Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

The Disulfide Bond-Mediated Cyclization of Oral Peptides

Author(s): Chenguang Yao, Guoguo Ye, Qin Yang, Zhenwang Chen and Minghui Yang*

Volume 25, Issue 6, 2024

Published on: 25 January, 2024

Page: [438 - 442] Pages: 5

DOI: 10.2174/0113892037280719231214095428

Price: $65

conference banner
Abstract

‘Structure determines function’ is a consensus in the current biological community, but the structural characteristics corresponding to a certain function have always been a hot field of scientific exploration. A peptide is a bio-active molecule that is between the size of an antibody and a small molecule. Still, the gastrointestinal barrier and the physicochemical properties of peptides have always limited the oral administration of peptides. Therefore, we analyze the main ways oral peptide conversion strategies of peptide modification and permeation enhancers. Based on our analysis of the structure of natural oral peptides, which can be absorbed through the gastrointestinal tract, we believe that the design strategy of natural stapled peptides based on disulfide bonds is good for oral peptide design. This cannot only be used to identify anti-gastrointestinal digestive structural proteins in nature but also provide a solid structural foundation for the construction of new oral peptide drugs.

Graphical Abstract

[1]
Sulek, K. Nobel prize for Frederick G. Banting and John J. R. Macleod in 1923 for discovery of insulin. Wiad. Lek., 1967, 20(21), 1983-1984.
[PMID: 4876795]
[2]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
[3]
Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(15), 256-276.
[4]
Drucker, D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov., 2020, 19(4), 277-289.
[http://dx.doi.org/10.1038/s41573-019-0053-0] [PMID: 31848464]
[5]
Bockus, A.T.; McEwen, C.M.; Lokey, R.S. Form and function in cyclic peptide natural products: A pharmacokinetic perspective. Curr. Top. Med. Chem., 2013, 13(7), 821-836.
[http://dx.doi.org/10.2174/1568026611313070005] [PMID: 23578026]
[6]
Santos, G.B.; Ganesan, A.; Emery, F.S. Oral administration of peptide-based drugs: Beyond Lipinski’s rule. ChemMedChem, 2016, 11(20), 2245-2251.
[http://dx.doi.org/10.1002/cmdc.201600288] [PMID: 27596610]
[7]
Martin, A.; Wu, P.L.; Liron, Z.; Cohen, S. Dependence of solute solubility parameters on solvent polarity. J. Pharm. Sci., 1985, 74(6), 638-642.
[http://dx.doi.org/10.1002/jps.2600740611] [PMID: 3839531]
[8]
Whitty, A.; Zhong, M.; Viarengo, L.; Beglov, D.; Hall, D.R.; Vajda, S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov. Today, 2016, 21(5), 712-717.
[http://dx.doi.org/10.1016/j.drudis.2016.02.005] [PMID: 26891978]
[9]
Hewitt, W.M.; Leung, S.S.F.; Pye, C.R.; Ponkey, A.R.; Bednarek, M.; Jacobson, M.P.; Lokey, R.S. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc., 2015, 137(2), 715-721.
[http://dx.doi.org/10.1021/ja508766b] [PMID: 25517352]
[10]
Xu, S.; Li, H.; Shao, X.; Fan, C.; Ericksen, B.; Liu, J.; Chi, C.; Wang, C. Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem., 2012, 55(15), 6881-6887.
[http://dx.doi.org/10.1021/jm300655h] [PMID: 22780881]
[11]
Gomez, C.; Bai, L.; Zhang, J.; Nikolovska-Coleska, Z.; Chen, J.; Yi, H.; Wang, S. Design, synthesis, and evaluation of peptidomimetics containing Freidinger lactams as STAT3 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(6), 1733-1736.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.091] [PMID: 19243938]
[12]
Chen, J.; Bai, L.; Bernard, D.; Nikolovska-Coleska, Z.; Gomez, C.; Zhang, J.; Yi, H.; Wang, S. Structure-Based Design of Conformationally Constrained, Cell-Permeable STAT3 Inhibitors. ACS Med. Chem. Lett., 2010, 1(2), 85-89.
[http://dx.doi.org/10.1021/ml100010j] [PMID: 20596242]
[13]
Chen, J.; Nikolovska-Coleska, Z.; Yang, C.Y.; Gomez, C.; Gao, W.; Krajewski, K.; Jiang, S.; Roller, P.; Wang, S. Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via ‘click chemistry’. Bioorg. Med. Chem. Lett., 2007, 17(14), 3939-3942.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.096] [PMID: 17513110]
[14]
Kawamoto, S.A.; Coleska, A.; Ran, X.; Yi, H.; Yang, C.Y.; Wang, S. Design of triazole-stapled BCL9 α-helical peptides to target the β-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J. Med. Chem., 2012, 55(3), 1137-1146.
[http://dx.doi.org/10.1021/jm201125d] [PMID: 22196480]
[15]
Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally absorbed cyclic peptides. Chem. Rev., 2017, 117(12), 8094-8128.
[http://dx.doi.org/10.1021/acs.chemrev.6b00838] [PMID: 28541045]
[16]
Zhai, Y.; Zhao, X.; Cui, Z.; Wang, M.; Wang, Y.; Li, L.; Sun, Q.; Yang, X.; Zeng, D.; Liu, Y.; Sun, Y.; Lou, Z.; Shang, L.; Yin, Z. Cyanohydrin as an anchoring group for potent and selective inhibitors of enterovirus 71 3C protease. J. Med. Chem., 2015, 58(23), 9414-9420.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01013] [PMID: 26571192]
[17]
Ma, Y.; Shang, C.; Yang, P.; Li, L.; Zhai, Y.; Yin, Z.; Wang, B.; Shang, L. 4-Iminooxazolidin-2-one as a bioisostere of the cyanohydrin moiety: Inhibitors of enterovirus 71 3C protease. J. Med. Chem., 2018, 61(22), 10333-10339.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01335] [PMID: 30365311]
[18]
Holladay, M.W.; Salituro, F.G.; Rich, D.H. Synthetic and enzyme inhibition studies of pepstatin analogs containing hydroxyethylene and ketomethylene dipeptide isosteres. J. Med. Chem., 1987, 30(2), 374-383.
[http://dx.doi.org/10.1021/jm00385a020] [PMID: 3100803]
[19]
Taylor, M.; Moore, S.; Mayes, J.; Parkin, E.; Beeg, M.; Canovi, M.; Gobbi, M.; Mann, D.M.A.; Allsop, D. Development of a proteolytically stable retro-inverso peptide inhibitor of beta-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry, 2010, 49(15), 3261-3272.
[http://dx.doi.org/10.1021/bi100144m] [PMID: 20230062]
[20]
Sparr, C.; Purkayastha, N.; Yoshinari, T.; Seebach, D.; Maschauer, S.; Prante, O.; Hübner, H.; Gmeiner, P.; Kolesinska, B.; Cescato, R.; Waser, B.; Reubi, J.C. Syntheses, receptor bindings, in vitro and in vivo stabilities and biodistributions of DOTA-neurotensin(8-13) derivatives containing β-amino acid residues - a lesson about the importance of animal experiments. Chem. Biodivers., 2013, 10(12), 2101-2121.
[http://dx.doi.org/10.1002/cbdv.201300331] [PMID: 24327436]
[21]
Wang, C.; Shi, W.; Cai, L.; Lu, L.; Yu, F.; Wang, Q.; Jiang, X.; Xu, X.; Wang, K.; Xu, L.; Jiang, S.; Liu, K. Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains. J. Antimicrob. Chemother., 2014, 69(6), 1537-1545.
[http://dx.doi.org/10.1093/jac/dku010] [PMID: 24500189]
[22]
Rizzuti, B.; Bartucci, R.; Sportelli, L.; Guzzi, R. Fatty acid binding into the highest affinity site of human serum albumin observed in molecular dynamics simulation. Arch. Biochem. Biophys., 2015, 579, 18-25.
[http://dx.doi.org/10.1016/j.abb.2015.05.018] [PMID: 26048999]
[23]
Liu, Z.; Yu, Z.; Huang, Y.; Zhang, Y.; Han, G.; Li, X.; Dong, M.; Yu, S.; Wang, Y.; Hu, J.; Guo, H.; Cheng, Y.; Lv, L.; Dai, Q. A novel stearic acid-modified hirudin peptidomimetic with improved pharmacokinetic properties and anticoagulant activity. Sci. Rep., 2015, 5(1), 14349.
[http://dx.doi.org/10.1038/srep14349] [PMID: 26400022]
[24]
Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; Strauss, H.M.; Gram, D.X.; Knudsen, S.M.; Nielsen, F.S.; Thygesen, P.; Reedtz-Runge, S.; Kruse, T. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem., 2015, 58(18), 7370-7380.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00726] [PMID: 26308095]
[25]
Iepsen, E.W.; Torekov, S.S.; Holst, J.J. Liraglutide for Type 2 diabetes and obesity: A 2015 update. Expert Rev. Cardiovasc. Ther., 2015, 13(7), 753-767.
[http://dx.doi.org/10.1586/14779072.2015.1054810] [PMID: 26106933]
[26]
Meier, J.J. Efficacy of semaglutide in a subcutaneous and an oral formulation. Front. Endocrinol. (Lausanne), 2021, 12, 645617.
[http://dx.doi.org/10.3389/fendo.2021.645617] [PMID: 34248838]
[27]
Melmed, S.; Popovic, V.; Bidlingmaier, M.; Mercado, M.; van der Lely, A.J.; Biermasz, N.; Bolanowski, M.; Coculescu, M.; Schopohl, J.; Racz, K.; Glaser, B.; Goth, M.; Greenman, Y.; Trainer, P.; Mezosi, E.; Shimon, I.; Giustina, A.; Korbonits, M.; Bronstein, M.D.; Kleinberg, D.; Teichman, S.; Gliko-Kabir, I.; Mamluk, R.; Haviv, A.; Strasburger, C. Safety and efficacy of oral octreotide in acromegaly: Results of a multicenter phase III trial. J. Clin. Endocrinol. Metab., 2015, 100(4), 1699-1708.
[http://dx.doi.org/10.1210/jc.2014-4113] [PMID: 25664604]
[28]
Karsdal, M.A.; Henriksen, K.; Bay-Jensen, A.C.; Molloy, B.; Arnold, M.; John, M.R.; Byrjalsen, I.; Azria, M.; Riis, B.J.; Qvist, P.; Christiansen, C. Lessons learned from the development of oral calcitonin: The first tablet formulation of a protein in phase III clinical trials. J. Clin. Pharmacol., 2011, 51(4), 460-471.
[http://dx.doi.org/10.1177/0091270010372625] [PMID: 20660294]
[29]
Karsdal, M.A.; Byrjalsen, I.; Alexandersen, P.; Bihlet, A.; Andersen, J.R.; Riis, B.J.; Bay-Jensen, A.C.; Christiansen, C. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: Results from two phase 3 trials. Osteoarthritis Cartilage, 2015, 23(4), 532-543.
[http://dx.doi.org/10.1016/j.joca.2014.12.019] [PMID: 25582279]
[30]
Arbit, E.; Kidron, M. Oral insulin delivery in a physiologic context: Review. J. Diabetes Sci. Technol., 2017, 11(4), 825-832.
[http://dx.doi.org/10.1177/1932296817691303] [PMID: 28654313]
[31]
Rehmani, S.; Dixon, J.E. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides, 2018, 100, 24-35.
[http://dx.doi.org/10.1016/j.peptides.2017.12.014] [PMID: 29412825]
[32]
a) Maher, S.; Brayden, D.; Casettari, L.; Illum, L. Application of permeation enhancers in oral delivery of macromolecules: An update. Pharmaceutics, 2019, 11(1), 41.
[http://dx.doi.org/10.3390/pharmaceutics11010041] [PMID: 30669434];
b) Wang, B.; Xie, N.; Li, B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J. Food Biochem., 2019, 43(1), e12571.
[http://dx.doi.org/10.1111/jfbc.12571] [PMID: 31353489]
[33]
Hu, K.; Huang, H.; Li, H.; Wei, Y.; Yao, C. Legume-derived biactive peptides in type 2 diabetes: Opportunities and challenges. Nutrients, 2023, 15(5), 1096.
[34]
Yao, C-C.; Tong, Y-X.; Jiang, H.; Yang, D-R.; Zhang, X-J.; Zhang, P.; Su, L.; Zhao, Y-Y.; Chen, Z-W. Native polypeptide vglycin prevents nonalcholic fatty liver disease in mice by activating the AMPK pathway. J. Funct. Foods, 2020, 73, 104110.
[35]
Zhao, H.; Dan, P.; Xi, J.; Chen, Z.; Zhang, P.; Wei, W.; Zhao, Y. Novel soybean polypeptide dglycin alleviates atherosclerosis in apolipoprotein E-deficient mice. Int. J. Biol. Macromol., 2023, 251, 126347.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126347] [PMID: 37586634]
[36]
Huang, J.; Wong, K.H.; Tay, S.V.; Serra, A.; Sze, S.K.; Tam, J.P. Astratides: Insulin-modulating, insecticidal, and antifungal cysteine-rich peptides from Astragalus membranaceus. J. Nat. Prod., 2019, 82(2), 194-204.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00521] [PMID: 30758201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy