Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Carbon Dots an Integrative Nanostructure for Fluorescent Bio-imaging, Targeted Delivery of Medication and Phototherapy in Malignancy: A Review

Author(s): Pallavi L. Salve*, Somnath D. Bhinge and Mangesh A. Bhutkar

Volume 14, Issue 2, 2024

Published on: 25 January, 2024

Article ID: e260124226234 Pages: 18

DOI: 10.2174/0122106812278995231223081406

Price: $65

Abstract

Background: Silent onset and metastasis in tissues make cancer the most devastating illness globally. Monitoring the growth of the tumour and delivering drugs to specific tissues are some of the major issues associated with treatment. However, with an improved understanding of tumour microenvironments and advancements in nanocarriers of drugs, novel nano-targeting pathways that can be utilised by nanocarriers have been developed. Carbon Dots, with their tiny size and outstanding physicochemical features, are an emerging category of carbon nanostructures that have attracted a lot of curiosity.

Objective: Multitudinous attempts and extensive studies have been undertaken by many researchers regarding the synthesis of Carbon Dots and their applications in various fields. These studies have explained that the synthesised Carbon Dots have versatile surface functionalities, high luminescence, and excellent biocompatibility. This article focuses on recent developments in synthesis approaches, carbon precursors used, and applications of Carbon Dots, specifically within the biomedical field, with a particular focus on cancer.

Results: Carbon dots synthesised from a variety of precursors can act as prominent candidates for bioimaging and drug carriers and are used in cancer phototherapy. In this article, Carbon Dots are summarised based on their bright luminescent properties, distinct structure, drug loading capacity, and near-infrared (NIR) emission.

Conclusion: Carbon dots, employed as tumour theranostics, can serve as an alternative to synthetic fluorescent dyes. They fulfil the role of bioimaging agents and facilitate the precise delivery of drugs to cancer cells. Additionally, they exhibit excellence as phototherapeutic agents, featuring high nearinfrared (NIR) emission and minimal side effects.

Graphical Abstract

[1]
World Health Organization. Cancer. 2022. Available from: https://www.who.int/news-room/fact- sheets/detail/cancer (Accessed on: 07 March 2023).
[2]
Cancer Facts & Figures 2022; American Cancer Society, 2022.
[3]
Cassileth, B.R.; Deng, G. Complementary and alternative therapies for cancer. Oncologist, 2004, 9(1), 80-89.
[http://dx.doi.org/10.1634/theoncologist.9-1-80] [PMID: 14755017]
[4]
Xia, J.; Kawamura, Y.; Suehiro, T.; Chen, Y.; Sato, K. Carbon dots have antitumor action as monotherapy or combination therapy. Drug Discov. Ther., 2019, 13(2), 114-117.
[http://dx.doi.org/10.5582/ddt.2019.01013] [PMID: 31080202]
[5]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G] [PMID: 24220322]
[6]
Gong, N.; Sheppard, N.C.; Billingsley, M.M.; June, C.H.; Mitchell, M.J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol., 2021, 16(1), 25-36.
[http://dx.doi.org/10.1038/s41565-020-00822-y] [PMID: 33437036]
[7]
Tang, L.; Zheng, Y.; Melo, M.B.; Mabardi, L.; Castaño, A.P.; Xie, Y.Q.; Li, N.; Kudchodkar, S.B.; Wong, H.C.; Jeng, E.K.; Maus, M.V.; Irvine, D.J. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol., 2018, 36(8), 707-716.
[http://dx.doi.org/10.1038/nbt.4181] [PMID: 29985479]
[8]
Shen, C.L.; Liu, H.R.; Lou, Q.; Wang, F.; Liu, K.K.; Dong, L.; Shan, C.X. Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12(6), 2860-2893.
[http://dx.doi.org/10.7150/thno.70721] [PMID: 35401835]
[9]
Giner-Casares, J.J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today, 2016, 19(1), 19-28.
[http://dx.doi.org/10.1016/j.mattod.2015.07.004]
[10]
Ma, X.; Zhao, Y.; Liang, X.J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res., 2011, 44(10), 1114-1122.
[http://dx.doi.org/10.1021/ar2000056] [PMID: 21732606]
[11]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[12]
Borkar, S.P.; Raizaday, A. Electrospun nanofibers a novel treatment for localized applications. Int. J. Health Sci. , 2022, 6(S3), 12336-12347.
[http://dx.doi.org/10.53730/ijhs.v6nS3.9061]
[13]
Eckhardt, S.; Brunetto, P.S.; Gagnon, J.; Priebe, M.; Giese, B.; Fromm, K.M. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev., 2013, 113(7), 4708-4754.
[http://dx.doi.org/10.1021/cr300288v] [PMID: 23488929]
[14]
Amol, D.S.; Jaykumar, S.P. Phytonutraceuticals in cancer prevention and therapeutics. Curr. Nutr. Food Sci., 2023, 19(3), 209-228.
[http://dx.doi.org/10.2174/1573401318666220820151421]
[15]
Souto, E.B.; Almeida, A.J.; Müller, R.H. Lipid Nanoparticles (SLN®, NLC®) for Cutaneous Drug Delivery:Structure, Protection and Skin Effects. J. Biomed. Nanotechnol., 2007, 3(4), 317-331.
[http://dx.doi.org/10.1166/jbn.2007.049]
[16]
Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother., 2017, 87, 209-222.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108] [PMID: 28061404]
[17]
Adrita, S.; Tasnim, K.; Ryu, J.; Sharker, S. Nanotheranostic carbon dots as an emerging platform for cancer therapy. J. Nanotheranostics, 2020, 1(1), 58-77.
[http://dx.doi.org/10.3390/jnt1010006]
[18]
Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; Luo, P.G.; Yang, H.; Kose, M.E.; Chen, B.; Veca, L.M.; Xie, S.Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc., 2006, 128(24), 7756-7757.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[19]
Geng, B.; Shen, W.; Fang, F.; Qin, H.; Li, P.; Wang, X.; Li, X.; Pan, D.; Shen, L. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion in the NIR-II window with high efficiency. Carbon, 2020, 162, 220-233.
[http://dx.doi.org/10.1016/j.carbon.2020.02.053]
[20]
Jorns, M.; Pappas, D. A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applications. Nanomaterials , 2021, 11(6), 1448.
[http://dx.doi.org/10.3390/nano11061448] [PMID: 34070762]
[21]
Chandra, A.; Singh, N. Cell microenvironment pH sensing in 3D microgels using fluorescent carbon dots. ACS Biomater. Sci. Eng., 2017, 3(12), 3620-3627.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00740] [PMID: 33445396]
[22]
Chen, S.; Xing, C.; Huang, D.; Zhou, C.; Ding, B.; Guo, Z.; Peng, Z.; Wang, D.; Zhu, X.; Liu, S.; Cai, Z.; Wu, J.; Zhao, J.; Wu, Z.; Zhang, Y.; Wei, C.; Yan, Q.; Wang, H.; Fan, D.; Liu, L.; Zhang, H.; Cao, Y. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci. Adv., 2020, 6(15), eaay6825.
[http://dx.doi.org/10.1126/sciadv.aay6825] [PMID: 32284997]
[23]
Ji, X.; Kong, N.; Wang, J.; Li, W.; Xiao, Y.; Gan, S.T.; Zhang, Y.; Li, Y.; Song, X.; Xiong, Q.; Shi, S.; Li, Z.; Tao, W.; Zhang, H.; Mei, L.; Shi, J. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater., 2018, 30(36), 1803031.
[http://dx.doi.org/10.1002/adma.201803031] [PMID: 30019786]
[24]
Zhao, S.; Wu, S.; Jia, Q.; Huang, L.; Lan, M.; Wang, P.; Zhang, W. Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem. Eng. J., 2020, 388, 124212.
[http://dx.doi.org/10.1016/j.cej.2020.124212]
[25]
Park, Y.; Tran, M.D.; Kim, Y.; Won, S.; Kim, Y.H.; Lee, T.W.; Gregorkiewicz, T.; Lee, Y.H.; Kim, J.H.; Kwon, W. Unraveling the origin of near-infrared emission in carbon dots by ultrafast spectroscopy. Carbon, 2022, 188, 229-237.
[http://dx.doi.org/10.1016/j.carbon.2021.11.063]
[26]
Zhao, W.B.; Chen, D.D.; Liu, K.K.; Wang, Y.; Zhou, R.; Song, S.Y.; Li, F.K.; Sui, L.Z.; Lou, Q.; Hou, L.; Shan, C.X. Near-infrared I/II emission and absorption carbon dots via constructing localized excited/charge transfer state for multiphoton imaging and photothermal therapy. Chem. Eng. J., 2023, 452(2), 139231.
[http://dx.doi.org/10.1016/j.cej.2022.139231]
[27]
Wang, X.; Feng, Y.; Dong, P.; Huang, J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front Chem., 2019, 7, 671.
[http://dx.doi.org/10.3389/fchem.2019.00671] [PMID: 31637234]
[28]
Hua, X.W.; Bao, Y.W.; Wu, F.G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(13), 10664-10677.
[http://dx.doi.org/10.1021/acsami.7b19549]
[29]
Mansuriya, B.; Altintas, Z. Applications of graphene quantum dots in biomedical sensors. Sensors , 2020, 20(4), 1072.
[http://dx.doi.org/10.3390/s20041072] [PMID: 32079119]
[30]
Hassanvand, Z.; Jalali, F.; Nazari, M.; Parnianchi, F.; Santoro, C. Carbon nanodots in electrochemical sensors and biosensors: A review. ChemElectroChem, 2021, 8(1), 15-35.
[http://dx.doi.org/10.1002/celc.202001229]
[31]
Wu, R.; Liu, J.; Chen, D.; Pan, J. Carbon nanodots modified with catechol–borane moieties for ph-stimulated doxorubicin delivery: Toward nuclear targeting. ACS Appl. Nano Mater., 2019, 2(7), 4333-4341.
[http://dx.doi.org/10.1021/acsanm.9b00779]
[32]
Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci., 2019, 6(23), 1901316.
[http://dx.doi.org/10.1002/advs.201901316] [PMID: 31832313]
[33]
Tao, S.; Feng, T.; Zheng, C.; Zhu, S.; Yang, B. Carbonized polymer dots: A brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett., 2019, 10(17), 5182-5188.
[http://dx.doi.org/10.1021/acs.jpclett.9b01384] [PMID: 31424936]
[34]
Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem., 2012, 22(46), 24230-24253.
[http://dx.doi.org/10.1039/c2jm34690g]
[35]
Atchudan, R.; Jebakumar, I.E.T.N.; Shanmugam, M.; Perumal, S.; Somanathan, T.; Lee, Y.R. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E, 2021, 126, 114417.
[http://dx.doi.org/10.1016/j.physe.2020.114417]
[36]
Plácido, J.; Bustamante-López, S.; Meissner, K.E.; Kelly, D.E.; Kelly, S.L. Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems. Sci. Total Environ., 2019, 656, 531-539.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.393] [PMID: 30529956]
[37]
Shen, C.; Dong, C.; Cheng, L.; Shi, X.; Bi, H. Fluorescent carbon dots from Shewanella oneidensis MR–1 for Hg2+ and tetracycline detection and selective fluorescence imaging of Gram–positive bacteria. J. Environ. Chem. Eng., 2022, 10(1), 107020.
[http://dx.doi.org/10.1016/j.jece.2021.107020]
[38]
Ding, H.; Ji, Y.; Wei, J.S.; Gao, Q.Y.; Zhou, Z.Y.; Xiong, H.M. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(26), 5272-5277.
[http://dx.doi.org/10.1039/C7TB01130J] [PMID: 32264113]
[39]
Muktha, H.; Sharath, R.; Kottam, N.; Smrithi, S.P.; Samrat, K.; Ankitha, P. Green synthesis of carbon dots and evaluation of its pharmacological activities. Bionanoscience, 2020, 10(3), 731-744.
[http://dx.doi.org/10.1007/s12668-020-00741-1]
[40]
Liu, Y.; Liu, Y.; Park, M.; Park, S.J.; Zhang, Y.; Akanda, M.R.; Park, B.Y.; Kim, H.Y. Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging. Carbon letters, 2017, 21, 61-67.
[http://dx.doi.org/10.5714/CL.2017.21.061]
[41]
Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M.F.; Menéndez-Miranda, M.; Costa-Fernández, J.M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M.T. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J. Nanotechnol., 2018, 9, 530-544.
[http://dx.doi.org/10.3762/bjnano.9.51] [PMID: 29527430]
[42]
Fatahi, Z.; Esfandiari, N.; Ehtesabi, H.; Bagheri, Z.; Tavana, H.; Ranjbar, Z.; Latifi, H. Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI J., 2019, 18, 454-466.
[http://dx.doi.org/10.17179/excli2019-1465] [PMID: 31423124]
[43]
Miao, H.; Wang, L.; Zhuo, Y.; Zhou, Z.; Yang, X. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens. Bioelectron., 2016, 86, 83-89.
[http://dx.doi.org/10.1016/j.bios.2016.06.043] [PMID: 27336615]
[44]
Cao, Y.; Wang, X.; Bai, H.; Jia, P.; Zhao, Y.; Liu, Y.; Wang, L.; Zhuang, Y.; Yue, T. Fluorescent detection of tetracycline in foods based on carbon dots derived from natural red beet pigment. Lebensm. Wiss. Technol., 2022, 157, 113100.
[http://dx.doi.org/10.1016/j.lwt.2022.113100]
[45]
Sun, R.; Liu, S. Synthesis of photoluminescent carbon dots and its effect on chondrocytes for knee joint therapy applications. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1321-1325.
[http://dx.doi.org/10.1080/21691401.2019.1593855] [PMID: 31007061]
[46]
Wang, M.; Wan, Y.; Zhang, K.; Fu, Q.; Wang, L.; Zeng, J.; Xia, Z.; Gao, D. Green synthesis of carbon dots using the flowers of Osmanthus fragrans (Thunb.) Lour. as precursors: Application in Fe3+ and ascorbic acid determination and cell imaging. Anal. Bioanal. Chem., 2019, 411(12), 2715-2727.
[http://dx.doi.org/10.1007/s00216-019-01712-6] [PMID: 30941477]
[47]
Shekarbeygi, Z.; Farhadian, N.; Khani, S.; Moradi, S.; Shahlaei, M. The effects of rose pigments extracted by different methods on the optical properties of carbon quantum dots and its efficacy in the determination of Diazinon. Microchem. J., 2020, 158, 105232.
[http://dx.doi.org/10.1016/j.microc.2020.105232]
[48]
Ghosh, S.; Gul, A.R.; Park, C.Y.; Kim, M.W.; Xu, P.; Baek, S.H.; Bhamore, J.R.; Kailasa, S.K.; Park, T.J. Facile synthesis of carbon dots from Tagetes erecta as a precursor for determination of chlorpyrifos via fluorescence turn-off and quinalphos via fluorescence turn-on mechanisms. Chemosphere, 2021, 279, 130515.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130515] [PMID: 33862360]
[49]
Ge, G.; Li, L.; Chen, M.; Wu, X.; Yang, Y.; Wang, D.; Zuo, S.; Zeng, Z.; Xiong, W.; Guo, C. Green synthesis of nitrogen-doped carbon dots from fresh tea leaves for selective Fe3+ ions detection and cellular imaging. Nanomaterials , 2022, 12(6), 986.
[http://dx.doi.org/10.3390/nano12060986]
[50]
Yang, X.; Wang, D.; Luo, N.; Feng, M.; Peng, X.; Liao, X. Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 239, 118462.
[http://dx.doi.org/10.1016/j.saa.2020.118462] [PMID: 32450536]
[51]
Wang, C.; Xu, J.; Zhang, R.; Zhao, W. Facile and low-energy-consumption synthesis of dual-functional carbon dots from Cornus walteri leaves for detection of p-nitrophenol and photocatalytic degradation of dyes. Colloids Surf. A Physicochem. Eng. Asp., 2022, 640, 128351.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128351]
[52]
Tyagi, A.; Tripathi, K.M.; Singh, N.; Choudhary, S.; Gupta, R.K. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Advances, 2016, 6(76), 72423-72432.
[http://dx.doi.org/10.1039/C6RA10488F]
[53]
Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Vinodh, R.; Sundramoorthy, A.K.; Babu, R.S.; Lee, Y.R. Leftover kiwi fruit peel-derived carbon dots as a highly selective fluorescent sensor for detection of ferric ion. Chemosensors , 2021, 9(7), 166.
[http://dx.doi.org/10.3390/chemosensors9070166]
[54]
Krishnaiah, P.; Atchudan, R.; Perumal, S.; Salama, E.S.; Lee, Y.R.; Jeon, B.H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere, 2022, 286(Pt 2), 131764.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131764] [PMID: 34364229]
[55]
Ang, W.L.; Boon Mee, C.A.L.; Sambudi, N.S.; Mohammad, A.W.; Leo, C.P.; Mahmoudi, E.; Ba-Abbad, M.; Benamor, A. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Sci. Rep., 2020, 10(1), 21199.
[http://dx.doi.org/10.1038/s41598-020-78322-1] [PMID: 33273663]
[56]
Newman Monday, Y.; Abdullah, J.; Yusof, N.A.; Abdul Rashid, S.; Shueb, R.H. Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor. Appl. Sci. , 2021, 11(4), 1630.
[http://dx.doi.org/10.3390/app11041630]
[57]
Konwar, A.; Baruah, U.; Deka, M.J.; Hussain, A.A.; Haque, S.R.; Pal, A.R.; Chowdhury, D. Tea-carbon dots-reduced graphene oxide: An efficient conducting coating material for fabrication of an e-textile. ACS Sustain. Chem.& Eng., 2017, 5(12), 11645-11651.
[http://dx.doi.org/10.1021/acssuschemeng.7b03021]
[58]
Jeong, Y.; Moon, K.; Jeong, S.; Koh, W.G.; Lee, K. Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bio- imaging applications. ACS Sustain. Chem.& Eng., 2018, 6(4), 4510-4515.
[http://dx.doi.org/10.1021/acssuschemeng.8b00353]
[59]
Moonrinta, S.; Jamnongsong, S.; Sampattavanich, S.; Kladsomboon, S.; Sajomsang, W.; Paoprasert, P. Synthesis of biocompatible carbon dots from yogurt and gas vapor sensing. 2nd International Conference on Materials Engineering and Nano Sciences (ICMENS 2018), 11–13 January 2018Hong Kong2018.
[http://dx.doi.org/10.1088/1757-899X/378/1/012005]
[60]
Pacquiao, M.R.; de Luna, M.D.G.; Thongsai, N.; Kladsomboon, S.; Paoprasert, P. Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Appl. Surf. Sci., 2018, 453, 192-203.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.199]
[61]
Chaudhary, S.; Kumari, M.; Chauhan, P.; Ram Chaudhary, G. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Waste Manag., 2021, 120, 675-686.
[http://dx.doi.org/10.1016/j.wasman.2020.10.038] [PMID: 33223249]
[62]
Nocito, G.; Calabrese, G.; Forte, S.; Petralia, S.; Puglisi, C.; Campolo, M.; Esposito, E.; Conoci, S. Carbon dots as promising tools for cancer diagnosis and therapy. Cancers , 2021, 13(9), 1991.
[http://dx.doi.org/10.3390/cancers13091991] [PMID: 33919096]
[63]
Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed., 2015, 54(18), 5360-5363.
[http://dx.doi.org/10.1002/anie.201501193] [PMID: 25832292]
[64]
Jiang, L.; Ding, H.; Xu, M.; Hu, X.; Li, S.; Zhang, M.; Zhang, Q.; Wang, Q.; Lu, S.; Tian, Y.; Bi, H. UV–Vis–NIR full‐range responsive carbon dots with large multiphoton absorption cross sections and deep‐red fluorescence at nucleoli and in vivo. Small, 2020, 16(19), 2000680.
[http://dx.doi.org/10.1002/smll.202000680] [PMID: 32285624]
[65]
Licciardello, N.; Hunoldt, S.; Bergmann, R.; Singh, G.; Mamat, C.; Faramus, A.; Ddungu, J.L.Z.; Silvestrini, S.; Maggini, M.; De Cola, L.; Stephan, H. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale, 2018, 10(21), 9880-9891.
[http://dx.doi.org/10.1039/C8NR01063C] [PMID: 29658023]
[66]
Strickland, S.; Jorns, M.; Heyd, L.; Pappas, D. Novel synthesis of fibronectin derived photoluminescent carbon dots for bioimaging applications. RSC Advances, 2022, 12(47), 30487-30494.
[http://dx.doi.org/10.1039/D2RA05137K] [PMID: 36337972]
[67]
Saranti, A.; Tiron-Stathopoulos, A.; Papaioannou, L.; Gioti, C.; Ioannou, A.; Karakassides, M.A.; Avgoustakis, K.; Koutselas, I.; Dimos, K. 3D-printed bioactive scaffolds for bone regeneration bearing carbon dots for bioimaging purposes. Smart Materials in Medicine, 2022, 3, 12-19.
[http://dx.doi.org/10.1016/j.smaim.2021.11.002]
[68]
Zhang, Y.; Zhang, X.; Shi, Y.; Sun, C.; Zhou, N.; Wen, H. The synthesis and functional study of multicolor nitrogen-doped carbon dots for live cell nuclear imaging. Molecules, 2020, 25(2), 306.
[http://dx.doi.org/10.3390/molecules25020306] [PMID: 31940913]
[69]
Atchudan, R.; Perumal, S.; Edison, T.N.J.I.; Sundramoorthy, A.K.; Sangaraju, S.; Babu, R.S.; Lee, Y.R. Sustainable synthesis of bright fluorescent nitrogen-doped carbon dots from terminalia chebula for in vitro imaging. Molecules, 2022, 27(22), 8085.
[http://dx.doi.org/10.3390/molecules27228085]
[70]
Pal, T.; Mohiyuddin, S.; Packirisamy, G. Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: In vitro and in vivo bioimaging and other applications. ACS Omega, 2018, 3(1), 831-843.
[http://dx.doi.org/10.1021/acsomega.7b01323] [PMID: 30023790]
[71]
Gudimella, K.K.; Appidi, T.; Wu, H.F.; Battula, V.; Jogdand, A.; Rengan, A.K.; Gedda, G. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf. B Biointerfaces, 2021, 197, 111362.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111362] [PMID: 33038604]
[72]
Hashemi, F.; Heidari, F.; Mohajeri, N.; Mahmoodzadeh, F.; Zarghami, N. Fluorescence intensity enhancement of green carbon dots: Synthesis, characterization and cell imaging. Photochem. Photobiol., 2020, 96(5), 1032-1040.
[http://dx.doi.org/10.1111/php.13261] [PMID: 32187697]
[73]
Sun, Y.; Zheng, S.; Liu, L.; Kong, Y.; Zhang, A.; Xu, K.; Han, C. The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery. Nanoscale Res. Lett., 2020, 15(1), 55.
[http://dx.doi.org/10.1186/s11671-020-3288-0] [PMID: 32130552]
[74]
Tadesse, A.; Hagos, M.; RamaDevi, D.; Basavaiah, K.; Belachew, N. Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: Green synthesis, mercury(II) ion sensing, and live cell imaging. ACS Omega, 2020, 5(8), 3889-3898.
[http://dx.doi.org/10.1021/acsomega.9b03175] [PMID: 32149215]
[75]
Zhao, X.; Qi, T.; Yang, M.; Zhang, W.; Kong, C.; Hao, M.; Wang, Y.; Zhang, H.; Yang, B.; Yang, J.; Jiang, J. Synthesis of dual functional procaine-derived carbon dots for bioimaging and anticancer therapy. Nanomedicine , 2020, 15(7), 677-689.
[http://dx.doi.org/10.2217/nnm-2019-0390] [PMID: 32122238]
[76]
Irmania, N.; Dehvari, K.; Gedda, G.; Tseng, P.J.; Chang, J.Y. Manganese‐doped green tea‐derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform. J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(4), 1616-1625.
[http://dx.doi.org/10.1002/jbm.b.34508] [PMID: 31643134]
[77]
Kailasa, S.K.; Ha, S.; Baek, S.H.; Phan, L.M.T.; Kim, S.; Kwak, K.; Park, T.J. Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Mater. Sci. Eng. C, 2019, 98, 834-842.
[http://dx.doi.org/10.1016/j.msec.2019.01.002] [PMID: 30813090]
[78]
Fahmi, M.Z.; Haris, A.; Permana, A.J.; Nor Wibowo, D.L.; Purwanto, B.; Nikmah, Y.L.; Idris, A. Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC Advances, 2018, 8(67), 38376-38383.
[http://dx.doi.org/10.1039/C8RA07944G] [PMID: 35559085]
[79]
Su, R.; Wang, D.; Liu, M.; Yan, J.; Wang, J.X.; Zhan, Q.; Pu, Y.; Foster, N.R.; Chen, J.F. Subgram- scale synthesis of biomass waste-derived fluorescent carbon dots in subcritical water for bioimaging, sensing, and solid-state patterning. ACS Omega, 2018, 3(10), 13211-13218.
[http://dx.doi.org/10.1021/acsomega.8b01919]
[80]
Li, L.S.; Jiao, X.Y.; Zhang, Y.; Cheng, C.; Huang, K.; Xu, L. Green synthesis of fluorescent carbon dots from Hongcaitai for selective detection of hypochlorite and mercuric ions and cell imaging. Sens. Actuators B Chem., 2018, 263, 426-435.
[http://dx.doi.org/10.1016/j.snb.2018.02.141]
[81]
Kumari, A.; Kumar, A.; Sahu, S.K.; Kumar, S. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sens. Actuators B Chem., 2018, 254, 197-205.
[http://dx.doi.org/10.1016/j.snb.2017.07.075]
[82]
Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Troganis, A.; Stalikas, C. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta, 2017, 175, 305-312.
[http://dx.doi.org/10.1016/j.talanta.2017.07.053] [PMID: 28841995]
[83]
Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens. Actuators B Chem., 2017, 242, 679-686.
[http://dx.doi.org/10.1016/j.snb.2016.11.109]
[84]
Gu, D.; Shang, S.; Yu, Q.; Shen, J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl. Surf. Sci., 2016, 390, 38-42.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.012]
[85]
Shreyash, N.; Sonker, M.; Bajpai, S.; Tiwary, S.K. Review of the mechanism of nanocarriers and technological developments in the field of nanoparticles for applications in cancer theragnostics. ACS Appl. Bio Mater., 2021, 4(3), 2307-2334.
[http://dx.doi.org/10.1021/acsabm.1c00020] [PMID: 35014353]
[86]
Li, J.; Yang, S.; Deng, Y.; Chai, P.; Yang, Y.; He, X.; Xie, X.; Kang, Z.; Ding, G.; Zhou, H.; Fan, X. Emancipating target‐functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy. Adv. Funct. Mater., 2018, 28(30), 1800881.
[http://dx.doi.org/10.1002/adfm.201800881]
[87]
Li, S.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X.; Chen, Z.; Bao, Y.; Yuan, F.; Zhou, S.; Tan, H.; Li, Y.; Li, X.; Fan, L.; Zhu, J.; Chen, A.T.; Liu, F.; Zhou, Y.; Li, M.; Zhai, X.; Zhou, J. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng., 2020, 4(7), 704-716.
[http://dx.doi.org/10.1038/s41551-020-0540-y] [PMID: 32231314]
[88]
Gao, P.; Liu, S.; Su, Y.; Zheng, M.; Xie, Z. Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery. Bioconjug. Chem., 2020, 31(3), 646-655.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00801] [PMID: 31884783]
[89]
D’souza, S.L.; Chettiar, S.S.; Koduru, J.R.; Kailasa, S.K. Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik, 2018, 158, 893-900.
[http://dx.doi.org/10.1016/j.ijleo.2017.12.200]
[90]
Shao, Y.; Zhu, C.; Fu, Z.; Lin, K.; Wang, Y.; Chang, Y.; Han, L.; Yu, H.; Tian, F. Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. J. Nanopart. Res., 2020, 22(8), 229.
[http://dx.doi.org/10.1007/s11051-020-04917-4]
[91]
Kim, D.H.; Seo, J.; Na, K. pH-Sensitive carbon dots for enhancing photomediated antitumor immunity. Mol. Pharm., 2020, 17(7), 2532-2545.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00227] [PMID: 32407125]
[92]
Das, P.; Ganguly, S.; Agarwal, T.; Maity, P.; Ghosh, S.; Choudhary, S.; Gangopadhyay, S.; Maiti, T.K.; Dhara, S.; Banerjee, S.; Das, N.C. Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Mater. Chem. Phys., 2019, 237, 121860.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121860]
[93]
Bhattacharyya, S.K.; Jana, I.D.; Pandey, N.; Biswas, D.; Girigoswami, A.; Dey, T.; Banerjee, S.; Ray, S.K.; Mondal, A.; Mukherjee, G.; Chandra Das, N.; Banerjee, S. Ho 3+ -doped carbon dot/gelatin nanoparticles for ph-responsive anticancer drug delivery and intracellular Cu 2+ ion sensing. ACS Appl. Nano Mater., 2022, 5(8), 11809-11822.
[http://dx.doi.org/10.1021/acsanm.2c02841]
[94]
Tejwan, N.; Kundu, M.; Ghosh, N.; Chatterjee, S.; Sharma, A.; Abhishek Singh, T.; Das, J.; Sil, P.C. Synthesis of green carbon dots as bioimaging agent and drug delivery system for enhanced antioxidant and antibacterial efficacy. Inorg. Chem. Commun., 2022, 139, 109317.
[http://dx.doi.org/10.1016/j.inoche.2022.109317]
[95]
Tejwan, N.; Sadhukhan, P.; Sharma, A.; Singh, T.A.; Hatimuria, M.; Pabbathi, A.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of rutin for breast cancer therapy via folic acid-functionalized carbon dots. Diamond Related Materials, 2022, 129, 109346.
[http://dx.doi.org/10.1016/j.diamond.2022.109346]
[96]
Feng, T.; Ai, X.; An, G.; Yang, P.; Zhao, Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano, 2016, 10(4), 4410-4420.
[http://dx.doi.org/10.1021/acsnano.6b00043] [PMID: 26997431]
[97]
Feng, T.; Ai, X.; Ong, H.; Zhao, Y. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(29), 18732-18740.
[http://dx.doi.org/10.1021/acsami.6b06695] [PMID: 27367152]
[98]
Gong, X.; Zhang, Q.; Gao, Y.; Shuang, S.; Choi, M.M.F.; Dong, C. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl. Mater. Interfaces, 2016, 8(18), 11288-11297.
[http://dx.doi.org/10.1021/acsami.6b01577] [PMID: 27088972]
[99]
Zeng, Q.; Shao, D.; He, X.; Ren, Z.; Ji, W.; Shan, C.; Qu, S.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(30), 5119-5126.
[http://dx.doi.org/10.1039/C6TB01259K] [PMID: 32263509]
[100]
Gao, N.; Yang, W.; Nie, H.; Gong, Y.; Jing, J.; Gao, L.; Zhang, X. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron., 2017, 96(96), 300-307.
[http://dx.doi.org/10.1016/j.bios.2017.05.019] [PMID: 28511113]
[101]
Shu, Y.; Lu, J.; Mao, Q.X.; Song, R.S.; Wang, X.Y.; Chen, X.W.; Wang, J.H. Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon, 2017, 114, 324-333.
[http://dx.doi.org/10.1016/j.carbon.2016.12.038]
[102]
Wang, H.J.; He, X.; Luo, T.Y.; Zhang, J.; Liu, Y.H.; Yu, X.Q. Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale, 2017, 9(18), 5935-5947.
[http://dx.doi.org/10.1039/C7NR01029J] [PMID: 28440819]
[103]
Yao, Y.Y.; Gedda, G.; Girma, W.M.; Yen, C.L.; Ling, Y.C.; Chang, J.Y. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(16), 13887-13899.
[http://dx.doi.org/10.1021/acsami.7b01599] [PMID: 28388048]
[104]
Ma, J.; Kang, K.; Zhang, Y.; Yi, Q.; Gu, Z. Detachable polyzwitterion-coated ternary nanoparticles based on peptide dendritic carbon dots for efficient drug delivery in cancer therapy. ACS Appl Mater Interfaces, 2018, 19-10(50), 43923-43935.
[http://dx.doi.org/10.1021/acsami.8b17041]
[105]
Hettiarachchi, S.D.; Graham, R.M.; Mintz, K.J.; Zhou, Y.; Vanni, S.; Peng, Z.; Leblanc, R.M. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale, 2019, 11(13), 6192-6205.
[http://dx.doi.org/10.1039/C8NR08970A] [PMID: 30874284]
[106]
Qian, C.; Chen, Y.; Feng, P.; Xiao, X.; Dong, M.; Yu, J.; Hu, Q.; Shen, Q.; Gu, Z. Conjugated polymer nanomaterials for theranostics. Acta Pharmacol. Sin., 2017, 38(6), 764-781.
[http://dx.doi.org/10.1038/aps.2017.42] [PMID: 28552910]
[107]
Qu, D.; Wang, X.; Bao, Y.; Sun, Z. Recent advance of carbon dots in bio-related applications. J. Phy. Mat., 2020, 3(2), 022003.
[http://dx.doi.org/10.1088/2515-7639/ab7cb9]
[108]
Lin, X.; Fang, Y.; Hao, Z.; Wu, H.; Zhao, M.; Wang, S.; Liu, Y. Bacteria‐triggered multifunctional hydrogel for localized chemodynamic and low‐temperature photothermal sterilization. Small, 2021, 17(51), 2103303.
[http://dx.doi.org/10.1002/smll.202103303] [PMID: 34643054]
[109]
Cheng, L.; Yuan, C.; Shen, S.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS 2 nanoflakes for cancer theranostics. ACS Nano, 2015, 9(11), 11090-11101.
[http://dx.doi.org/10.1021/acsnano.5b04606] [PMID: 26445029]
[110]
Nandi, S.; Bhunia, S.K.; Zeiri, L.; Pour, M.; Nachman, I.; Raichman, D.; Lellouche, J.P.M.; Jelinek, R. Bifunctional carbon‐dot‐WS 2 nanorods for photothermal therapy and cell imaging. Chemistry, 2017, 23(4), 963-969.
[http://dx.doi.org/10.1002/chem.201604787] [PMID: 27813177]
[111]
Ge, J.; Jia, Q.; Liu, W.; Guo, L.; Liu, Q.; Lan, M.; Zhang, H.; Meng, X.; Wang, P. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater., 2015, 27(28), 4169-4177.
[http://dx.doi.org/10.1002/adma.201500323] [PMID: 26045099]
[112]
Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P.; Zhu, G.; Lee, C.S.; Zhang, W. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res., 2017, 10(9), 3113-3123.
[http://dx.doi.org/10.1007/s12274-017-1528-0]
[113]
Yu, Y.; Song, M.; Chen, C.; Du, Y.; Li, C.; Han, Y.; Yan, F.; Shi, Z.; Feng, S. Bortezomib-encapsulated CuS/carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano., 2020, 14, 0688-0703.
[http://dx.doi.org/10.1021/acsnano.0c05332]
[114]
Yue, J.; Miao, P.; Li, L.; Yan, R.; Dong, W-F.; Mei, Q. Injectable carbon dots-based hydrogel for combined photothermal therapy and photodynamic therapy of cancer. ACS Appl. Mater. Interfaces, 2022, 14(44), 49582-49591.
[http://dx.doi.org/10.1021/acsami.2c15428]
[115]
Du, D.; Wang, K.; Wen, Y.; Li, Y.; Li, Y.Y. Photodynamic graphene quantum dot: Reduction condition regulated photoactivity and size dependent efficacy. ACS Appl. Mater. Interfaces, 2016, 8(5), 3287-3294.
[http://dx.doi.org/10.1021/acsami.5b11154] [PMID: 26761130]
[116]
Li, Y.; Zheng, X.; Zhang, X.; Liu, S.; Pei, Q.; Zheng, M.; Xie, Z. Porphyrin‐based carbon dots for photodynamic therapy of hepatoma. Adv. Healthc. Mater., 2017, 6(1), 1600924.
[http://dx.doi.org/10.1002/adhm.201600924] [PMID: 27860468]
[117]
Yang, Y.; Ding, H.; Li, Z.; Tedesco, A.C.; Bi, H. Carbon dots derived from tea polyphenols as photosensitizers for photodynamic therapy. Molecules, 2022, 6-27(23), 8627.
[http://dx.doi.org/10.3390/molecules27238627]
[118]
Murali, G.; Kwon, B.; Kang, H.; Modigunta, J.K.R.; Park, S.; Lee, S.; Lee, H.; Park, Y.H.; Kim, J.; Park, S.Y.; Kim, Y.J.; In, I. Hematoporphyrin photosensitizer-linked carbon quantum dots for photodynamic therapy of cancer cells. ACS Appl. Nano Mater., 2022, 5(3), 4376-4385.
[http://dx.doi.org/10.1021/acsanm.2c00443]
[119]
Lin, X.; Fang, Y.; Tao, Z.; Gao, X.; Wang, T.; Zhao, M.; Wang, S.; Liu, Y. Tumor-microenvironment-induced all-in-one nanoplatform for multimodal imaging-guided chemical and photothermal therapy of cancer. ACS Appl. Mater. Interfaces, 2019, 11(28), 25043-25053.
[http://dx.doi.org/10.1021/acsami.9b07643] [PMID: 31265228]
[120]
Preparation method of nano hollow sphere containing graphitized carbon dots. CN Patent 111170321B, 2023.
[121]
Preparation method of iron-doped carbon dots with tumor catalytic treatment function. CN Patent 113855801B, 2023.
[122]
Multi-emission fluorescent carbon dot and preparation method and application thereof. CN Patent 114854405B, 2023.
[123]
Preparation method of novel dopamine functional fluorescent carbon dots, product and application thereof. CN Patent 115029132B, 2023.
[124]
Synthesis method of water-soluble or oil-soluble carbon dots and fluorescent carbon dots. CN Patent 108690609B, 2021.
[125]
Preparation method of fluorescent color- adjustable carbon dots. CN Patent 109294569B, 2021.
[126]
Preparation method of panchromatic carbon dots for multicolor fluorescence printing and product thereof. CN Patent 108587615B, 2020.
[127]
Carbon dots for diagnostic analysis and drug delivery. U.S. Patent US20230087420A1, 2023.
[128]
Multicolor fluorescent carbon dots, and preparation method and application thereof. CN Patent 114591737A, 2022.
[129]
Preparation and application of fluorescent carbon dots capable of circularly and rapidly detecting malachite green. CN Patent 114350357A, 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy