Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update

Author(s): Nasim Bakhtiyari, Safar Farajnia*, Samaneh Ghasemali, Sahar Farajnia, Ali Pormohammad and Shabnam Saeidvafa

Volume 24, Issue 6, 2024

Published on: 25 January, 2024

Article ID: e260124226226 Pages: 14

DOI: 10.2174/0118715265276529231214105423

Price: $65

Abstract

Nosocomial infections, also known as healthcare-associated infections, are a significant global concern due to their strong association with high mortality and morbidity in both developed and developing countries. These infections are caused by a variety of pathogens, particularly the ESKAPE group of bacteria, which includes the six pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. These bacteria have demonstrated noteworthy resistance to different antibiotics.

Antimicrobial resistance mechanisms can manifest in various forms, including restricting drug uptake, modifying drug targets, inactivating drugs, active drug efflux, and biofilm formation. Accordingly, various strategies have been developed to combat antibiotic-resistant bacteria. These strategies encompass the development of new antibiotics, the utilization of bacteriophages that specifically target these bacteria, antimicrobial combination therapy and the use of peptides or enzymes that target the genomes or essential proteins of resistant bacteria.

Among promising approaches to overcome antibiotic resistance, the CRISPR/Cas system stands out and offers many advantages. This system enables precise and efficient editing of genetic material at specific locations in the genome. Functioning as a bacterial "adaptive immune system," the CRISPR/Cas system recognizes, degrades, and remembers foreign DNA sequences through the use of spacer DNA segments that are transcribed into CRISPR RNAs (crRNA).

This paper has focused on nosocomial infections, specifically the pathogens involved in hospital infections, the mechanisms underlying bacterial resistance, and the strategies currently employed to address this issue. Special emphasis has been placed on the application of CRISPR/Cas technology for overcoming antimicrobial resistance.

Graphical Abstract

[1]
Jain N, Jansone I, Obidenova T, et al. Antimicrobial resistance in nosocomial isolates of gram-negative bacteria: Public health implications in the latvian context. Antibiotics 2021; 10(7): 791.
[http://dx.doi.org/10.3390/antibiotics10070791] [PMID: 34209766]
[2]
Zohra T, Numan M, Ikram A, et al. Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, Nanotechnology and other strategies in ESKAPE pathogens. Microorganisms 2021; 9(5): 954.
[http://dx.doi.org/10.3390/microorganisms9050954] [PMID: 33946643]
[3]
Suleyman G, Alangaden GJ. Nosocomial fungal infections. Infect Dis Clin North Am 2021; 35(4): 1027-53.
[http://dx.doi.org/10.1016/j.idc.2021.08.002] [PMID: 34752219]
[4]
Greninger AL, Zerr DM. NGSocomial infections: High-resolution views of hospital-acquired infections through genomic epidemiology. J Pediatric Infect Dis Soc 2021; 10 (Suppl. 4): S88-95.
[http://dx.doi.org/10.1093/jpids/piab074] [PMID: 34951469]
[5]
Dadi NCT. Radochová B, Vargová J, Bujdáková H. Impact of healthcare-associated infections connected to medical devices—an update. Microorganisms 2021; 9(11): 2332.
[http://dx.doi.org/10.3390/microorganisms9112332] [PMID: 34835457]
[6]
Revelas A. Healthcare - associated infections: A public health problem. Niger Med J 2012; 53(2): 59-64.
[http://dx.doi.org/10.4103/0300-1652.103543] [PMID: 23271847]
[7]
Inweregbu K, Dave J, Pittard A. Nosocomial infections. Contin Educ Anaesth Crit Care Pain 2005; 5(1): 14-7.
[http://dx.doi.org/10.1093/bjaceaccp/mki006]
[8]
Hemez C, Clarelli F, Palmer AC, et al. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20: 4688-703.
[http://dx.doi.org/10.1016/j.csbj.2022.08.030] [PMID: 36147681]
[9]
C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018; 4(3): 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[10]
Tilahun M. Multi-drug resistance profile, prevalence of extended-spectrum beta-lactamase and carbapenemase-producing gram negative bacilli among admitted patients after surgery with suspected of surgical site nosocomial infection north east Ethiopia. Infect Drug Resist 2022; 15: 3949-65.
[http://dx.doi.org/10.2147/IDR.S376622] [PMID: 35924020]
[11]
Gupta A, Mahajan S, Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol Rep 2015; 6: 51-5.
[http://dx.doi.org/10.1016/j.btre.2015.02.001] [PMID: 28626697]
[12]
Cerveira MM, Vianna HS, Ferrer EMK, et al. Bioprospection of novel synthetic monocurcuminoids: Antioxidant, antimicrobial, and in vitro cytotoxic activities. Biomed Pharmacother 2021; 133: 111052.
[http://dx.doi.org/10.1016/j.biopha.2020.111052] [PMID: 33378958]
[13]
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[14]
De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33(3): e00181-19.
[http://dx.doi.org/10.1128/CMR.00181-19] [PMID: 32404435]
[15]
Olawale KO, Fadiora SO, Taiwo SS. Prevalence of hospital acquired enterococci infections in two primary-care hospitals in Osogbo, Southwestern Nigeria. Afr J Infect Dis 2011; 5(2): 40-6.
[http://dx.doi.org/10.4314/ajid.v5i2.66513] [PMID: 23878706]
[16]
Dapkevicius MLE, Sgardioli B, Câmara SPA, Poeta P, Malcata FX. Current trends of enterococci in dairy products: A comprehensive review of their multiple roles. Foods 2021; 10(4): 821.
[http://dx.doi.org/10.3390/foods10040821] [PMID: 33920106]
[17]
Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of enterococci. Microbiol Spectr 2019; 7(4): 7.4.9.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0053-2018] [PMID: 31298205]
[18]
Azzam A, Elkafas H, Khaled H, Ashraf A, Yousef M, Elkashef AA. Prevalence of vancomycin-resistant enterococci (VRE) in Egypt (2010–2022): A systematic review and meta-analysis. J Egypt Public Health Assoc 2023; 98(1): 8.
[http://dx.doi.org/10.1186/s42506-023-00133-9] [PMID: 37037955]
[19]
Ahmed MO, Baptiste KE. Vancomycin-resistant Enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 2018; 24(5): 590-606.
[http://dx.doi.org/10.1089/mdr.2017.0147] [PMID: 29058560]
[20]
Bender JK, Cattoir V, Hegstad K, et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 2018; 40: 25-39.
[http://dx.doi.org/10.1016/j.drup.2018.10.002] [PMID: 30447411]
[21]
Torres C, Alonso CA, Ruiz-Ripa L. León-Sampedro R, Del Campo R, Coque TM. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr 2018; 6(4): 6.4.24.
[http://dx.doi.org/10.1128/microbiolspec.ARBA-0032-2018] [PMID: 30051804]
[22]
Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol 2012; 34(2): 281-97.
[http://dx.doi.org/10.1007/s00281-011-0291-7] [PMID: 22037948]
[23]
Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019; 17(4): 203-18.
[http://dx.doi.org/10.1038/s41579-018-0147-4] [PMID: 30737488]
[24]
Kang YR, Kim SH, Chung DR, et al. Impact of vancomycin use trend change due to the availability of alternative antibiotics on the prevalence of Staphylococcus aureus with reduced vancomycin susceptibility: a 14-year retrospective study. Antimicrob Resist Infect Control 2022; 11(1): 101.
[http://dx.doi.org/10.1186/s13756-022-01140-9] [PMID: 35932086]
[25]
Álvarez A, Fernández L, Gutiérrez D, Iglesias B, Rodríguez A, García P. Methicillin-Resistant Staphylococcus aureus in Hospitals: Latest Trends and Treatments Based on Bacteriophages. J Clin Microbiol 2019; 57(12): e01006-19.
[http://dx.doi.org/10.1128/JCM.01006-19] [PMID: 31578263]
[26]
Dadashi M, Hajikhani B, Darban-Sarokhalil D, van Belkum A, Goudarzi M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J Glob Antimicrob Resist 2020; 20: 238-47.
[http://dx.doi.org/10.1016/j.jgar.2019.07.032] [PMID: 31442624]
[27]
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41(3): 252-75.
[http://dx.doi.org/10.1093/femsre/fux013] [PMID: 28521338]
[28]
Opoku-Temeng C, Kobayashi SD, DeLeo FR. Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J 2019; 17: 1360-6.
[http://dx.doi.org/10.1016/j.csbj.2019.09.011] [PMID: 31762959]
[29]
Zhang S, Zhang X, Wu Q, et al. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob Resist Infect Control 2019; 8(1): 166.
[http://dx.doi.org/10.1186/s13756-019-0615-2] [PMID: 31673355]
[30]
Lee JH, Hong H, Tamburrini M, Park CM. Percutaneous transthoracic catheter drainage for lung abscess: A systematic review and meta-analysis. Eur Radiol 2022; 32(2): 1184-94.
[http://dx.doi.org/10.1007/s00330-021-08149-5] [PMID: 34327579]
[31]
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol Rev 2019; 43(2): 123-44.
[http://dx.doi.org/10.1093/femsre/fuy043 ] [PMID: 30452654]
[32]
Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: Its clinical significance in human and veterinary medicine. Pathogens 2021; 10(2): 127.
[http://dx.doi.org/10.3390/pathogens10020127] [PMID: 33513701]
[33]
Samuelson DR, Gu M, Shellito JE, et al. Pulmonary immune cell trafficking promotes host defense against alcohol-associated Klebsiella pneumonia. Commun Biol 2021; 4(1): 997.
[http://dx.doi.org/10.1038/s42003-021-02524-0] [PMID: 34426641]
[34]
Labrador I, Araque M. First description of KPC-2-producing klebsiella oxytoca isolated from a pediatric patient with nosocomial pneumonia in venezuela. Case Rep Infect Dis 2014; 2014: 1-4.
[http://dx.doi.org/10.1155/2014/434987] [PMID: 25405043]
[35]
Yang J, Long H, Hu Y, Feng Y, McNally A, Zong Z. Klebsiella oxytoca Complex: Update on taxonomy, antimicrobial resistance, and virulence. Clin Microbiol Rev 2022; 35(1): e00006-21.
[http://dx.doi.org/10.1128/CMR.00006-21] [PMID: 34851134]
[36]
Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii. Virulence 2012; 3(3): 243-50.
[http://dx.doi.org/10.4161/viru.19700] [PMID: 22546906]
[37]
Gonzalez-Villoria AM, Valverde-Garduno V. Antibiotic-resistant acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J Pathogens 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/7318075] [PMID: 26966582]
[38]
Lăzureanu V, Poroșnicu M, Gândac C, Moisil T, Bădițoiu L, Laza R. Infection with Acinetobacter baumannii in an intensive care unit in the Western part of Romania. BMC Infect Dis 2016; 16(Suppl 1)
[http://dx.doi.org/10.1186/s12879-016-1399-0]
[39]
van Duin D, Paterson DL. Multidrug-resistant bacteria in the community. Infect Dis Clin North Am 2020; 34(4): 709-22.
[http://dx.doi.org/10.1016/j.idc.2020.08.002] [PMID: 33011046]
[40]
Alrahmany D, Omar AF, Alreesi A, Harb G, Ghazi IM. Acinetobacter baumannii infection-related mortality in hospitalized patients: Risk factors and potential targets for clinical and antimicrobial stewardship interventions. Antibiotics 2022; 11(8): 1086.
[http://dx.doi.org/10.3390/antibiotics11081086] [PMID: 36009955]
[41]
Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs 2021; 81(18): 2117-31.
[http://dx.doi.org/10.1007/s40265-021-01635-6] [PMID: 34743315]
[42]
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37(1): 177-92.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.013 ] [PMID: 30500353]
[43]
Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. BMC Infect Dis 2020; 20(1): 92.
[http://dx.doi.org/10.1186/s12879-020-4811-8] [PMID: 32000693]
[44]
Erfanimanesh S, Emaneini M, Modaresi MR, et al. Distribution and characteristics of bacteria isolated from cystic fibrosis patients with pulmonary exacerbation. Can J Infect Dis Med Microbiol 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/5831139] [PMID: 36593975]
[45]
Mangiaterra G, Amiri M, Di Cesare A, et al. Detection of viable but non-culturable Pseudomonas aeruginosa in cystic fibrosis by qPCR: A validation study. BMC Infect Dis 2018; 18(1): 701.
[http://dx.doi.org/10.1186/s12879-018-3612-9] [PMID: 30587160]
[46]
Ahmed SM, Gupta R, Malik A, Rizvi M. Incidence of multidrug-resistant pseudomonas spp. In ICU patients with special reference to ESBL, AMPC, MBL and biofilm production. J Glob Infect Dis 2016; 8(1): 25-31.
[http://dx.doi.org/10.4103/0974-777X.176142] [PMID: 27013841]
[47]
Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; A critical review. Genes Dis 2019; 6(2): 109-19.
[http://dx.doi.org/10.1016/j.gendis.2019.04.001] [PMID: 31194018]
[48]
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci 2021; 22(6): 3128.
[http://dx.doi.org/10.3390/ijms22063128] [PMID: 33803907]
[49]
Floret N, Bertrand X, Thouverez M, Talon D. Nosocomial infections caused by Pseudomonas aeruginosa: Exogenous or endogenous origin of this bacterium? Pathol Biol 2009; 57(1): 9-12.
[http://dx.doi.org/10.1016/j.patbio.2008.07.011] [PMID: 18848405]
[50]
Li X, Wang L, Wang H, Hou X. Outcome and clinical characteristics of nosocomial infection in adult patients undergoing extracorporeal membrane oxygenation: A systematic review and meta-analysis. Front Public Health 2022; 10: 857873.
[http://dx.doi.org/10.3389/fpubh.2022.857873] [PMID: 35812481]
[51]
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 2019; 32(4): e00002-19.
[http://dx.doi.org/10.1128/CMR.00002-19] [PMID: 31315895]
[52]
Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis 2017; 215 (Suppl. 1): S28-36.
[http://dx.doi.org/10.1093/infdis/jiw282] [PMID: 28375512]
[53]
Wu W, Wei L, Feng Y, Xie Y, Zong Z. Precise species identification by whole-genome sequencing of enterobacter bloodstream infection, China. Emerg Infect Dis 2021; 27(1): 161-9.
[http://dx.doi.org/10.3201/eid2701.190154] [PMID: 33350909]
[54]
Wu W, Feng Y, Zong Z. Precise species identification for Enterobacter : A genome sequence-based study with reporting of two novel species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov msystems 2020; 5(4): e00527-20.
[http://dx.doi.org/10.1128/mSystems.00527-20] [PMID: 32753511]
[55]
Perez F, Van Duin D. Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients. Cleve Clin J Med 2013; 80(4): 225-33.
[http://dx.doi.org/10.3949/ccjm.80a.12182] [PMID: 23547093]
[56]
Bonomo RA. β-Lactamases: A focus on current challenges. Cold Spring Harb Perspect Med 2017; 7(1): a025239.
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[57]
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[58]
Weibel S, Rücker G, Eberhart LHJ, et al. Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: A network meta-analysis. Cochrane Libr 2020; 2020(11): CD012859.
[http://dx.doi.org/10.1002/14651858.CD012859.pub2 ] [PMID: 33075160]
[59]
Friedrich AW. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien Med Wochenschr 2019; 169(S1) (Suppl. 1): 25-30.
[http://dx.doi.org/10.1007/s10354-018-0676-5] [PMID: 30623278]
[60]
de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 2016; 13(11): e1002184.
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[61]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[62]
Dadgostar P. Antimicrobial resistance: Implications and costs. Infect Drug Resist 2019; 12: 3903-10.
[http://dx.doi.org/10.2147/IDR.S234610] [PMID: 31908502]
[63]
Sultana J, Cutroneo P, Trifirò G. Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother 2013; 4(1_suppl)(Suppl. 1): S73-7.
[http://dx.doi.org/10.4103/0976-500X.120957] [PMID: 24347988]
[64]
Majumder MAA, Rahman S, Cohall D, et al. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect Drug Resist 2020; 13: 4713-38.
[http://dx.doi.org/10.2147/IDR.S290835] [PMID: 33402841]
[65]
Griffith M, Postelnick M, Scheetz M. Antimicrobial stewardship programs: Methods of operation and suggested outcomes. Expert Rev Anti Infect Ther 2012; 10(1): 63-73.
[http://dx.doi.org/10.1586/eri.11.153] [PMID: 22149615]
[66]
Goossens H. Antibiotic consumption and link to resistance. Clin Microbiol Infect 2009; 15 (Suppl. 3): 12-5.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02725.x ] [PMID: 19366364]
[67]
Pakyz AL, MacDougall C, Oinonen M, Polk RE. Trends in antibacterial use in US academic health centers: 2002 to 2006. Arch Intern Med 2008; 168(20): 2254-60.
[http://dx.doi.org/10.1001/archinte.168.20.2254] [PMID: 19001203]
[68]
Yu VL. Guidelines for hospital-acquired pneumonia and health-care-associated pneumonia: A vulnerability, a pitfall, and a fatal flaw. Lancet Infect Dis 2011; 11(3): 248-52.
[http://dx.doi.org/10.1016/S1473-3099(11)70005-6] [PMID: 21371658]
[69]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030 ] [PMID: 26343252]
[70]
Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016; 4(2): 4.2.15.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[71]
Kumar P, Bag S, Ghosh TS, et al. Molecular insights into antimicrobial resistance traits of multidrug resistant enteric pathogens isolated from India. Sci Rep 2017; 7(1): 14468.
[http://dx.doi.org/10.1038/s41598-017-14791-1] [PMID: 29089611]
[72]
Cox G, Wright GD. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013; 303(6-7): 287-92.
[http://dx.doi.org/10.1016/j.ijmm.2013.02.009] [PMID: 23499305]
[73]
Fajardo A. Martínez-Martín N, Mercadillo M, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One 2008; 3(2): e1619.
[http://dx.doi.org/10.1371/journal.pone.0001619] [PMID: 18286176]
[74]
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of epigenetic mechanisms into non-genotoxic carcinogenicity hazard assessment: Focus on DNA methylation and histone modifications. Int J Mol Sci 2021; 22(20): 10969.
[http://dx.doi.org/10.3390/ijms222010969] [PMID: 34681626]
[75]
Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 2014; 11: 33-9.
[http://dx.doi.org/10.1016/j.ddtec.2014.02.001] [PMID: 24847651]
[76]
Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics 2021; 10(4): 415.
[http://dx.doi.org/10.3390/antibiotics10040415] [PMID: 33920199]
[77]
Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9(10): 1165-77.
[http://dx.doi.org/10.2217/fmb.14.66] [PMID: 25405886]
[78]
Gill MJ, Simjee S, Al-Hattawi K, Robertson BD, Easmon CSF, Ison CA. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 1998; 42(11): 2799-803.
[http://dx.doi.org/10.1128/AAC.42.11.2799] [PMID: 9797206]
[79]
Kumar A, Schweizer H. Bacterial resistance to antibiotics: Active efflux and reduced uptake. Adv Drug Deliv Rev 2005; 57(10): 1486-513.
[http://dx.doi.org/10.1016/j.addr.2005.04.004] [PMID: 15939505]
[80]
Beceiro A. Tomás M, Bou G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26(2): 185-230.
[http://dx.doi.org/10.1128/CMR.00059-12] [PMID: 23554414]
[81]
Fisher JF, Mobashery S. β-Lactams against the fortress of the grampositive Staphylococcus aureus bacterium. Chem Rev 2021; 121(6): 3412-63.
[http://dx.doi.org/10.1021/acs.chemrev.0c01010] [PMID: 33373523]
[82]
Randall CP, Mariner KR, Chopra I, O’Neill AJ. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother 2013; 57(1): 637-9.
[http://dx.doi.org/10.1128/AAC.02005-12] [PMID: 23114759]
[83]
Kumar S, Mukherjee MM, Varela MF. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/204141] [PMID: 25750934]
[84]
Roberts MC. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 2004; 28(1): 47-62.
[http://dx.doi.org/10.1385/MB:28:1:47] [PMID: 15456963]
[85]
Hawkey PM. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 2003; 51(90001) (Suppl. 1): 29-35.
[http://dx.doi.org/10.1093/jac/dkg207] [PMID: 12702701]
[86]
Huovinen P. Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 1995; 39(2): 279-89.
[http://dx.doi.org/10.1128/AAC.39.2.279] [PMID: 7726483]
[87]
Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 2014; 22(8): 438-45.
[http://dx.doi.org/10.1016/j.tim.2014.04.007] [PMID: 24842194]
[88]
Vedantam G, Guay GG, Austria NE, Doktor SZ, Nichols BP. Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Chemother 1998; 42(1): 88-93.
[http://dx.doi.org/10.1128/AAC.42.1.88] [PMID: 9449266]
[89]
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13(1): 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[90]
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2004; 28(5): 519-42.
[http://dx.doi.org/10.1016/j.femsre.2004.04.001] [PMID: 15539072]
[91]
Villagra NA, Fuentes JA, Jofré MR, Hidalgo AA. García P, Mora GC. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J Antimicrob Chemother 2012; 67(4): 921-7.
[http://dx.doi.org/10.1093/jac/dkr573] [PMID: 22258924]
[92]
Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19(2): 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006 ] [PMID: 16614254]
[93]
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 2021; 8(2): 28-56.
[http://dx.doi.org/10.15698/mic2021.02.741] [PMID: 33553418]
[94]
Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013; 4(3): 223-9.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[95]
Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol 2012; 7(9): 1061-72.
[http://dx.doi.org/10.2217/fmb.12.76] [PMID: 22953707]
[96]
Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22(6): 326-33.
[http://dx.doi.org/10.1016/j.tim.2014.02.001] [PMID: 24598086]
[97]
Vestby LK. Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020; 9(2): 59.
[http://dx.doi.org/10.3390/antibiotics9020059] [PMID: 32028684]
[98]
Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front Microbiol 2018; 9: 2990.
[http://dx.doi.org/10.3389/fmicb.2018.02990] [PMID: 30619113]
[99]
Uddin MJ, Ahn J. Characterization of β-lactamase- and efflux pump-mediated multiple antibiotic resistance in Salmonella typhimurium. Food Sci Biotechnol 2018; 27(3): 921-8.
[http://dx.doi.org/10.1007/s10068-018-0317-1] [PMID: 30263820]
[100]
Goff DA, Kullar R, Goldstein EJC, et al. A global call from five countries to collaborate in antibiotic stewardship: United we succeed, divided we might fail. Lancet Infect Dis 2017; 17(2): e56-63.
[http://dx.doi.org/10.1016/S1473-3099(16)30386-3] [PMID: 27866945]
[101]
Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 2015; 14(8): 529-42.
[http://dx.doi.org/10.1038/nrd4572] [PMID: 26139286]
[102]
Ventola CL. The antibiotic resistance crisis: part 1: Causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[103]
Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 2013; 13(12): 1057-98.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[104]
Hof W, Veerman ECI, Helmerhorst EJ, Amerongen AVN. Antimicrobial peptides: Properties and applicability. Biol Chem 2001; 382(4): 597-619.
[http://dx.doi.org/10.1515/BC.2001.072] [PMID: 11405223]
[105]
Kang SJ, Nam SH, Lee BJ. Engineering approaches for the development of antimicrobial peptide-based antibiotics. Antibiotics 2022; 11(10): 1338.
[http://dx.doi.org/10.3390/antibiotics11101338] [PMID: 36289996]
[106]
Maani Z, Farajnia S, Rahbarnia L, Hosseingholi EZ, Khajehnasiri N, Mansouri P. Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction. J Mol Struct 2023; 1272: 134160.
[http://dx.doi.org/10.1016/j.molstruc.2022.134160] [PMID: 36128074]
[107]
Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ. Antimicrobial peptides: Therapeutic potentials. Expert Rev Anti Infect Ther 2014; 12(12): 1477-86.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[108]
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020; 11: 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[109]
Zhang SK, Song J, Gong F, et al. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 2016; 6(1): 27394.
[http://dx.doi.org/10.1038/srep27394] [PMID: 27271216]
[110]
Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil Med Res 2021; 8(1): 48.
[http://dx.doi.org/10.1186/s40779-021-00343-2] [PMID: 34496967]
[111]
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: An update on classifications and databases. Int J Mol Sci 2021; 22(21): 11691.
[http://dx.doi.org/10.3390/ijms222111691] [PMID: 34769122]
[112]
Lin L, Chi J, Yan Y, et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11(9): 2609-44.
[http://dx.doi.org/10.1016/j.apsb.2021.07.014] [PMID: 34589385]
[113]
Schmidt NW, Wong GCL. Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 2013; 17(4): 151-63.
[http://dx.doi.org/10.1016/j.cossms.2013.09.004] [PMID: 24778573]
[114]
Huang L, Chen D, Wang L, et al. Dermaseptin-PH: A novel peptide with antimicrobial and anticancer activities from the skin secretion of the south American orange-legged leaf frog, pithecopus (phyllomedusa) hypochondrialis. Molecules 2017; 22(10): 1805.
[http://dx.doi.org/10.3390/molecules22101805] [PMID: 29064402]
[115]
Cardoso MH, Meneguetti BT, Costa BO, et al. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int J Mol Sci 2019; 20(19): 4877.
[http://dx.doi.org/10.3390/ijms20194877] [PMID: 31581426]
[116]
Laver DR. The barrel-stave model as applied to alamethicin and its analogs reevaluated. Biophys J 1994; 66(2): 355-9.
[http://dx.doi.org/10.1016/S0006-3495(94)80784-2] [PMID: 7512830]
[117]
Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217: 112693.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112693] [PMID: 35853393]
[118]
Ganeshan Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics 2019; 8(3): 131.
[http://dx.doi.org/10.3390/antibiotics8030131] [PMID: 31461990]
[119]
Ling H, Lou X, Luo Q, He Z, Sun M, Sun J. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm Sin B 2022; 12(12): 4348-64.
[http://dx.doi.org/10.1016/j.apsb.2022.05.007] [PMID: 36561998]
[120]
Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage 2011; 1(2): 111-4.
[http://dx.doi.org/10.4161/bact.1.2.14590] [PMID: 22334867]
[121]
Opperman CJ, Wojno JM, Brink AJ. Treating bacterial infections with bacteriophages in the 21st century. S Afr J Infect Dis 2022; 37(1): 346.
[http://dx.doi.org/10.4102/sajid.v37i1.346] [PMID: 35399556]
[122]
Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses 2013; 5(3): 806-23.
[http://dx.doi.org/10.3390/v5030806] [PMID: 23478639]
[123]
Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017; 9(3): 50.
[http://dx.doi.org/10.3390/v9030050] [PMID: 28335451]
[124]
Cui Q, Wang X, Zhang Y, Shen Y, Qian Y. Macrophage-derived MMP-9 and MMP-2 are closely related to the rupture of the fibrous capsule of hepatocellular carcinoma leading to tumor invasion. Biol Proced Online 2023; 25(1): 8.
[http://dx.doi.org/10.1186/s12575-023-00196-0] [PMID: 36918768]
[125]
Zhang B. CRISPR/Cas gene therapy. J Cell Physiol 2021; 236(4): 2459-81.
[http://dx.doi.org/10.1002/jcp.30064] [PMID: 32959897]
[126]
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 2019; 20(8): 490-507.
[http://dx.doi.org/10.1038/s41580-019-0131-5] [PMID: 31147612]
[127]
Ahmadzadeh V, Farajnia S, Baghban R, Rahbarnia L, Zarredar H. CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond. J Cell Biochem 2019; 120(10): 16379-92.
[http://dx.doi.org/10.1002/jcb.29140] [PMID: 31219653]
[128]
Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends Plant Sci 2019; 24(12): 1102-25.
[http://dx.doi.org/10.1016/j.tplants.2019.09.006] [PMID: 31727474]
[129]
Loureiro A, da Silva G. CRISPR-Cas: Converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics 2019; 8(1): 18.
[http://dx.doi.org/10.3390/antibiotics8010018 ] [PMID: 30823430]
[130]
Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 2016; 371: 1707.
[http://dx.doi.org/10.1098/rstb.2015.0496]
[131]
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science 2018; 361(6405): 866-9.
[http://dx.doi.org/10.1126/science.aat5011] [PMID: 30166482]
[132]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[133]
Hunziker J, Nishida K, Kondo A, Kishimoto S, Ariizumi T, Ezura H. Multiple gene substitution by Target-AID base-editing technology in tomato. Sci Rep 2020; 10(1): 20471.
[http://dx.doi.org/10.1038/s41598-020-77379-2] [PMID: 33235312]
[134]
Fraikin N, Goormaghtigh F, Van Melderen L, Type II. Toxin-Antitoxin Systems: Evolution and revolutions. J Bacteriol 2020; 202(7): e00763-19.
[http://dx.doi.org/10.1128/JB.00763-19] [PMID: 31932311]
[135]
Goeders N, Van Melderen L. Toxin-antitoxin systems as multilevel interaction systems. Toxins 2014; 6(1): 304-24.
[http://dx.doi.org/10.3390/toxins6010304] [PMID: 24434905]
[136]
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol Cell 2018; 70(5): 768-84.
[http://dx.doi.org/10.1016/j.molcel.2018.01.003] [PMID: 29398446]
[137]
Van Melderen L. Toxin–antitoxin systems: Why so many, what for? Curr Opin Microbiol 2010; 13(6): 781-5.
[http://dx.doi.org/10.1016/j.mib.2010.10.006] [PMID: 21041110]
[138]
Riffaud C, Pinel-Marie ML, Felden B. Cross-regulations between bacterial toxin–antitoxin systems: Evidence of an interconnected regulatory network? Trends Microbiol 2020; 28(10): 851-66.
[http://dx.doi.org/10.1016/j.tim.2020.05.016] [PMID: 32540313]
[139]
Wu Y, Battalapalli D, Hakeem MJ, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19(1): 401.
[http://dx.doi.org/10.1186/s12951-021-01132-8] [PMID: 34863214]
[140]
Monte DFM, Nethery MA, Berman H, et al. Clustered regularly interspaced short palindromic repeats genotyping of multidrug-resistant salmonella heidelberg strains isolated from the poultry production chain across Brazil. Front Microbiol 2022; 13: 867278.
[http://dx.doi.org/10.3389/fmicb.2022.867278] [PMID: 35783410]
[141]
Kundar R, Gokarn K. CRISPR-Cas system: A tool to eliminate drug-resistant gram-negative bacteria. Pharmaceuticals 2022; 15(12): 1498.
[http://dx.doi.org/10.3390/ph15121498 ] [PMID: 36558949]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy