Sampaio, R.N.R.; Muniz-Junqueira, M.I. Meglumine antimonate treatment enhances phagocytosis and TNF-α production by monocytes in human cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 2012, 106(10), 596-603.
[http://dx.doi.org/10.1016/j.trstmh.2012.07.001] [PMID: 22884926]
[45]
Caetano, D.C.D.S.; Costa, C.O.; Diniz, S.N.; dos Santos, M.R.M.; Marquez, A.S.; Pereira, R.M.S. Tegumentary leishmaniasis in the state of Mato Grosso: Sociodemographic and health characteristics associated with adverse laboratory and electrocardiographic reactions. Ens. Cienc. Biol. Agrar. Health., 2020, 24, 234-241.
[http://dx.doi.org/10.17921/1415-6938.2020v24n3p234-241]
[46]
de Melo, C.M.L.; de Castro, M.C.A.B.; de Oliveira, A.P.; Gomes, F.O.S.; Pereira, V.R.A.; Correia, M.T.S.; Coelho, L.C.B.B.; Paiva, P.M.G. Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother. Res., 2010, 24(11), 1631-1636.
[http://dx.doi.org/10.1002/ptr.3156] [PMID: 21031620]
[47]
Grinnage-Pulley, T.L.; Kabotso, D.E.K.; Rintelmann, C.L.; Roychoudhury, R.; Schaut, R.G.; Toepp, A.J.; Gibson-Corley, K.N.; Parrish, M.; Pohl, N.L.B.; Petersen, C.A. Leishmania-derived trimannose modulates the inflammatory response to significantly reduce leishmania major-induced lesions. Infect. Immun., 2018, 86(1), e00672-17.
[http://dx.doi.org/10.1128/IAI.00672-17] [PMID: 29061708]
[48]
Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules, 2009, 14(8), 3037-3072.
[http://dx.doi.org/10.3390/molecules14083037] [PMID: 19701144]
[49]
Ribeiro, J.B.P.; Miranda-Vilela, A.L.; Amorim, A.A.S.; Garcia, R.D.; Moreira, J.R.; Gomes, C.M.; Takano, G.H.S.; de Oliveira, G.M.F.; Lima, A.V.; da Silva, I.C.R.; Sampaio, R.N.R. Study of the efficacy of N-methyl glucamine antimoniate (SbV) associated with photodynamic therapy using liposomal chloroaluminium phthalocyanine in the treatment of cutaneous leishmaniasis caused by Leishmania (L.) amazonensis in C57BL6 mice. Photodiagn. Photodyn. Ther., 2019, 26, 261-269.
[http://dx.doi.org/10.1016/j.pdpdt.2019.04.004] [PMID: 30951865]
[50]
Stillmark, H. Ricin, a toxic enzyme from seeds of Ricinus communis L. and some other Euphorbiaceae. 1888.
[51]
Tsaneva, M.; Van Damme, E.J.M. 130 years of plant lectin research. Glycoconj. J., 2020, 37(5), 533-551.
[http://dx.doi.org/10.1007/s10719-020-09942-y] [PMID: 32860551]
[52]
Battison, A.L.; Summerfield, R.L. Isolation and partial characterisation of four novel plasma lectins from the American lobster Homarus americanus. Dev. Comp. Immunol., 2009, 33(2), 198-204.
[http://dx.doi.org/10.1016/j.dci.2008.08.007] [PMID: 18793666]
[53]
Moura, R.B.; Pereira Júnior, F.N.; Santos, G.F.A.; Rodrigues, A.R.S. Importance of lectins in virology - An integrative review. Res. Soc. Dev, 2020, 9(11), e46491110083.
[http://dx.doi.org/10.33448/rsd-v9i11.10083]
[54]
Nunes, E.S.; de Souza, M.A.A.; Vaz, A.F.M.; Santana, G.M.S.; Gomes, F.S.; Coelho, L.C.B.B.; Paiva, P.M.G.; da Silva, R.M.L.; Silva-Lucca, R.A.; Oliva, M.L.V.; Guarnieri, M.C.; Correia, M.T.S. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2011, 159(1), 57-63.
[http://dx.doi.org/10.1016/j.cbpb.2011.02.001] [PMID: 21334449]
[55]
Komath, S.S.; Kavitha, M.; Swamy, M.J. Beyond carbohydrate binding: New directions in plant lectin research. Org. Biomol. Chem., 2006, 4(6), 973-988.
[http://dx.doi.org/10.1039/b515446d] [PMID: 16525538]
[56]
Sivaji, N.; Suguna, K.; Surolia, A.; Vijayan, M. Structural biology of plant lectins and macromolecular crystallography in India. Curr. Sci., 2019, 116(9), 1490-1505.
[http://dx.doi.org/10.18520/cs/v116/i9/1490-1505]
[57]
Bezerra, E.H.S.; Rocha, B.A.M.; Nagano, C.S.; Bezerra, G.A.; Moura, T.R.; Bezerra, M.J.B.; Benevides, R.G.; Sampaio, A.H.; Assreuy, A.M.S.; Delatorre, P.; Cavada, B.S. Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation. Biochem. Biophys. Res. Commun., 2011, 408(4), 566-570.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.061] [PMID: 21530490]
[58]
Delatorre, P.; Rocha, B.A.M.; Gadelha, C.A.A.; Santi-Gadelha, T.; Cajazeiras, J.B.; Souza, E.P.; Nascimento, K.S.; Freire, V.N.; Sampaio, A.H.; Azevedo, W.F., Jr; Cavada, B.S. Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J. Struct. Biol., 2006, 154(3), 280-286.
[http://dx.doi.org/10.1016/j.jsb.2006.03.011] [PMID: 16677825]
[59]
Souza Teixeira, C.; Colares da Silva, H.; Rocha de Moura, T.; Pereira-Júnior, F.N.; Santiago do Nascimento, K.; Shiniti Nagano, C.; Holanda Sampaio, A.; Delatorre, P.; Matias Rocha, B.A.; Sousa Cavada, B. Crystal structure of the lectin of Camptosema pedicellatum: implications of a conservative substitution at the hydrophobic subsite. J. Biochem., 2012, 152(1), 87-98.
[http://dx.doi.org/10.1093/jb/mvs047] [PMID: 22554687]
[60]
Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11), 53R-62R.
[http://dx.doi.org/10.1093/glycob/cwh122] [PMID: 15229195]
[61]
Hashim, O.H.; Jayapalan, J.J.; Lee, C.S. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ, 2017, 5, e3784.
[http://dx.doi.org/10.7717/peerj.3784] [PMID: 28894650]
[62]
Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater., 2018, 65, 393-404.
[http://dx.doi.org/10.1016/j.actbio.2017.11.007] [PMID: 29127069]
[63]
Van Damme, E.; Peumans, W.J. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci., 1998, 17(6), 575-692.
[http://dx.doi.org/10.1016/S0735-2689(98)00365-7]
[64]
Coelho, L.C.B.B.; Silva, P.M.S.; Lima, V.L.M.; Pontual, E.V.; Paiva, P.M.G.; Napoleão, T.H.; Correia, M.T.S. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-22.
[http://dx.doi.org/10.1155/2017/1594074] [PMID: 28367220]
[65]
Welter, B.H.; Walters, H.A.; Temesvari, L.A. Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica. PLoS One. , 2020, 15(3), e0219870.
[http://dx.doi.org/10.1371/journal.pone.0219870]
[66]
Lagarda-Diaz, I.; Guzman-Partida, A.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci., 2017, 18(6), 1242.
[http://dx.doi.org/10.3390/ijms18061242] [PMID: 28604616]
[67]
Van Breedam, W.; Pöhlmann, S.; Favoreel, H.W.; de Groot, R.J.; Nauwynck, H.J. Bitter-sweet symphony: Glycan–lectin interactions in virus biology. FEMS Microbiol. Rev., 2014, 38(4), 598-632.
[http://dx.doi.org/10.1111/1574-6976.12052] [PMID: 24188132]
[68]
Lis, H.; Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 1998, 98(2), 637-674.
[http://dx.doi.org/10.1021/cr940413g] [PMID: 11848911]
[69]
Singh, R.S.; Kaur, H.P.; Singh, J. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: Application for mitogenic and antimicrobial activity. PLoS One, 2014, 9(10), e109265.
[http://dx.doi.org/10.1371/journal.pone.0109265] [PMID: 25286160]
[70]
Watanabe, Y.; Naganuma, T.; Ogawa, T.; Muramoto, K. Lectins of marine origin and their clinical applications. In: Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds; Springer Netherlands, 2013; pp. 33-54.
[http://dx.doi.org/10.1007/978-94-007-6214-5_4]
[71]
Akkouh, O.; Ng, T.; Singh, S.; Yin, C.; Dan, X.; Chan, Y.; Pan, W.; Cheung, R. Lectins with anti-HIV activity: A review. Molecules, 2015, 20(1), 648-668.
[http://dx.doi.org/10.3390/molecules20010648] [PMID: 25569520]
[72]
Liu, Z.; Zhang, Q.; Peng, H.; Zhang, W. Animal lectins: Potential antitumor therapeutic targets in apoptosis. Appl. Biochem. Biotechnol., 2012, 168(3), 629-637.
[http://dx.doi.org/10.1007/s12010-012-9805-6] [PMID: 22826026]
[73]
Araújo, T.S.; Teixeira, C.S.; Falcão, M.A.P.; Junior, V.R.P.; Santiago, M.Q.; Benevides, R.G.; Delatorre, P.; Martins, J.L.; Alexandre-Moreira, M.S.; Cavada, B.S.; Campesatto, E.A.; Rocha, B.A.M. Anti-inflammatory and antinociceptive activity of chitin-binding lectin from Canna limbata seeds. Appl. Biochem. Biotechnol., 2013, 171(8), 1944-1955.
[http://dx.doi.org/10.1007/s12010-013-0470-1] [PMID: 24013883]
[74]
Abrantes, V.E.F.; Matias da Rocha, B.A.; Batista da Nóbrega, R.; Silva-Filho, J.C.; Teixeira, C.S.; Cavada, B.S.; Gadelha, C.A.A.; Ferreira, S.H.; Figueiredo, J.G.; Santi-Gadelha, T.; Delatorre, P. Molecular modeling of lectin-like protein from Acacia farnesiana reveals a possible anti-inflammatory mechanism in Carrageenan-induced inflammation. BioMed Res. Int., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/253483] [PMID: 24490151]
[75]
de Oliveira Leite, G.; Santos, S.A.A.R.; dos Santos Silva, R.R.; Teixeira, C.S.; Campos, A.R. Parkia platycephala lectin (PPL) inhibits orofacial nociception responses via TRPV1 modulation. Molecules, 2022, 27(21), 7506.
[http://dx.doi.org/10.3390/molecules27217506] [PMID: 36364332]
[76]
de Oliveira Leite, G.; Santos, S.A.A.R.; Bezerra, F.M.D.H.; Sena e Silva, F.E.; de Castro Ribeiro, A.D.; Roma, R.R.; Silva, R.R.S.; Santos, M.H.C.; Santos, A.L.E.; Teixeira, C.S.; Campos, A.R. Is the orofacial antinociceptive effect of lectins intrinsically related to their specificity to monosaccharides? Int. J. Biol. Macromol., 2020, 161, 1079-1085.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.132]
[77]
da Silva, P.M.; da Silva, B.R.; de Oliveira Silva, J.N.; de Moura, M.C.; Soares, T.; Feitosa, A.P.S.; Brayner, F.A.; Alves, L.C.; Paiva, P.M.G.; Damborg, P.; Ingmer, H.; Napoleão, T.H. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. Int. J. Biol. Macromol., 2019, 135, 931-939.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.011] [PMID: 31170488]
[78]
Batista, K.L.R.; Silva, C.R.; Santos, V.F.; Silva, R.C.; Roma, R.R.; Santos, A.L.E.; Pereira, R.O.; Delatorre, P.; Rocha, B.A.M.; Soares, A.M.S.; Costa-Júnior, L.M.; Teixeira, C.S. Structural analysis and anthelmintic activity of Canavalia brasiliensis lectin reveal molecular correlation between the carbohydrate recognition domain and glycans of Haemonchus contortus. Mol. Biochem. Parasitol., 2018, 225, 67-72.
[http://dx.doi.org/10.1016/j.molbiopara.2018.09.002] [PMID: 30217772]
[79]
Reyes-Montaño, E.A.; Vega-Castro, N.A. Plant lectins with insecticidal and insectistatic activities In: Insecticides - Agricul and Toxicol. ; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.74962]
[80]
Palharini, J.G.; Richter, A.C.; Silva, M.F.; Ferreira, F.B.; Pirovani, C.P.; Naves, K.S.C.; Goulart, V.A.; Mineo, T.W.P.; Silva, M.J.B.; Santiago, F.M. Eutirucallin: A lectin with antitumor and antimicrobial properties. Front. Cell. Infect. Microbiol., 2017, 7, 136.
[http://dx.doi.org/10.3389/fcimb.2017.00136] [PMID: 28487845]
[81]
Almeida, A.C.; Osterne, V.J.S.; Santiago, M.Q.; Pinto-Junior, V.R.; Silva-Filho, J.C.; Lossio, C.F.; Nascimento, F.L.F.; Almeida, R.P.H.; Teixeira, C.S.; Leal, R.B.; Delatorre, P.; Rocha, B.A.M.; Assreuy, A.M.S.; Nascimento, K.S.; Cavada, B.S. Structural analysis of Centrolobium tomentosum seed lectin with inflammatory activity. Arch. Biochem. Biophys., 2016, 596, 73-83.
[http://dx.doi.org/10.1016/j.abb.2016.03.001] [PMID: 26946944]
[82]
Véras, J.H.; Cardoso, C.G.; Puga, S.C.; de Melo Bisneto, A.V.; Roma, R.R.; Santos Silva, R.R.; Teixeira, C.S.; Chen-Chen, L. Lactose-binding lectin from Vatairea macrocarpa seeds induces in vivo angiogenesis via VEGF and TNF-ɑ expression and modulates in vitro doxorubicin-induced genotoxicity. Biochimie, 2022, 194, 55-66.
[http://dx.doi.org/10.1016/j.biochi.2021.12.011] [PMID: 34973362]
[83]
Alves, A.C.; Vasconcelos, M.A.; Santiago, M.Q.; Pinto-Junior, V.R.; Silva Osterne, V.J.; Lossio, C.F.; Souza Ferreira Bringel, P.H.; Castro, R.R.; Nagano, C.S.; Delatorre, P.; Souza, L.A.G.; Nascimento, K.S.; Assreuy, A.M.S.; Cavada, B.S. A novel vasorelaxant lectin purified from seeds of Clathrotropis nitida : Partial characterization and immobilization in chitosan beads. Arch. Biochem. Biophys., 2015, 588, 33-40.
[http://dx.doi.org/10.1016/j.abb.2015.10.020] [PMID: 26545483]
[84]
Barroso-Neto, I.L.; Delatorre, P.; Teixeira, C.S.; Correia, J.L.A.; Cajazeiras, J.B.; Pereira, R.I.; Nascimento, K.S.; Laranjeira, E.P.P.; Pires, A.F.; Assreuy, A.M.S.; Rocha, B.A.M.; Cavada, B.S. Structural analysis of a Dioclea sclerocarpa lectin: Study on the vasorelaxant properties of Dioclea lectins. Int. J. Biol. Macromol., 2016, 82, 464-470.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.052] [PMID: 26499084]
[85]
Kumaki, Y.; Wandersee, M.K.; Smith, A.J.; Zhou, Y.; Simmons, G.; Nelson, N.M.; Bailey, K.W.; Vest, Z.G.; Li, J.K.K.; Chan, P.K.S.; Smee, D.F.; Barnard, D.L. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res., 2011, 90(1), 22-32.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.003] [PMID: 21338626]
[86]
Grosche, V.R.; Souza, L.P.F.; Ferreira, G.M.; Guevara-Vega, M.; Carvalho, T.; Silva, R.R.S.; Batista, K.L.R.; Abuna, R.P.F.; Silva, J.S.; Calmon, M.F.; Rahal, P.; da Silva, L.C.N.; Andrade, B.S.; Teixeira, C.S.; Sabino-Silva, R.; Jardim, A.C.G. Mannose-binding lectins as potent antivirals against SARS-CoV-2. Viruses, 2023, 15(9), 1886.
[http://dx.doi.org/10.3390/v15091886] [PMID: 37766292]
[87]
Scott, P.; Natovitz, P.; Coffman, R.L.; Pearce, E.; Sher, A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med., 1988, 168(5), 1675-1684.
[http://dx.doi.org/10.1084/jem.168.5.1675] [PMID: 2903212]
[88]
Reiner, S.L.; Locksley, R.M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol., 1995, 13(1), 151-177.
[http://dx.doi.org/10.1146/annurev.iy.13.040195.001055] [PMID: 7612219]
[89]
Barbosa, T.; Arruda, S.; Cavada, B.; Grangeiro, T.B.; Freitas, L.A.R.; Barral-Netto, M. In vivo lymphocyte activation and apoptosis by lectins of the Diocleinae subtribe. Mem. Inst. Oswaldo Cruz, 2001, 96(5), 673-678.
[http://dx.doi.org/10.1590/S0074-02762001000500016] [PMID: 11500769]
[90]
Mariano, V.S.; Zorzetto-Fernandes, A.L.; da Silva, T.A.; Ruas, L.P.; Nohara, L.L.; de Almeida, I.C.; Roque-Barreira, M.C. Recognition of TLR2 N-glycans: Critical role in ArtinM immunomodulatory activity. PLoS One, 2014, 9(6), e98512.
[http://dx.doi.org/10.1371/journal.pone.0098512] [PMID: 24892697]
[91]
Kishko, I; Vasylenko, M.I; Pidhors'kyĭ, V.S.; Kovalenko, E.O. Lectin of Bacillus subtilis sp. As overinducer of gamma-interferonogenesis. Mikrobiolohichnyi zhurnal , 1997, 59(6), 20-26.
[92]
Campbell, D.; Mann, B.J.; Chadee, K. A subunit vaccine candidate region of the Entamoeba histolytica galactose-adherence lectin promotes interleukin-12 gene transcription and protein production in human macrophages. Eur. J. Immunol., 2000, 30(2), 423-430.
[http://dx.doi.org/10.1002/1521-4141(200002)30:2<423::AID-IMMU423>3.0.CO;2-0] [PMID: 10671197]
[93]
Castés, M.; Blackwell, J.; Trujillo, D.; Formica, S.; Cabrera, M.; Zorrilla, G.; Rodas, A.; Castellanos, P.L.; Convit, J. Immune response in healthy volunteers vaccinated with killed leishmanial promastigotes plus BCG. I: Skin-test reactivity, T-cell proliferation and interferon-γ production. Vaccine, 1994, 12(11), 1041-1051.
[http://dx.doi.org/10.1016/0264-410X(94)90342-5] [PMID: 7975845]
[94]
Panunto-Castelo, A.; Souza, M.A.; Roque-Barreira, M.C.; Silva, J.S. KM+, a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology, 2001, 11(12), 1035-1042.
[http://dx.doi.org/10.1093/glycob/11.12.1035] [PMID: 11805076]
[95]
Afonso-Cardoso, S.R.; Silva, C.V.; Ferreira, M.S.; Souza, M.A. Effect of the Synadenium carinatum latex lectin (ScLL) on Leishmania (Leishmania) amazonensis infection in murine macrophages. Exp. Parasitol., 2011, 128(1), 61-67.
[http://dx.doi.org/10.1016/j.exppara.2011.02.006] [PMID: 21320493]
[96]
Fonseca, V.J.A.; Braga, A.L.; Filho, J.R.; Teixeira, C.S.; da Hora, G.C.A.; Morais-Braga, M.F.B. A review on the antimicrobial properties of lectins. Int. J. Biol. Macromol., 2022, 195, 163-178.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.209] [PMID: 34896466]
[97]
Barral-Netto, M.; Von Sohsten, R.L.; Teixeira, M.; Conrado dos Santos, W.L.; Pompeu, M.L.; Moreira, R.A.; Oliveira, J.T.A.; Cavada, B.S.; Falcoff, E.; Barral, A. In vivo protective effect of the lectin from Canavalia brasiliensis on BALB/c mice infected by Leishmania amazonensis. Acta Trop., 1996, 60(4), 237-250.
[http://dx.doi.org/10.1016/0001-706X(95)00120-4] [PMID: 8659323]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy