Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Potentials of TPC and TFC as Free Radical Scavengers and Microbial Growth Inhibitors in Himalayan Endemic Artemisia sieversiana Ehrhl Ex Willd. (Asteraceae) Plant from Northeastern, Pakistan

Author(s): Adil Hussain*, Hassam Rasheed, Muhammad A. Khan and Syed A.I. Bokhari

Volume 22, Issue 3, 2024

Published on: 25 January, 2024

Article ID: e250124226196 Pages: 12

DOI: 10.2174/0122113525281671231220035432

Price: $65

conference banner
Abstract

Background: In different types of microbes, various defense mechanisms have evolved against the commercially available antimicrobial agents with increased resistance. Natural antimicrobial agents of plant origin are better alternatives when an infectious disease arises due to resistant microbial strains. Here, we have evaluated the efficacy of total phenolics and total flavonoids with antioxidant and antimicrobial potentials of Artemisia sieversiana Ehrhl Ex Willd. plant extracted with methanol, ethyl acetate, ethanol, n-hexane, and chloroform using soxhlet extraction procedures.

Methods: The evaluation of TPC was achieved with Folin-Ciocalteu’s reagent method and quantitative estimation of TFC was done with the aluminum chloride colorimetric method. The antioxidant activities were estimated using FRSA-DPPH and TAC methods. The inhibitory activities of five solvent extracts of A. sieversiana against 2 gram-positive and 2 gram-negative pathogenic bacterial strains (B. subtilis, P. aeruginosa, S. aureus, and E. coli) were evaluated using the well diffusion technique.

Results: The highest percentage yields of A. sieversiana extracts were obtained in ethanol (4.8 g, 12.1%) and methanol (4.01 g, 10%), while minimum extract yield was obtained in n-hexane (0.53 g, 1.34%). Both phenolics and flavonoids were higher in ethanol, methanol, and ethyl acetate extracts while minimal in n-hexane extracts. Ethanol extract has shown maximum (69%) DPPH activity with a lower IC50 value (181 μg/ml), while the highest IC50 values of 330 and 325μg/ml were recorded for n-hexane and ethyl acetate extracts. The ethyl acetate and chloroform extracts displayed overall highest TAC values. All the tested extracts of A. sieversiana exhibited variable inhibitory effects in a dose-dependent manner against the tested bacterial strains with minimum 9.08 ± 0.23 to maximum 21.23 ± 7.04 mm inhibition zones. Methanol and ethyl acetate extracts at 2 to 4 mg/ml showed greater MIC results against P. aeruginosa in comparison to the B. subtilis strain.

Conclusion: The extracts of A. sieversiana have been found to be rich in TPC and TFC with remarkable antibacterial and antioxidant efficacies, and the plant extracts could be employed as possible alternatives to synthetic drugs in various nutraceutical and pharmaceutical industries.

Graphical Abstract

[1]
World Health Organization. Program on traditional medicine. WHO traditional medicine strategy 2002–2005. 2002. Available from: https://apps.who.int/iris/handle/10665/67163
[2]
Oberprieler, C.; Himmelreich, S.; Källersjö, M.; Vallès, J.; Watson, L.E.; Vogt, R. Tribe Anthemideae Cass. In: Systematics, Evolution, and Biogeography of the Compositae; Funk, V.A.; Susanna, A.; Stuessy, T.F.; Bayer, R.J., Eds.; IAPT: Washington, 2009; pp. 631-666.
[3]
Hussain, A.; Sajid, M.; Potter, D.; Rasheed, H.; Hassan, M.; Akhtar, N.; Ahmad, B.; Bokhari, S.A.I. Diversity in elemental content in selected Artemisia L. (Asteraceae) species from Gilgit-Baltistan region of Pakistan based on inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Biol. Trace Elem. Res., 2023, 201(8), 4143-4155. a
[http://dx.doi.org/10.1007/s12011-022-03469-z] [PMID: 36355264]
[4]
Hussain, A.; Hayat, M.Q.; Sahreen, S.; Ain, Q.U.; Bokhari, S.A.I. Pharmacological promises of genus Artemisia (Asteraceae): A review. Proceed. Pak. Acad. Sci: B. Life Environ. Sci, 2017, 54, 265-287.
[5]
Pellicer, J.; Saslis-Lagoudakis, C.H.; Carrió, E.; Ernst, M.; Garnatje, T.; Grace, O.M.; Gras, A.; Mumbrú, M.; Vallès, J.; Vitales, D.; Rønsted, N. A phylogenetic road map to antimalarial Artemisia species. J. Ethnopharmacol., 2018, 225, 1-9.
[http://dx.doi.org/10.1016/j.jep.2018.06.030] [PMID: 29936053]
[6]
World Health Organization. World malaria report. Fact sheet N°94, 2015.
[7]
Kefale, A.T.; Dabe, N.E. Antidiabetic effects of artemisia species: A systematic review. Anc. Sci. Life, 2017, 36(4), 175-181.
[http://dx.doi.org/10.4103/asl.ASL_87_17] [PMID: 29269967]
[8]
Cui, J.; Nuermaimaiti, M.; Zou, G.; Xin, X. Chemical composition of Artemisia sieversiana. Chem. Nat. Compd., 2020, 56(6), 1120-1121.
[http://dx.doi.org/10.1007/s10600-020-03241-6]
[9]
Tang, J.; Zhao, J.J.; Li, Z.H. Ethanol extract of Artemisia sieversiana exhibits anticancer effects and induces apoptosis through a mitochondrial pathway involving DNA damage in COLO-205 colon carcinoma cells. Bangladesh J. Pharmacol., 2015, 10(3), 518.
[http://dx.doi.org/10.3329/bjp.v10i3.23196]
[10]
Hussain, A.; Potter, D.; Kim, S.; Hayat, M.Q.; Bokhari, S.A.I. Molecular phylogeny of Artemisia (Asteraceae-Anthemideae) with emphasis on undescribed taxa from Gilgit-Baltistan (Pakistan) based on nrDNA (ITS and ETS) and cpDNA (psbA-trnH) sequences. Plant Ecol. Evol., 2019, 152(3), 507-520.
[http://dx.doi.org/10.5091/plecevo.2019.1583]
[11]
Hussain, A.; Sajid, M.; Rasheed, H.; Hassan, M.; Khan, M.A.; Bokhari, S.A.I. Phytochemistry and antibacterial efficacy of northeastern pakistani Artemisia rutifolia stephan ex spreng. extracts against some clinical and phyto-pathogenic bacterial strains. ACTA Pharmaceutica Sciencia, 2022, 60(3), 247. b
[http://dx.doi.org/10.23893/1307-2080.APS.6017]
[12]
Mohammed, S.; Dekabo, A.; Hailu, T. Phytochemical analysis and anti-microbial activities of Artemisia spp. and rapid isolation methods of artemisinin. AMB Express, 2022, 12(1), 17.
[http://dx.doi.org/10.1186/s13568-022-01346-5] [PMID: 35150378]
[13]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[14]
Kosalec, I.; Bakmaz, M.; Pepeljnjak, S. Vladimir-Knezević S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm., 2004, 54(1), 65-72.
[PMID: 15050046]
[15]
Roy, P.; Amdekar, S.; Kumar, A.; Singh, V. Preliminary study of the antioxidant properties of flowers and roots of Pyrostegia venusta (Ker Gawl). Miers. BMC Complement. Altern. Med., 2011, 11(1), 69.
[http://dx.doi.org/10.1186/1472-6882-11-69] [PMID: 21861910]
[16]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[17]
Magaldi, S.; Mata-Essayag, S.; Hartung de Capriles, C.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis., 2004, 8(1), 39-45.
[http://dx.doi.org/10.1016/j.ijid.2003.03.002] [PMID: 14690779]
[18]
Ruwali, P.; Ambwani, T.K.; Gautam, P.; Thapliyal, A. Qualitative and quantitative phytochemical analysis of Artemisia indica Willd. J. Chem. Pharm. Res., 2015, 7, 942-949.
[19]
Sembiring, B.; Gusmaini, H. Antioxidant activity of Artemisia (Artemisia annua) extract on several concentrations and solvents. The 2nd International conference on sustainable plantation. IOP Conf. Series: Earth Environ. Sci, 2022, p. 974.
[http://dx.doi.org/10.1088/1755-1315/974/1/012119]
[20]
Fatiha, B.; Khodir, M.; Farid, D.; Tiziri, R.; Karima, B.; Sonia, O.; Mohamed, C. Optimization of solvent extraction of antioxidants (phenolic compounds) from Algerian Mint (Mentha spicata L.). Pharmacogn. Commun., 2012, 2, 72-86.
[http://dx.doi.org/10.5530/pc.2012.4.10]
[21]
Özgen, U.; Mavi, A.; Terzi, Z.; Coflkun, M.; Yildirim, A. Antioxidant activities and total phenolic compounds amount of some Asteraceae species. Turk. J. Pharm. Sci, 2004, 1, 203-216.
[22]
Sunmonu, T.O.; Afolayan, A.J. Evaluation of polyphenolic content and antioxidant activity of Artemisia afra Jacq. Ex Willd. aqueous extract. Pak. J. Nutr., 2012, 11(7), 618-623.
[http://dx.doi.org/10.3923/pjn.2012.618.623]
[23]
Mazandarani, M.; Majidi, Z.; Zarghami-Moghaddam, P.; Abrodi, M.; Hemati, H.; Fathiazad, F. Essential oil composition, total phenol, flavonoid, anthocyanin and antioxidant activities in different parts of Artemisia annua L. in two localities (North of Iran). J. Med. Plants By-Prod., 2012, 1, 13-21.
[http://dx.doi.org/10.22092/JMPB.2012.108439]
[24]
Lee, J.H. Evaluation of antioxidant activity of Artemisia sp. plants. Res. J. Med. Plant, 2014, 8(6), 258-268.
[http://dx.doi.org/10.3923/rjmp.2014.258.268]
[25]
Afshar, A.H.; Delazar, A.; Nazemiyeh, H.; Esnaashari, S.; Moghadam, S.B. Comparison of the total phenol, flavonoid contents and antioxidant activity of methanolic extracts of Artemisia spicigera and A. splendens growing in Iran. Pharm. Sci., 2012, 18, 165-170.
[26]
Ahmed, M.; Ji, M.; Qin, P.; Gu, Z.; Liu, Y.; Sikandar, A.; Iqbal, M.F.; Javeed, A.; Shafi, J.; Du, Y. Determination of phytochemicals, antioxidant activity and biochemical composition of Chinese mµgwort (Artemisia argyi L.) leaf extract from northeast China. Appl. Ecol. Environ. Res., 2019, 17(6), 15349-15362.
[http://dx.doi.org/10.15666/aeer/1706_1534915362]
[27]
Borkataky, M.; Kakoti, B.B.; Saikia, L.R. Influence of total phenolic content and total flavonoid content on the DPPH radical scavenging activity of Costus speciosus (Koen Ex. Retz.). Sm. South Asian J. Exp. Biol., 2015, 4(5), 261-266.
[http://dx.doi.org/10.38150/sajeb.4(5).p261-266]
[28]
Zhao, H.; Dong, J.; Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, W.; Gu, G. Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). J. Agric. Food Chem., 2006, 54(19), 7277-7286.
[http://dx.doi.org/10.1021/jf061087w] [PMID: 16968094]
[29]
Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res., 2015, 49(5), 633-649.
[http://dx.doi.org/10.3109/10715762.2014.996146] [PMID: 25511471]
[30]
Erdogrul, Ö.T. Antibacterial activities of some plant extracts used in folk medicine. Pharm. Biol., 2002, 40(4), 269-273.
[http://dx.doi.org/10.1076/phbi.40.4.269.8474]
[31]
Rao, M.R.; Reddy, I.B.; Ramana, T. Antimicrobial activity of some Indian medicinal plants. Indian J. Microbiol., 2006, 46, 259-262.
[32]
Cha, J.D. Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. J. Bacteriol. Virol., 2007, 37(3), 129-136.
[http://dx.doi.org/10.4167/jbv.2007.37.3.129]
[33]
Ahameethunisa, A.R.; Hopper, W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Complement. Altern. Med., 2010, 10(1), 6.
[http://dx.doi.org/10.1186/1472-6882-10-6] [PMID: 20109237]
[34]
Lakehal, S.A.M.; Benmimoune, S.; Bensouna, S.N.; Benrebiha, F.Z.; Chaouia, C. Essential oil composition and antimicrobial activity of Artemisia herba–alba Asso grown in Algeria. Med. Chem., 2016, 6(6), 435-439.
[http://dx.doi.org/10.4172/2161-0444.1000382]
[35]
Alwathnani, H.A. Antibacterial activity of aqueous extracts of Artemisia species against some pathogenic bacteria. Biosci. Biotechnol. Res. Asia, 2017, 14, 621-624.
[http://dx.doi.org/10.13005/bbra/2486]
[36]
Rafika, G.; Zahia, H.; Nesma, H. Chemical composition and antibacterial activity of Artemisia campestris ssp. glutinosa (J. Gay) Batt. and A. judaïca ssp. sahariensis (Chev.) species endemic to the Algerian Sahara. J. Essent. Oil-Bear. Plants, 2018, 21(3), 779-788.
[http://dx.doi.org/10.1080/0972060X.2018.1484819]
[37]
Talib, M.T.M. AL-Juboory, A.B.K; Abdullah, A.R. Antimicrobial activity of different concentration of aqueous plant extracts of Artemisia vulgaris leaves on many pathogenic microorganism. Plant Arch., 2020, 20, 5292-5296.
[38]
Aati, H.Y.; Perveen, S.; Orfali, R.; Al-Taweel, A.M.; Aati, S.; Wanner, J.; Khan, A.; Mehmood, R. Chemical composition and antimicrobial activity of the essential oils of Artemisia absinthium, Artemisia scoparia, and Artemisia sieberi grown in Saudi Arabia. Arab. J. Chem., 2020, 13(11), 8209-8217.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.055]
[39]
Yang, M.T.; Kuo, T.F.; Chung, K.F.; Liang, Y.C.; Yang, C.W.; Lin, C.Y.; Feng, C.S.; Chen, Z.W.; Lee, T.H.; Hsiao, C.L.; Yang, W.C. Authentication, phytochemical characterization and anti-bacterial activity of two Artemisiaspecies. Food Chem., 2020, 333, 127458.
[http://dx.doi.org/10.1016/j.foodchem.2020.127458] [PMID: 32673952]
[40]
Arage, M.; Eguale, T.; Giday, M. Evaluation of antibacterial activity and acute toxicity of methanol extracts of Artemisia absinthium, Datura stramonium, and Solanum anguivi. Infect. Drug Resist., 2022, 15, 1267-1276.
[http://dx.doi.org/10.2147/IDR.S359280] [PMID: 35355620]
[41]
Singh, N.B.; Devi, M.L.; Biona, T.; Sharma, N.; Das, S.; Chakravorty, J.; Mukherjee, P.K.; Rajashekar, Y. Phytochemical composition and antimicrobial activity of essential oil from the leaves of Artemisia vulgaris L. Molecules, 2023, 28(5), 2279.
[http://dx.doi.org/10.3390/molecules28052279] [PMID: 36903525]
[42]
Ahmadizadeh, C.; Monadi, A.; Rezaie, A.; Rad, M.G.; Jafari, B. Antibacterial activity of methanolic extract and essence of Sagebrush (Artemisia vulgaris) against pathogenic bacteria. Life Sci. J., 2018, 15, 69-73.
[43]
Griep, M.A.; Blood, S.; Larson, M.A.; Koepsell, S.A.; Hinrichs, S.H. Myricetin inhibits Escherichia coli DnaB helicase but not primase. Bioorg. Med. Chem., 2007, 15(22), 7203-7208.
[http://dx.doi.org/10.1016/j.bmc.2007.07.057] [PMID: 17851081]
[44]
Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci., 2011, 76(6), M398-M403.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02213.x] [PMID: 22417510]
[45]
Stojković D.; Petrović J.; Soković M.; Glamočlija, J.; Kukić-Marković J.; Petrović S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p ‐coumaric acid and rutin, using food systems. J. Sci. Food Agric., 2013, 93(13), 3205-3208.
[http://dx.doi.org/10.1002/jsfa.6156] [PMID: 23553578]
[46]
Ouerghemmi, I.; Bettaieb Rebey, I.; Rahali, F.Z.; Bourgou, S.; Pistelli, L.; Ksouri, R.; Marzouk, B.; Saidani Tounsi, M. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis. J. Food Drug Anal., 2017, 25(2), 350-359.
[http://dx.doi.org/10.1016/j.jfda.2016.04.001] [PMID: 28911677]
[47]
Sarker, U.; Oba, S. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus. BMC Plant Biol., 2020, 20(1), 499.
[http://dx.doi.org/10.1186/s12870-020-02700-0] [PMID: 33138787]
[48]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[49]
Stefanović, O.D. Synergistic activity of antibiotics and bioactive plant extracts: A study against gram-positive and gram-negative bacteria. Bacterial Pathogenesis and Antibacterial Control, 2018.
[http://dx.doi.org/10.5772/intechopen.72026]
[50]
Mothana, R.A. Al-Sadi, M.S.; Al-Yahya, M.A.; Al-Rehaily, A.J.; Khaled, J.M. GC and GC/MS analysis of essential oil composition of the endemic Soqotraen leucasvirgata Balf.f. and its antimicrobial and antioxidant activities. Int. J. Mol. Sci., 2013, 14, 23129-23139.
[http://dx.doi.org/10.3390/ijms141123129] [PMID: 24284402]
[51]
Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact., 2019, 308, 294-303.
[http://dx.doi.org/10.1016/j.cbi.2019.05.050] [PMID: 31158333]
[52]
Vaou, N.; Stavropoulou, E.; Voidarou, C.C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics, 2022, 11(8), 1014.
[http://dx.doi.org/10.3390/antibiotics11081014] [PMID: 36009883]
[53]
Jeong, J.Y.; Jung, I.G.; Yum, S.H.; Hwang, Y.J. In vitro synergistic inhibitory effects of plant extract combinations on bacterial growth of methicillin-resistant Staphylococcus aureus. Pharmaceuticals, 2023, 16(10), 1491.
[http://dx.doi.org/10.3390/ph16101491] [PMID: 37895962]
[54]
Atta, S.; Waseem, D.; Fatima, H.; Naz, I.; Rasheed, F.; Kanwal, N. Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J. Biol. Sci., 2023, 30(3), 103576.
[http://dx.doi.org/10.1016/j.sjbs.2023.103576] [PMID: 36874198]
[55]
Tsuchiya, H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules, 2015, 20(10), 18923-18966.
[http://dx.doi.org/10.3390/molecules201018923] [PMID: 26501254]
[56]
Sanver, D.; Murray, B.S.; Sadeghpour, A.; Rappolt, M.; Nelson, A.L. Experimental modeling of flavonoid–biomembrane interactions. Langmuir, 2016, 32(49), 13234-13243.
[http://dx.doi.org/10.1021/acs.langmuir.6b02219] [PMID: 27951697]
[57]
Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J. Agric. Food Chem., 2013, 61(34), 8185-8190.
[http://dx.doi.org/10.1021/jf402222v] [PMID: 23926942]
[58]
Eumkeb, G.; Chukrathok, S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant Enterobacter cloacae. Phytomedicine, 2013, 20(3-4), 262-269.
[http://dx.doi.org/10.1016/j.phymed.2012.10.008] [PMID: 23218402]
[59]
Zambrano, C.; Kerekes, E.B.; Kotogán, A.; Papp, T.; Vágvölgyi, C.; Krisch, J.; Takó, M. Antimicrobial activity of grape, apple and pitahaya residue extracts after carbohydrase treatment against food-related bacteria. Lebensm. Wiss. Technol., 2019, 100, 416-425.
[http://dx.doi.org/10.1016/j.lwt.2018.10.044]
[60]
Soromou, L.W.; Zhang, Y.; Cui, Y.; Wei, M.; Chen, N.; Yang, X.; Huo, M.; Baldé, A.; Guan, S.; Deng, X.; Wang, D. Subinhibitory concentrations of pinocembrin exert anti- Staphylococcus aureus activity by reducing α -toxin expression. J. Appl. Microbiol., 2013, 115(1), 41-49.
[http://dx.doi.org/10.1111/jam.12221] [PMID: 23594163]
[61]
da Cruz Cabral, L.; Fernández Pinto, V.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol., 2013, 166(1), 1-14.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.05.026] [PMID: 23816820]
[62]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[63]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[64]
Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 2020, 146, 104720.
[http://dx.doi.org/10.1016/j.fitote.2020.104720] [PMID: 32910994]
[65]
Donadio, G.; Mensitieri, F.; Santoro, V.; Parisi, V.; Bellone, M.L.; De Tommasi, N.; Izzo, V.; Dal Piaz, F. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics, 2021, 13(5), 660.
[http://dx.doi.org/10.3390/pharmaceutics13050660] [PMID: 34062983]
[66]
Oulahal, N.; Degraeve, P. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Front. Microbiol., 2022, 12, 753518.
[http://dx.doi.org/10.3389/fmicb.2021.753518] [PMID: 35058892]
[67]
Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N., Jr The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front. Microbiol., 2017, 8, 422.
[http://dx.doi.org/10.3389/fmicb.2017.00422] [PMID: 28360902]
[68]
Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 2012, 28(7), 755-767.
[http://dx.doi.org/10.1080/08927014.2012.706751] [PMID: 22823343]
[69]
Phan, H.T.T.; Yoda, T.; Chahal, B.; Morita, M.; Takagi, M.; Vestergaard, M.C. Structure-dependent interactions of polyphenols with a biomimetic membrane system. Biochim. Biophys. Acta Biomembr., 2014, 1838(10), 2670-2677.
[http://dx.doi.org/10.1016/j.bbamem.2014.07.001] [PMID: 25016053]
[70]
Pernin, A.; Guillier, L.; Dubois-Brissonnet, F. Inhibitory activity of phenolic acids against Listeria monocytogenes: Deciphering the mechanisms of action using three different models. Food Microbiol., 2019, 80, 18-24.
[http://dx.doi.org/10.1016/j.fm.2018.12.010] [PMID: 30704593]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy