Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Nutritional and Health Benefits of Cereals and Grains

Author(s): Sumera Zaib*, Aqsa Hayat and Imtiaz Khan*

Volume 20, Issue 10, 2024

Published on: 29 January, 2024

Page: [1205 - 1221] Pages: 17

DOI: 10.2174/0115734013282127231220103115

Price: $65

Abstract

The consumption of cereals and grains, along with whole grain food, is considered a healthy food that has various health benefits. Minerals, proteins, carbohydrates, and vitamins are present in the diet of many people. Phytochemicals play an essential role in combating oxidative stress and are present in high amounts in grains. These phytochemicals are also known as secondary metabolites that are present in plants. The nutritional components of basil (Ocimum basilicum), chia (Salvia hispanica), flax (Linum usitatissimmum), Proso millet (Panicum miliaceum), and oat (Avena sativa) are analyzed. Seeds are considered a good source of omega-3 and omega-6 fatty acids that have a significant impact on human health. The high amount of tocopherol (vitamin E) is due to the high content of polyunsaturated fatty acids (PUFAs). γ-Tocopherol is an antioxidant nutrient that usually blocks the formation of carcinogenic nitrosamines from nitrites present in food in the stomach. This review provides detailed information on the nutritional and health benefits of these cereals and grains, in which all the major components have been discussed. Conclusively, the potential use of these cereals and grains alone and by mixing them with other food products is also discussed which may enhance the nutritional content of the food product.

Graphical Abstract

[1]
Labuschagne MT. A review of cereal grain proteomics and its potential for sorghum improvement. J Cereal Sci 2018; 84: 151-8.
[http://dx.doi.org/10.1016/j.jcs.2018.10.010]
[2]
Colgrave ML, Goswami H, Byrne K, Blundell M, Howitt CA, Tanner GJ. Proteomic profiling of 16 cereal grains and the application of targeted proteomics to detect wheat contamination. J Proteome Res 2015; 14(6): 2659-68.
[http://dx.doi.org/10.1021/acs.jproteome.5b00187] [PMID: 25873154]
[3]
Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 2008; 48(2): 258-76.
[http://dx.doi.org/10.1016/j.jcs.2008.01.002]
[4]
Masisi K, Beta T, Moghadasian MH. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem 2016; 196: 90-7.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.021] [PMID: 26593469]
[5]
Velu G, Palanichamy V, Rajan AP. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: an overview. 2018; pp. 135-56.
[http://dx.doi.org/10.1007/978-3-319-74210-6_8]
[6]
Kurmukov AG. Phytochemistry of medicinal plants.Medicinal Plants of Central Asia: Uzbekistan and Kyrgyzstan. New York, NY: Springer 2013; pp. 13-4.
[http://dx.doi.org/10.1007/978-1-4614-3912-7_4]
[7]
Azwanida NN. A review on the extraction methods uses in medicinal plants, principle, strength and limitation. Med Aromat Plants 2015; 4(3): 2167-0412.
[http://dx.doi.org/10.4172/2167-0412.1000196]
[8]
De Silva GO, Abeysundara AT, Aponso MMW. Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. Am J Essent Oil 2017; 5(2): 29-32.
[9]
Rabail R, Khan MR, Mehwish HM, et al. An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Front Biosci Landmark Ed 2021; 26(9): 643-54.
[http://dx.doi.org/10.52586/4973] [PMID: 34590473]
[10]
Fernandes SS, Salas-Mellado MM. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem 2017; 227: 237-44.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.075] [PMID: 28274428]
[11]
Timilsena YP, Vongsvivut J, Adhikari R, Adhikari B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem 2017; 228: 394-402.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.021] [PMID: 28317740]
[12]
Peláez P, Orona-Tamayo D, Montes-Hernández S, Valverde ME, Paredes-López O, Cibrián-Jaramillo A. Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia). Sci Rep 2019; 9(1): 9761.
[http://dx.doi.org/10.1038/s41598-019-45895-5] [PMID: 31278279]
[13]
Salgado VSCN, Zago L, Antunes AEC, Miyahira RF. Chia (Salvia hispanica L.) seed germination: A brief review. Plant Foods Hum Nutr 2022; 77(4): 485-94.
[http://dx.doi.org/10.1007/s11130-022-01011-z] [PMID: 36083408]
[14]
Hernández-Pérez T, Valverde ME, Orona-Tamayo D, Paredes-Lopez O. Chia (Salvia hispanica): Nutraceutical properties and therapeutic applications. Proceedings 2020; 53: 17-22.
[http://dx.doi.org/10.3390/proceedings2020053017]
[15]
Alvites-Misajel K, García-Gutiérrez M, Miranda-Rodríguez C, Ramos-Escudero F. Organically vs conventionally-grown dark and white chia seeds (Salvia hispanica L.): fatty acid composition, antioxidant activity and techno-functional properties. Grasas y Aceites 2019; 70(2): 299.
[http://dx.doi.org/10.3989/gya.0462181]
[16]
Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The chemical composition and nutritional value of chia seeds-current state of knowledge. Nutrients 2019; 11(6): 1242.
[http://dx.doi.org/10.3390/nu11061242] [PMID: 31159190]
[17]
Gema MO, Marlon RL, Joel DR, Flor de Fátima R-C, Silvia LS. Effect of ethanol and methanol on the total phenolic content and antioxidant capacity of chia seeds (Salvia hispanica L.). Sains Malays 2020; 49(6): 1283-92.
[http://dx.doi.org/10.17576/jsm-2020-4906-06]
[18]
Muñoz LA, Cobos A, Diaz O, Aguilera JM. Chia seeds: Microstructure, mucilage extraction and hydration. J Food Eng 2012; 108(1): 216-24.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.06.037]
[19]
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2019; 59(12): 1949-75.
[http://dx.doi.org/10.1080/10408398.2018.1434480] [PMID: 29388805]
[20]
Grancieri M, Martino HSD, Gonzalez de Mejia E. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Compr Rev Food Sci Food Saf 2019; 18(2): 480-99.
[http://dx.doi.org/10.1111/1541-4337.12423] [PMID: 33336944]
[21]
Cotabarren J, Rosso AM, Tellechea M, et al. Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chem 2019; 274: 848-56.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.061] [PMID: 30373019]
[22]
Mohd Ali N, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG. The promising future of chia, Salvia hispanica L. J Biomed Biotechnol 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/171956] [PMID: 23251075]
[23]
Boye JI, Ma CY, Harwalkar VR. Thermal denaturation and coagulation of proteins. Food proteins and their applications. CRC Press 2017; pp. 25-56.
[http://dx.doi.org/10.1201/9780203755617-2]
[24]
Ashura KK, Lillian DK, Oscar K, Leonard MPR. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. Afr J Food Sci 2021; 15(2): 48-59.
[http://dx.doi.org/10.5897/AJFS2020.2015]
[25]
Sandoval-Oliveros MR, Paredes-López O. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J Agric Food Chem 2013; 61(1): 193-201.
[http://dx.doi.org/10.1021/jf3034978] [PMID: 23240604]
[26]
Motta C, Castanheira I, Gonzales GB, et al. Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J Food Compos Anal 2019; 76: 58-65.
[http://dx.doi.org/10.1016/j.jfca.2018.10.001]
[27]
Ullah R, Nadeem M, Khalique A, et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. JFST 2016; 53: 1750-8.
[http://dx.doi.org/10.1007/s13197-015-1967-0]
[28]
Freire P, Zambrano A, Zamora A, Castillo M. Thermal denaturation of milk whey proteins: A comprehensive review on rapid quantification methods being studied, developed and implemented. Dairy 2022; 3(3): 500-12.
[http://dx.doi.org/10.3390/dairy3030036]
[29]
Tang Y, Li X, Chen PX, et al. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J Agric Food Chem 2016; 64(5): 1103-10.
[http://dx.doi.org/10.1021/acs.jafc.5b05414] [PMID: 26760897]
[30]
Din Z, Alam M, Ullah H, et al. Nutritional, phytochemical and therapeutic potential of chia seed (Salvia hispanica L.). A mini-review. Food Hydrocolloids for Health 2021; 1: 100010.
[http://dx.doi.org/10.1016/j.fhfh.2021.100010]
[31]
Di Marco AE, Ixtaina VY, Tomás MC. Inclusion complexes of high amylose corn starch with essential fatty acids from chia seed oil as potential delivery systems in food. Food Hydrocoll 2020; 108: 106030.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106030]
[32]
Petropoulos SA, Fernandes Â, Arampatzis DA, et al. Seed oil and seed oil byproducts of common purslane (Portulaca oleracea L.): A new insight to plant-based sources rich in omega-3 fatty acids. Lebensm Wiss Technol 2020; 123: 109099.
[http://dx.doi.org/10.1016/j.lwt.2020.109099]
[33]
Suri S, Passi SJ, Goyat J. Chia seed (Salvia hispanica L.)—A new age functional food. 4th International Conference on Recent Innovations in Science Engineering and Management. 286-99.
[34]
Ghafoor K, Ahmed IAM, Özcan MM, Al-Juhaimi FY, Babiker EE, Azmi IU. An evaluation of bioactive compounds, fatty acid composition and oil quality of chia (Salvia hispanica L.) seed roasted at different temperatures. Food Chem 2020; 333(39): 127531.
[http://dx.doi.org/10.1016/j.foodchem.2020.127531] [PMID: 32679420]
[35]
Oliveira-Alves SC, Vendramini-Costa DB, Betim Cazarin CB, et al. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem 2017; 232(33): 295-305.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.002] [PMID: 28490078]
[36]
Coates W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind Crops Prod 2011; 34: 1366-71.
[http://dx.doi.org/10.1016/j.indcrop.2010.12.007]
[37]
Capitani MI, Spotorno V, Nolasco SM, Tomás MC. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. Lebensm Wiss Technol 2012; 45(1): 94-102.
[http://dx.doi.org/10.1016/j.lwt.2011.07.012]
[38]
Ixtaina VY, Martínez ML, Spotorno V, et al. Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal 2011; 24(2): 166-74.
[http://dx.doi.org/10.1016/j.jfca.2010.08.006]
[39]
Chand N, Mihas AA. Celiac Disease. J Clin Gastroenterol 2006; 40(1): 3-14.
[http://dx.doi.org/10.1097/01.mcg.0000190644.01661.2b] [PMID: 16340626]
[40]
Singh D, Chaudhuri PK. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crops Prod 2018; 118: 367-82.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.048]
[41]
Hanif MA, Nawaz H, Khan MM, Byrne HJ. Medicinal Plants of South Asia. Amsterdam: Susan Dennis 2020; pp. 47-62.
[http://dx.doi.org/10.1016/C2017-0-02046-3]
[42]
Akah NP, Eze K, Omah EC. Proximate composition, total phenol content and sensory properties of sweet basil (Ocimum basilicum L.) leaves dried using different methods. Agro Sci 2018; 16(3): 23-8.
[http://dx.doi.org/10.4314/as.v16i3.4]
[43]
Calderón Bravo H, Vera Céspedes N, Zura-Bravo L, Muñoz LA. Basil seeds as a novel food, source of nutrients and functional ingredients with beneficial properties: A review. Foods 2021; 10(7): 1467.
[http://dx.doi.org/10.3390/foods10071467] [PMID: 34202798]
[44]
Naji-Tabasi S, Razavi SMA. Functional properties and applications of basil seed gum: An overview. Food Hydrocoll 2017; 73: 313-25.
[http://dx.doi.org/10.1016/j.foodhyd.2017.07.007]
[45]
Kim SY, Hyeonbin O, Lee P, Kim YS. The quality characteristics, antioxidant activity, and sensory evaluation of reduced-fat yogurt and nonfat yogurt supplemented with basil seed gum as a fat substitute. J Dairy Sci 2020; 103(2): 1324-36.
[http://dx.doi.org/10.3168/jds.2019-17117] [PMID: 31785875]
[46]
Gajendiran A, v T, Thangaraman V, Thangamari S, Dhatchayani R, Abraham J. Antimicrobial, antioxidant and anticancer screening of Ocimum basilicum seeds. J Pharm Sci 2016; 6(3): 114-9.
[http://dx.doi.org/10.21276/bpr.2016.6.3.5]
[47]
Imam H, Lian S, Kasimu R, Rakhmanberdyeva RK, Aisa HA. Extraction of an antidiabetic polysaccharide from seeds of Ocimum basilicum and determination of the monosaccharide composition by precolumn high-efficiency capillary electrophoresisa. Chem Nat Compd 2012; 48(4): 653-4.
[http://dx.doi.org/10.1007/s10600-012-0336-8]
[48]
Sharma V, Chanda D. Ocimum: The holy basil against cardiac anomalies. In: Shasany AK, Kole C, Eds. In The Ocimum Genome. Compendium of Plant Genomes. Cham, Switzerland: Springer 2018; pp. 25-36.
[http://dx.doi.org/10.1007/978-3-319-97430-9_3]
[49]
Choi JY, Heo S, Bae S, Kim J, Moon KD. Discriminating the origin of basil seeds (Ocimum basilicum L.) using hyperspectral imaging analysis. Lebensm Wiss Technol 2020; 118: 108715.
[http://dx.doi.org/10.1016/j.lwt.2019.108715]
[50]
Khalil IQM, Hussain MH. Improving the sensory and rheological properties of yogurt using aqueous extract of basil (Ocimum basilicum L.). JKAS 2022; 9(4): 76-90.
[http://dx.doi.org/10.59658/jkas.v9i4.1065]
[51]
Farahmandfar R, Naji-Tabasi S. Influence of different salts on rheological and functional properties of basil (Ocimum bacilicum L.) seed gum. Int J Biol Macromol 2020; 149: 101-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.170] [PMID: 31987951]
[52]
Idris AA, Nour AH, Ali MM, Erwa IY, Omer Ishag OA, Nour AH. Physicochemical properties and fatty acid composition of Ocimum basilicum L. seed oil. Asian J Phys Chem Sci 2020; 8: 1-12.
[http://dx.doi.org/10.9734/ajopacs/2020/v8i130104]
[53]
Hastreiter AA, Galvão dos Santos G, Cavalcante Santos EW, Makiyama EN, Borelli P, Fock RA. Protein malnutrition impairs bone marrow endothelial cells affecting hematopoiesis. Clin Nutr 2020; 39(5): 1551-9.
[http://dx.doi.org/10.1016/j.clnu.2019.06.021] [PMID: 31326233]
[54]
Zamani GA, Ezzatpanah H, Rajabzadeh G, Ghavami M. Comparison and analysis characteristics of flax, perilla and basil seed oils cultivated in Iran. J Food Sci Technol 2020; 57(4): 1258-68.
[http://dx.doi.org/10.1007/s13197-019-04158-x] [PMID: 32180622]
[55]
Zhang JL, Zhang SB, Zhang YP, Kitajima K. Effects of phylogeny and climate on seed oil fatty acid composition across 747 plant species in China. Ind Crops Prod 2015; 63: 1-8.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.045]
[56]
Yu L, Choe U, Li Y, Zhang Y. Oils from fruit, spice, and herb seeds. In Bailey’s Industrial Oil and Fat Products. (7th ed..), Shahidi F. Hoboken, NJ, USA: John Wiley & Sons 2020.
[http://dx.doi.org/10.1002/047167849X.bio060.pub2]
[57]
Singh S, Nair V, Jain S, Gupta YK. Evaluation of anti-inflammatory activity of plant lipids containing alpha-linolenic acid. Indian J Exp Biol 2008; 46(6): 453-6.
[58]
Agunbiade S, Ojezele M, Alao O. Evaluation of the nutritional, phytochemical compositions and likely medicinal benefits of Vernomia amygdalina, Talinum triangulare and Ocimum basilicum leafy-vegetables. Adv Biol Res 2015; 9(3): 447-52.
[59]
Dhama K, Sharun K, Gugjoo MB, et al. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Rev Int 2023; 39(1): 119-47.
[http://dx.doi.org/10.1080/87559129.2021.1900230]
[60]
Karaköy T, Erdem H, Baloch FS, et al. Diversity of macro- and micronutrients in the seeds of lentil landraces. SciWorldJ 2012; 2012: 1-9.
[http://dx.doi.org/10.1100/2012/710412] [PMID: 22997502]
[61]
Nadia B, Fatima GA, Rachid ME, Mona TA. The genetic potential of moroccan lentil landraces. Int J Agric Sci Res 2019; 9(3): 291-306.
[http://dx.doi.org/10.24247/ijasrjun201942]
[62]
Costello RB, Elin RJ, Rosanoff A, et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come. Adv Nutr 2016; 7(6): 977-93.
[http://dx.doi.org/10.3945/an.116.012765] [PMID: 28140318]
[63]
Capozzi A, Scambia G, Lello S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020; 140: 55-63.
[http://dx.doi.org/10.1016/j.maturitas.2020.05.020] [PMID: 32972636]
[64]
Shin D, Joh HK, Kim KH, Park SM. Benefits of potassium intake on metabolic syndrome: The fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Atherosclerosis 2013; 230(1): 80-5.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.06.025] [PMID: 23958257]
[65]
Stanojevic LP, Marjanovic-Balaban ZR, Kalaba VD, Stanojevic JS, Cvetkovic DJ, Cakic MD. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J Essent Oil-Bear Plants 2017; 20(6): 1557-69.
[http://dx.doi.org/10.1080/0972060X.2017.1401963]
[66]
Nazim K, Ahmed M, Uzair M. Growth potential of the species of basil in sandy soil in Karachi. Pak J Bot 2009; 4: 1637-44.
[67]
Jelacic S, Beatovic D, Prodanovic S, et al. Chemical composition of the essential oil of basil (Ocimum basilicum L. Lamiaceae). Hem Ind 2011; 65(4): 465-71.
[http://dx.doi.org/10.2298/HEMIND110227020J]
[68]
da Silva Gündel S, Velho MC, Diefenthaler MK, et al. Basil oil-nanoemulsions: Development, cytotoxicity and evaluation of antioxidant and antimicrobial potential. J Drug Deliv Sci Technol 2018; 46: 378-83.
[http://dx.doi.org/10.1016/j.jddst.2018.05.038]
[69]
Akbari GA, Soltani E, Binesh S, Amini F. Cold tolerance, productivity and phytochemical diversity in sweet basil (Ocimum basilicum L.) accessions. Ind Crops Prod 2018; 124: 677-84.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.048]
[70]
Hajmohammadi A, Pirouzifard M, Shahedi M, Alizadeh M. Enrichment of a fruit-based beverage in dietary fiber using basil seed: Effect of carboxymethyl cellulose and gum tragacanth on stability. Lebensm Wiss Technol 2016; 74: 84-91.
[http://dx.doi.org/10.1016/j.lwt.2016.07.033]
[71]
Zhan Y, An X, Wang S, Sun M, Zhou H. Basil polysaccharides: A review on extraction, bioactivities and pharmacological applications. Bioorg Med Chem 2020; 28(1): 115179.
[http://dx.doi.org/10.1016/j.bmc.2019.115179] [PMID: 31740199]
[72]
Murugan K, Murugan P, Noortheen A. Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti (Insecta:Diptera:Culicidae). Bioresour Technol 2007; 98(1): 198-201.
[http://dx.doi.org/10.1016/j.biortech.2005.12.009] [PMID: 16473002]
[73]
Reid AM, Oosthuizen CB, Fibrich BD, et al. Traditional medicine: The ancient roots of modern practice. Medicinal plants for holistic health and well-being. Academic Press 2018; pp. 1-11.
[http://dx.doi.org/10.1016/B978-0-12-812475-8.00001-9]
[74]
Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, Kang W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci Hum Wellness 2019; 8(3): 299-305.
[http://dx.doi.org/10.1016/j.fshw.2019.07.004]
[75]
Widjaja SS, Rusdiana , Savira M. Glucose lowering effect of basil leaves in diabetic rats. Open Access Maced J Med Sci 2019; 7(9): 1415-7.
[http://dx.doi.org/10.3889/oamjms.2019.293] [PMID: 31198445]
[76]
Sajjadi SE. Analysis of the essential oils of two cultivated basil (Ocimum Basilicum L.) from Iran. Daru 2006; 14(3): 128-30.
[77]
Złotek U, Szychowski KA, Świeca M. Potential in vitro antioxidant, anti-inflammatory, antidiabetic, and anticancer effect of arachidonic acid-elicited basil leaves. J Funct Foods 2017; 36: 290-9.
[http://dx.doi.org/10.1016/j.jff.2017.07.024]
[78]
Singh S, Gaikwad KK, Lee YS. Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int J Biol Macromol 2018; 107(Pt B): 1879-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.057] [PMID: 29032083]
[79]
Koroch AR, Simon JE, Juliani HR. Essential oil composition of purple basils, their reverted green varieties (Ocimum basilicum) and their associated biological activity. Ind Crops Prod 2017; 107: 526-30.
[http://dx.doi.org/10.1016/j.indcrop.2017.04.066]
[80]
Feng B, Zhu Y, Su Z, et al. Basil polysaccharide attenuates hepatocellular carcinoma metastasis in rat by suppressing H3K9me2 histone methylation under hepatic artery ligation-induced hypoxia. Int J Biol Macromol 2018; 107(Pt B): 2171-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.088] [PMID: 29042275]
[81]
Mabood F, Gilani SA, Hussain J, et al. New design of experiment combined with UV–Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds. Spectrochim Acta A Mol Biomol Spectrosc 2017; 178: 14-8.
[http://dx.doi.org/10.1016/j.saa.2017.01.051] [PMID: 28157588]
[82]
Kurd F, Fathi M, Shekarchizadeh H. Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: Characterization and release modeling. Food Biosci 2019; 32: 100475.
[http://dx.doi.org/10.1016/j.fbio.2019.100475]
[83]
Gahruie HH, Eskandari MH, Khalesi M, Van der Meeren P, Hosseini SMH. Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride. Food Hydrocoll 2020; 101: 105489.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105489]
[84]
Feng B, Zhu Y, Sun C, et al. Basil polysaccharide inhibits hypoxia-induced hepatocellular carcinoma metastasis and progression through suppression of HIF-1α-mediated epithelial-mesenchymal transition. Int J Biol Macromol 2019; 137: 32-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.189] [PMID: 31252022]
[85]
Khazaei N, Esmaiili M, Djomeh ZE, Ghasemlou M, Jouki M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr Polym 2014; 102: 199-206.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.062] [PMID: 24507273]
[86]
Zameni A, Kashaninejad M, Aalami M, Salehi F. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. J Food Sci Technol 2015; 52(9): 5914-21.
[http://dx.doi.org/10.1007/s13197-014-1679-x] [PMID: 26345008]
[87]
Shahrajabian MH, Sun W, Cheng Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int J Food Prop 2020; 23(1): 1961-70.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[88]
Sadique M, Kaur G, Mohapatra C. Nutritional composition and functions of flaxseed (Linum usitatissimum linn.). Food Therapy and Health Care 2021; 3(4): 88-91.
[http://dx.doi.org/10.53388/FTHC2021030488]
[89]
Chandra V, Mishra R, Singh R, Verma NK. A review on application and benefits of flax seed (Linum Usitatissimmum L.). IJMPR 2022; 3(2): 15-22.
[http://dx.doi.org/10.5281/zenodo.7436140]
[90]
Rubilar M, Gutiérrez C, Verdugo M, Shene C, Sineiro J. Flaxseed as a source of functional ingredients. J Soil Sci Plant Nutr 2010; 10(3): 373-7.
[http://dx.doi.org/10.4067/S0718-95162010000100010]
[91]
Ebrahimi B, Nazmara Z, Hassanzadeh N, et al. Biomedical features of flaxseed against different pathologic situations: A narrative review. Iran J Basic Med Sci 2021; 24(5): 551-60.
[http://dx.doi.org/10.22038/ijbms.2021.49821.11378] [PMID: 34249256]
[92]
Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci Technol 2014; 38(1): 5-20.
[http://dx.doi.org/10.1016/j.tifs.2014.03.011]
[93]
Touré A, Xueming X. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components and health benefits. Compr Rev Food Sci Food Saf 2010; 9(3): 261-9.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00105.x] [PMID: 33467817]
[94]
Bhavana KB, Babu AN, Lakshmi JN, Deepthi B, Kavya G. A review on pharmacological properties and laboratory outcomes of flaxseed diet (Linum usitatissimum). Int J Pharm Sci Rev Res 2021; 70(1): 100-5.
[http://dx.doi.org/10.47583/ijpsrr.2021.v70i01.013]
[95]
Westcott ND, Muir AD. Flax seed lignan in disease prevention and health promotion. Phytochem Rev 2003; 2(3): 401-17.
[http://dx.doi.org/10.1023/B:PHYT.0000046174.97809.b6]
[96]
Kaushik P, Dowling K, McKnight S, Barrow CJ, Wang B, Adhikari B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem 2016; 197(Pt A): 212-20.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.106] [PMID: 26616943]
[97]
Singh KK, Jhamb SA, Kumar R. Effect of pretreatments on performance of screw pressing for flaxseed. J Food Process Eng 2012; 35(4): 543-56.
[http://dx.doi.org/10.1111/j.1745-4530.2010.00606.x]
[98]
Singh KK, Mridula D, Rehal J, Barnwal P. Flaxseed: A potential source of food, feed and fiber. Crit Rev Food Sci Nutr 2011; 51(3): 210-22.
[http://dx.doi.org/10.1080/10408390903537241] [PMID: 21390942]
[99]
Tomaszewska-Gras J, Islam M, Grzeca L, Kaczmarek A, Fornal E. Comprehensive thermal characteristics of different cultivars of flaxseed oil (Linum usittatissimum L.). Molecules 2021; 26(7): 1958.
[http://dx.doi.org/10.3390/molecules26071958] [PMID: 33807192]
[100]
Harper CR, Edwards MJ, DeFilipis AP, Jacobson TA. Flaxseed oil increases the plasma concentrations of cardioprotective (n-3) fatty acids in humans. J Nutr 2006; 136(1): 83-7.
[http://dx.doi.org/10.1093/jn/136.1.83] [PMID: 16365063]
[101]
Bernacchia R, Preti R, Vinci G. Chemical composition and health benefits of flaxseed. Austin J Nutr Food Sci 2014; 2(8): 1045.
[102]
Singh KK, D M, Barnwal P, Rehal J. Selected engineering and biochemical properties of 11 flaxseed varieties. Food Bioprocess Technol 2013; 6(2): 598-605.
[http://dx.doi.org/10.1007/s11947-011-0607-6]
[103]
Marambe PWMLHK, Shand PJ, Wanasundara JPD. An in vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) proteins. J Am Oil Chem Soc 2008; 85(12): 1155-64.
[http://dx.doi.org/10.1007/s11746-008-1293-z]
[104]
Tolkachev ON, Zhuchenko AA. Biologically active substances of flax: Medicinal and nutritional properties (A Review). Pharm Chem J 2000; 34(7): 360-7.
[http://dx.doi.org/10.1023/A:1005217407453]
[105]
Kajla P, Sharma A, Sood DR. Flaxseed—a potential functional food source. J Food Sci Technol 2015; 52(4): 1857-71.
[http://dx.doi.org/10.1007/s13197-014-1293-y] [PMID: 25829567]
[106]
Oomah BD. Flaxseed as a functional food source. J Sci Food Agric 2001; 81(9): 889-94.
[http://dx.doi.org/10.1002/jsfa.898]
[107]
Winter R. Vitamin E: Your Protection Against Exercise Fatigue, Weakened Immunity, Heart Disease, Cancer, Aging, Diabetic Damage, Environmental Toxins. Crown Publishing Group 2013.
[108]
Hsia DS, Zhang DJ, Beyl RS, Greenway FL, Khoo C. Effect of daily consumption of cranberry beverage on insulin sensitivity and modification of cardiovascular risk factors in adults with obesity: A pilot, randomised, placebo-controlled study. Br J Nutr 2020; 124(6): 577-85.
[http://dx.doi.org/10.1017/S0007114520001336] [PMID: 32301407]
[109]
Saleem MH, Ali S, Hussain S, et al. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants 2020; 9(4): 496.
[http://dx.doi.org/10.3390/plants9040496] [PMID: 32294947]
[110]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[111]
Laurino C, Palmieri B, Vadalà M. Gastrointestinal activity of dietary flaxseed lignans, omega-3 fatty acids and fibres. Nutrafoods 2017; 16: 1-9.
[http://dx.doi.org/10.17470/NF-017-1027-1]
[112]
Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007; 18(9): 567-79.
[http://dx.doi.org/10.1016/j.jnutbio.2006.10.007] [PMID: 17360173]
[113]
Imran M, Ahmad N, Anjum FM, et al. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr J 2015; 14(1): 71.
[http://dx.doi.org/10.1186/s12937-015-0059-3] [PMID: 26215288]
[114]
Xu J, Gao H, Song L, et al. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard. Lipids Health Dis 2013; 12(1): 58.
[http://dx.doi.org/10.1186/1476-511X-12-58] [PMID: 23634883]
[115]
Poorhassan M, Navae F, Mahakizadeh S, et al. Flaxseed can reduce hypoxia-induced damages in rat testes. Int J Fertil Steril 2018; 12(3): 235-41.
[http://dx.doi.org/10.22074/ijfs.2018.5298] [PMID: 29935070]
[116]
Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013; 98(12): 4565-92.
[http://dx.doi.org/10.1210/jc.2013-2350] [PMID: 24151290]
[117]
Andhalkar S, Chaware V, Redasani V. A review on medicinal plants of natural origin for treatment of polycystic ovarian syndrome (PCOS). Asian J Pharm Res Dev 2021; 9(3): 76-81.
[http://dx.doi.org/10.22270/ajprd.v9i3.949]
[118]
Haidari F, Banaei-Jahromi N, Zakerkish M, Ahmadi K. The effects of flaxseed supplementation on metabolic status in women with polycystic ovary syndrome: A randomized open-labeled controlled clinical trial. Nutr J 2020; 19(1): 8.
[http://dx.doi.org/10.1186/s12937-020-0524-5] [PMID: 31980022]
[119]
Lu H, Zhang J, Liu K, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci 2009; 106(18): 7367-72.
[http://dx.doi.org/10.1073/pnas.0900158106] [PMID: 19383791]
[120]
Wiedemair V, Scholl-Bürgi S, Karall D, Huck CW. Amino acid profiles and compositions of different cultivars of Panicum miliaceum L. Chromatographia 2020; 83(7): 829-37.
[http://dx.doi.org/10.1007/s10337-020-03899-8]
[121]
Kumar A, Tomer V, Kaur A, Kumar V, Gupta K. Millets: A solution to agrarian and nutritional challenges. Agric Food Secur 2018; 7(1): 31.
[http://dx.doi.org/10.1186/s40066-018-0183-3]
[122]
Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci 2017; 8: 1147.
[http://dx.doi.org/10.3389/fpls.2017.01147] [PMID: 28706531]
[123]
Dias-Martins AM, Pessanha KLF, Pacheco S, Rodrigues JAS, Carvalho CWP. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. Food Res Int 2018; 109: 175-86.
[http://dx.doi.org/10.1016/j.foodres.2018.04.023] [PMID: 29803440]
[124]
Alaedini A, Green PHR. Narrative review: Celiac disease: Understanding a complex autoimmune disorder. Ann Intern Med 2005; 142(4): 289-98.
[http://dx.doi.org/10.7326/0003-4819-142-4-200502150-00011] [PMID: 15710962]
[125]
Kim H, Patel KG, Orosz E, et al. Time trends in the prevalence of celiac disease and gluten-free diet in the US population: Results from the National Health and Nutrition Examination Surveys 2009-2014. JAMA Intern Med 2016; 176(11): 1716-7.
[http://dx.doi.org/10.1001/jamainternmed.2016.5254] [PMID: 27598396]
[126]
Diez-Sampedro A, Olenick M, Maltseva T, Flowers M. A gluten-free diet, not an appropriate choice without a medical diagnosis. J Nutr Metab 2019; 2019: 1-5.
[http://dx.doi.org/10.1155/2019/2438934] [PMID: 31354988]
[127]
Rondanelli M, Faliva MA, Gasparri C, et al. Micronutrients dietary supplementation advices for celiac patients on long-term gluten-free diet with good compliance. Medicina 2019; 55(7): 337.
[http://dx.doi.org/10.3390/medicina55070337] [PMID: 31277328]
[128]
Chethan S, Malleshi N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem 2007; 105(2): 862-70.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.012]
[129]
Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet polyphenols and dietary fiber: A review. Int J Food Sci Technol 2011; 51: 1021-40.
[http://dx.doi.org/10.1007/s13197-011-0584-9] [PMID: 24876635]
[130]
Chandrasekara A, Shahidi F. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J Agric Food Chem 2011; 59(1): 428-36.
[http://dx.doi.org/10.1021/jf103896z] [PMID: 21133411]
[131]
Shobana S, Malleshi NG. Preparation and functional properties of decorticated finger millet (Eleusine coracana). J Food Eng 2007; 79(2): 529-38.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.01.076]
[132]
McSweeney MB, Seetharaman K, Dan Ramdath D, Duizer LM. Chemical and physical characteristics of proso millet (Panicum miliaceum)-based products. Cereal Chem 2017; 94(2): 357-62.
[http://dx.doi.org/10.1094/CCHEM-07-16-0185-R]
[133]
Kalinova J, Moudry J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr 2006; 61(1): 43-7.
[http://dx.doi.org/10.1007/s11130-006-0013-9] [PMID: 16688479]
[134]
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009; 37(1): 1-17.
[http://dx.doi.org/10.1007/s00726-009-0269-0] [PMID: 19301095]
[135]
Agarwal S, Chauhan ES. The nutritional composition, various processing and health benefits of proso millet: A review. Res J Pharm Technol 2019; 12(8): 4013-7.
[http://dx.doi.org/10.5958/0974-360X.2019.00691.7]
[136]
Dayakar RB, Bhaskarachary K, Christina AGD, Sudha Devi G, Vilas AT, Tonapi A. Nutritional and health benefits of millets. Rajendranagar, Hyderabad: ICAR_Indian Institute of Millets Research (IIMR) 2017; 2: pp. 145-56.
[137]
Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agric Food Chem 2004; 52(21): 6496-502.
[http://dx.doi.org/10.1021/jf040204p] [PMID: 15479013]
[138]
Kamble RM, Shinde UV. Utility of bran products in non-insulin dependent diabetes mellitus (NIDDM) patients. J Hum Ecol 2004; 16(3): 219-22.
[http://dx.doi.org/10.1080/09709274.2004.11905741]
[139]
Kumari S, Bhinder S, Singh B, Kaur A. Physicochemical properties, non-nutrients and phenolic composition of germinated freeze-dried flours of foxtail millet, proso millet and common buckwheat. J Food Compos Anal 2023; 115: 105043.
[http://dx.doi.org/10.1016/j.jfca.2022.105043]
[140]
Demirbas A. ? -Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 2005; 90(4): 773-7.
[http://dx.doi.org/10.1016/j.foodchem.2004.06.003]
[141]
Amadou I, Gounga M E, Le GW. Millets: Nutritional composition, some health benefits and processing-A review. Emirates J Food Agric 2013; 25: 501-8.
[142]
Saleh ASM, Zhang Q, Chen J, Shen Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 2013; 12(3): 281-95.
[http://dx.doi.org/10.1111/1541-4337.12012]
[143]
Nithiyanantham S, Kalaiselvi P, Mahomoodally MF, Zengin G, Abirami A, Srinivasan G. Nutritional and functional roles of millets—A review. J Food Biochem 2019; 43(7): e12859.
[http://dx.doi.org/10.1111/jfbc.12859] [PMID: 31353706]
[144]
Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J, et al. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: A review. Front Plant Sci (New Haven) 2016; 7: 1961.
[http://dx.doi.org/10.3389/fpls.2016.01961] [PMID: 28119699]
[145]
Yang X, Wan Z, Perry L, et al. Early millet use in northern China. Proc Natl Acad Sci 2012; 109(10): 3726-30.
[http://dx.doi.org/10.1073/pnas.1115430109] [PMID: 22355109]
[146]
Gélinas P, McKinnon CM, Mena MC, Méndez E. Gluten contamination of cereal foods in Canada. Int J Food Sci Technol 2008; 43: 1245-52.
[http://dx.doi.org/10.1111/j.1365-2621.2007.01599.x]
[147]
Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J Food Sci Technol 2014; 51(6): 1021-40.
[http://dx.doi.org/10.1007/s13197-011-0584-9] [PMID: 24876635]
[148]
Coulibaly A, Kouakou B, Chen J. Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. Amer J Plant Nutr Fertil Tech 2010; 1(1): 1-22.
[http://dx.doi.org/10.3923/ajpnft.2011.1.22]
[149]
Zhang L, Liu R, Niu W. Phytochemical and antiproliferative activity of proso millet. PLoS One 2014; 9(8): e104058.
[http://dx.doi.org/10.1371/journal.pone.0104058] [PMID: 25098952]
[150]
Shahidi F, Chandrasekara A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J Funct Foods 2013; 5(2): 570-81.
[http://dx.doi.org/10.1016/j.jff.2013.02.004]
[151]
Kim S, Kim TH, Jeong YJ, et al. Synergistic effect of methyl jasmonate and abscisic acid co-treatment on avenanthramide production in germinating oats. Int J Mol Sci 2021; 22(9): 4779.
[http://dx.doi.org/10.3390/ijms22094779] [PMID: 33946373]
[152]
Martín-Diana AB, García-Casas MJ, Martínez-Villaluenga C, Frías J, Peñas E, Rico D. Wheat and oat brans as sources of polyphenol compounds for development of antioxidant nutraceutical ingredients. Foods 2021; 10(1): 115.
[http://dx.doi.org/10.3390/foods10010115] [PMID: 33430507]
[153]
Mert ID. The applications of microfluidization in cereals and cereal-based products: An overview. Crit Rev Food Sci Nutr 2020; 60(6): 1007-24.
[http://dx.doi.org/10.1080/10408398.2018.1555134] [PMID: 30663888]
[154]
Saccomanno B, Chambers AH, Hayes A, Mackay I, McWilliam SC, Trafford K. Starch granule morphology in oat endosperm. J Cereal Sci 2017; 73: 46-54.
[http://dx.doi.org/10.1016/j.jcs.2016.10.011]
[155]
Nogala-Kałucka M, Kawka A, Dwiecki K, Siger A. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products [pdf]. Acta Sci Pol Technol Aliment 2020; 19(4): 405-23.
[http://dx.doi.org/10.17306/J.AFS.2020.0858] [PMID: 33179481]
[156]
Gell G, Kovács K, Veres G, Korponay-Szabó IR, Juhász A. Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease. Sci Rep 2017; 7(1): 39876.
[http://dx.doi.org/10.1038/srep39876] [PMID: 28051174]
[157]
Maheshwari G, Sowrirajan S, Joseph B. β-Glucan, a dietary fiber in effective prevention of lifestyle diseases – An insight. Bioact Carbohydr Diet Fibre 2019; 19: 100187.
[http://dx.doi.org/10.1016/j.bcdf.2019.100187]
[158]
Capurso C. Whole-grain intake in the mediterranean diet and a low protein to carbohydrates ratio can help to reduce mortality from cardiovascular disease, slow down the progression of aging, and to improve lifespan: A review. Nutrients 2021; 13(8): 2540.
[http://dx.doi.org/10.3390/nu13082540] [PMID: 34444699]
[159]
Domínguez Díaz L, Fernández-Ruiz V, Cámara M. An international regulatory review of food health-related claims in functional food products labeling. J Funct Foods 2020; 68: 103896.
[http://dx.doi.org/10.1016/j.jff.2020.103896]
[160]
Shvachko NA, Loskutov IG, Semilet TV, Popov VS, Kovaleva ON, Konarev AV. Bioactive components in oat and barley grain as a promising breeding trend for functional food production. Molecules 2021; 26(8): 2260.
[http://dx.doi.org/10.3390/molecules26082260] [PMID: 33919686]
[161]
Tieri M, Ghelfi F, Vitale M, et al. Whole grain consumption and human health: An umbrella review of observational studies. Int J Food Sci Nutr 2020; 71(6): 668-77.
[http://dx.doi.org/10.1080/09637486.2020.1715354] [PMID: 31964201]
[162]
Singh R, De S, Belkheir A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview. Crit Rev Food Sci Nutr 2013; 53(2): 126-44.
[http://dx.doi.org/10.1080/10408398.2010.526725] [PMID: 23072529]
[163]
Sang S, Chu Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol Nutr Food Res 2017; 61(7): 1600715.
[http://dx.doi.org/10.1002/mnfr.201600715] [PMID: 28067025]
[164]
Rasane P, Jha A, Sabikhi L, Kumar A, Unnikrishnan VS. Nutritional advantages of oats and opportunities for its processing as value added foods - a review. J Food Sci Technol 2015; 52(2): 662-75.
[http://dx.doi.org/10.1007/s13197-013-1072-1] [PMID: 25694675]
[165]
Ovando-Martínez M, Whitney K, Reuhs BL, Doehlert DC, Simsek S. Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Res Int 2013; 52(1): 17-25.
[http://dx.doi.org/10.1016/j.foodres.2013.02.035]
[166]
Youssef MKE, Nassar AG, El–Fishawy FA, Mostafa MA. Assessment of proximate chemical composition and nutritional status of wheat biscuits fortified with oat powder. Assiut J Agri Sci 2016; 47(5): 83-94.
[http://dx.doi.org/10.21608/ajas.2016.2071]
[167]
Guo W, Nie L, Wu D, et al. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr Cancer 2010; 62(8): 1007-16.
[http://dx.doi.org/10.1080/01635581.2010.492090] [PMID: 21058188]
[168]
Lin ZM, Zhao JX, Duan XN, et al. Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion. Asian Pac J Cancer Prev 2014; 15(2): 643-6.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.643] [PMID: 24568471]
[169]
Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/ -catenin signaling pathway by bioactive food components. Carcinogenesis 2012; 33(3): 483-91.
[http://dx.doi.org/10.1093/carcin/bgr305] [PMID: 22198211]
[170]
Scarpa ES, Antonini E, Palma F, Mari M, Ninfali P. Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. Eur J Nutr 2018; 57(4): 1381-95.
[http://dx.doi.org/10.1007/s00394-017-1418-y] [PMID: 28283822]
[171]
Maki KC, Galant R, Samuel P, et al. Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur J Clin Nutr 2007; 61(6): 786-95.
[http://dx.doi.org/10.1038/sj.ejcn.1602562] [PMID: 17151592]
[172]
Lee YR, Noh EM, Oh HJ, et al. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression. BBRC 2011; 405(4): 557.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.065]
[173]
Khadanga M, Sahoo N, Panda SK, Mishra H, Sethi AK. Review article on the plant Avena sativa linn. JPSP 2022; 6(4): 6973-9.
[174]
Eudes A, Juminaga D, Baidoo EEK, Collins FW, Keasling JD, Loqué D. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact 2013; 12(1): 62.
[http://dx.doi.org/10.1186/1475-2859-12-62] [PMID: 23806124]
[175]
Montilla-Bascón G, Rispail N, Sánchez-Martín J, et al. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front Plant Sci 2015; 6: 103.
[http://dx.doi.org/10.3389/fpls.2015.00103] [PMID: 25798140]
[176]
Yang J, Ou B, Wise ML, Chu Y. In vitro total antioxidant capacity and anti-inflammatory activity of three common oat derived avenanthramides. Food Chem 2014; 160: 338-45.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.059]
[177]
Hu C, Tang Y, Zhao Y, Sang S. Quantitative analysis and anti-inflammatory activity evaluation of the A-type avenanthramides in commercial sprouted oat products. J Agric Food Chem 2020; 68(46): 13068-75.
[http://dx.doi.org/10.1021/acs.jafc.9b06812] [PMID: 31841331]
[178]
Yokosuka A, Ishihara K, Yamada T, Iguchi T, Mimaki Y. Steroidal glycosides from the aerial parts of Avena sativa L. and their cytotoxic activity. J Agric Food Chem 2021; 69(48): 14568-79.
[http://dx.doi.org/10.1021/acs.jafc.1c05782] [PMID: 34845902]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy